CNS Drugs

, Volume 15, Issue 4, pp 287–310 | Cite as

Oxidative Damage and Schizophrenia

An Overview of the Evidence and Its Therapeutic Implications
  • Jeffrey K. Yao
  • Ravinder D. Reddy
  • Daniel P. van Kammen
Review Article


Free radicals are highly reactive chemical species generated during normal metabolic processes, which in excess can lead to membrane damage. Elaborate anti-oxidant defence systems exist to protect against oxidative stress.

There is accumulating evidence of altered antioxidant capacity in schizophrenia. Membrane dysfunction can be secondary to free radical-mediated pathology, and may contribute to specific aspects of schizophrenic symptomatology and complications of its treatment. Specifically, free radical-mediated abnormalities may contribute to the development of a number of clinically significant consequences, including prominent negative symptoms, tardive dyskinesia, neurological ‘soft’ signs and parkinsonian symptoms. Our previous results showing altered membrane dynamics and antioxidant enzyme activities in schizophrenia, and findings from other investigators, are consistent with the notion of free radical-mediated neurotoxicity in schizophrenia. These findings provide a theoretical basis from which the development of novel therapeutic strategies such as fatty acid and antioxidant supplementation can occur in the future.


Schizophrenia Tardive Dyskinesia Uric Acid Level Total Antioxidant Status Chronic Schizophrenia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported in part by the Office of Research and Development (Merit Review), Department of Veterans Affairs, the Highland Drive VA Pittsburgh Healthcare System, and research grants from the National Institute of Mental Health (MH43742, MH44841 and MH58141) and National Alliance for Research on Schizophrenia and Depression. The authors are grateful to L. McElhinny and C. Korbanic for their technical assistance. Appreciation is also owed to the patients and nursing staff of the Schizophrenia Research Unit for their participation and collaboration.


  1. 1.
    Liebennan JA, Koreen AR. Neurochemistry and neuroendocrinology of schizophrenia: a selective review. Schizophr Bull 1993; 19: 371–429CrossRefGoogle Scholar
  2. 2.
    Horrobin DF, Glen AIM, Hudson CJ. Posssible relevance of phosplolipid abnormalities and genetic interactions in psychiatric disorders; the relationship between dyslexia and schizophrenia. Med Hypotheses 1995; 45: 605–13PubMedCrossRefGoogle Scholar
  3. 3.
    Yao JK. Red blood cell and platelet fatty acid metabolism in schizophrenia. In: Peet M, Glen I, Horrobin DF, editors. Phospholipid spectrum disorder in psychiatry. Lancashire: Marius Press, 1999: 57–71Google Scholar
  4. 4.
    Yao JK, Reddy RD. Fatty acids and psychiatric disorders. In: Chow CK, editor. Fatty acid in foods and their health implications. 2nd ed. New York (NY): Marcel Dekker, 2000: 995–1012Google Scholar
  5. 5.
    Yao JK, van Kammen DP, Welker JA. Red blood cell membrane dynamics in schizophrenia. II. Fatty acid composition. Schizophr Res 1994; 13(3): 217–6Google Scholar
  6. 6.
    Yao JK, van Kammen DP, Welker JA, et al. Red blood cell membrane dynamics in schizophrenia. III Correlation of fatty acid abnormalities with clinical measures. Schizophr Res 1994; 13(3): 227–32Google Scholar
  7. 7.
    Yao JK, Leonard S, Reddy R. Membrane phospholipid abnormalities in portmortem brains from schizophrenic patients. Schizophr Res 2000; 42(1): 7–17PubMedCrossRefGoogle Scholar
  8. 8.
    Vaddadi KS, Courtney P, Gilleard CS, et al. A double blind trial of essential fatty acid supplementation in patients with tardive dyskinesia. Psychiatry Res 1989; 27: 313–23PubMedCrossRefGoogle Scholar
  9. 9.
    Horrobin DF, Manku MS, Hillman H, et al. Fatty acid levels in the brains of schizophrenics and normal controls. Biol Psychiatry 1991; 30: 795–805PubMedCrossRefGoogle Scholar
  10. 10.
    Glen AIM, Glen EMT, Horrobin DF, et al. A red cell membrane abnormality in a sub-group of schizophrenic patients: Evidence for two diseases. Schizophr Res 1994; 12; 53–61PubMedCrossRefGoogle Scholar
  11. 11.
    Peet M, Laugharne JDE, Rangarajan N, et al. Depleted red cell membrane essential fatty acids in drug-treated schizophrenic patients. J Psychiatr Res 1995; 29: 227–32PubMedCrossRefGoogle Scholar
  12. 12.
    Reddy RD, Yao JK. Membrane protective strategies in schizophrenia: conceptual and treatment issues. In: Peet M, Glen I, Horrobin DF, editors. Phospholipid spectrum disorder in psychiatry. Lancashire UK: Marius Press, 1999: 75–88Google Scholar
  13. 13.
    Cadet JL, Lohr JB. Free radicals and the developmental pathology of schizophrenic burnout. Integr Psychiatry 1987; 5: 40–8Google Scholar
  14. 14.
    Lohr JB. Oxygen radicals and neuropsychiatric illness: some speculations. Arch Gen Psychiatry 1991; 48: 1097–6PubMedCrossRefGoogle Scholar
  15. 15.
    Mahadik SP, Mukherjee S. Free radical pathology and anti-oxidant defense in schizophrenia: a review. Schizophr Res 1996; 19: 1–17PubMedCrossRefGoogle Scholar
  16. 16.
    Smythies J. Oxidative reactions and schizophrenia: a review-discussion. Schizophr Res 1997; 24(3): 357–64PubMedCrossRefGoogle Scholar
  17. 17.
    Halliwell B, Gutteridge JMC. Oxygen radicals and the central nervous system. Trends Neurosci 1984; 8: 22–66CrossRefGoogle Scholar
  18. 18.
    Kalyanaraman B. Free radicals from catecholamine hormones, neuromelanins, and neurotoxins. In: Miquel J, Quintanilha AT, Weber H, editors. Handbook of free 107 radicals and antioxidants in biomedicine. Vol. I. Boca Raton: CRC Press, 1989: 147–59Google Scholar
  19. 19.
    Rice-Evans CA. Formation of free radicals and mechanisms of action in normal biochemical processes and pathological states. In: Rice-Evans CA, Burdon RH, editors. Free radical damage and its control. Amsterdam: Elsevier, 1994: 131–53CrossRefGoogle Scholar
  20. 20.
    Ernster L. Lipid peroxidation in biological membranes mechanisms and implications. In: Yagi K, editor. Active oxygens, lipid peroxides, and antioxidants. Tokyo: CRC Press 1993: 11–38Google Scholar
  21. 21.
    Chan PH, Fishman RA. Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling. J Neurochem 1980; 35: 1004–7PubMedCrossRefGoogle Scholar
  22. 22.
    Chan PH, Fishman RA, Longar S, et al. Cellular and molecular effects of polyunsaturated fatty acids in brain ischemia and injury. Prog Brain Res 1985; 63: 227–35PubMedCrossRefGoogle Scholar
  23. 23.
    Smith C. Free radical mechanisms of tissue injury. In: Moslen M, Smith C, editors. Free radical mechanisms of tissue injury. Boca Raton: CRC Press, 1992; 1: 1–22Google Scholar
  24. 24.
    Kaiya H, Horrobin DF, Manku MS, et al. Essential and other fatty acids in plasma in schizophrenic and normal individual from Japan. Biol Psychiatry 1991; 30: 357–62PubMedCrossRefGoogle Scholar
  25. 25.
    Deby C, Deby-Dupont G. Oxygen species in prostaglandin biosynthesis in vitro and in vivo. In: Bannister WH, Bannister JV, editors. Development in biochemistry. Vol. 11B: biological and clinical aspects of superoxide and superoxide dismutase. New York (NY): Elsevier, 1980: 84–97Google Scholar
  26. 26.
    Rotrosen J, Wolkin A. Phospholipid and prostaglandin hypotheses of schizophrenia. In: Meltzer NY, editor. Psychopharmacology: the third generation on progress. New York (NY): Raven Press, 1987: 759–64Google Scholar
  27. 27.
    van Kammen DP, Yao JK, Goetz K. Polyunsaturated fatty acids, prostaglandins, and schizophrenia. Ann N Y Acad Sci 1989; 559: 411–23PubMedCrossRefGoogle Scholar
  28. 28.
    Rafalowska U, Liu GJ, Floyd RA. Peroxidation induced changes in synaptosomal transport of dopamine and g-aminobutyric acid. Free Radic Biol Med 1989; 6: 485–92PubMedCrossRefGoogle Scholar
  29. 29.
    Pellmar T. Electrophysiological correlates of peroxide damage in guinea pig hippocampus in vitro. Brain Res 1986; 364: 377–81PubMedCrossRefGoogle Scholar
  30. 30.
    Levin EY, Kaufman S. Studies on the enzyme catalyzing the conversion of 3,4-dihydroxyphenylethylamine to norepinephrine. J Biol Chem 1961; 236: 2043–4PubMedGoogle Scholar
  31. 31.
    Schwartz RD, Skolnick P, Paul SM. Regulation of gamma-aminobutyric acid/barbiturate receptor-gated chloride ion flux in brain vesicles by phospholipase A2: possible role of oxygen radicals. J Neurochem 1988; 50: 565–71PubMedCrossRefGoogle Scholar
  32. 32.
    Bartosz G. Free radicals and the developmental pathology of schizophrenic burnout [commentary]. Integr Psychiatry 1987 5: 43–4Google Scholar
  33. 33.
    Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem 1992; 59: 1609–23PubMedCrossRefGoogle Scholar
  34. 34.
    Hoffer A, Osmond H, Smythies J. Schizophrenia: a new approach. J Ment Sci 1954; 100: 29–5PubMedGoogle Scholar
  35. 35.
    Michelson AM, Puget K, Durosay P, et al. Clinical aspects of the dosage of erythrocuprein. In: Michelson AM, McCord JM, Fridovich I, editors. Superoxide and superoxide dismutase. London: Academic Press, 1977; 467–99Google Scholar
  36. 36.
    Wayner DDM, Burton GW, Ingold KU, et al. The relative contribution of vitamine E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta 1987; 924: 408–19PubMedCrossRefGoogle Scholar
  37. 37.
    Miller NJ, Rice-Evans C, Davies MJ, et al. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 1993; 84: 407–12PubMedGoogle Scholar
  38. 38.
    Yao JK, Reddy R, McElhinny LG, et al. Reduced status of plasma total antioxidant capacity in schizophrenia. Schizophr Res 1998; 32: 1–8PubMedCrossRefGoogle Scholar
  39. 39.
    Yao JK, Reddy RD, van Kammen DP. Abnormal age-related changes of plasma antioxidant proteins in schizophrenia. Psychiatry Res 2000; 97: 137–51PubMedCrossRefGoogle Scholar
  40. 40.
    Yao JK, Reddy R, van Kammen DP. Reduced level of plasma antioxidant uric acid in schizophrenia. Psychiatry Res 1998; 80: 29–39PubMedCrossRefGoogle Scholar
  41. 41.
    Oke AF, May L, Adams RN. Ascorbic acid distribution patterns in human brain. In: Burns JJ, Rivers JM, Machlin LJ, editors. Third Conference on Vitamin C. Ann N Y Acad Sci 1987; 498: 1–12Google Scholar
  42. 42.
    Rebec GV. Ascorbate: an antioxidant neuroprotectant and extracellular neuromodulator. In: Connor JR, editor. Metals and oxidative damage in neurological disorders. New York (NY): Plenum Press, 1997: 149–73Google Scholar
  43. 43.
    Suboticanec K, Folnegovic-Smalc V, Korbar M, et al. Vitamin C status in chronic schizophrenia. Biol Psychiatry 1990; 28: 959–66PubMedCrossRefGoogle Scholar
  44. 44.
    McCreadie RG, MacDonald E, Wiles D, et al. The nithsdale schizophrenia surveys. XIV: plasma lipid peroxide and serum vitamin E levels in patients with and without tardive dyskinesia, and normal subjects. Br J Psychiatry 1995; 167: 610–17Google Scholar
  45. 45.
    Brown K, Reid A, White T, et al. Vitamin E, lipids, lipid peroxidation products and tardive dyskinesia. Biol Psychiatry 1998; 43: 863–67PubMedCrossRefGoogle Scholar
  46. 46.
    Abdalla DSP, Manteiro HP, Olivera JAC. et al. Activities of Superoxide dismutase and glutathione peroxidase in schizophrenic and manic depressive patients. Clin Chem 1986; 32: 805–7Google Scholar
  47. 47.
    Golse B, Debray-Ritzen P, Puget K, et al. Dosages érythrocytaires et plaquettes des superoxyde dismutases (1 et 2) et de la glutathion peroxydase dans les pychoses infantiles de développement. Nouv Presse Med 1978; 7: 1952PubMedGoogle Scholar
  48. 48.
    Golse B, Debray Q, Puget K, et al. Dosages érythrocytaires de la superoxyde dismutases 1 et de la glutathion peroxydase dans les schizophrénies de l’adulte. Nouv Presse Med 1978; 7: 2070–1PubMedGoogle Scholar
  49. 49.
    Reddy R, Mahadik SP, Mukherjee M, et al. Enzymes of the antioxidant system in chronic schizophrenic patients. Biol Psychiatry 1991; 30: 409–12PubMedCrossRefGoogle Scholar
  50. 50.
    Yao JK, Reddy R, McElhinny LG, et al. Effect of haloperidol on antioxidant defense system enzymes in schizophrenia. J Psychiatr Res 1998; 32: 385–91PubMedCrossRefGoogle Scholar
  51. 51.
    Sinet PM, Debray Q, Carmagnol F, et al. Normal erythrocyte SOD values in two human diseases: schizophrenia and cystic fibrosis. In: Greenwald RA, Cohen G, editors. Oxy radicals and their scavenger systems. Vol. II. Cellular and medical aspects. New York (NY): Elsevier, 1983: 302–4Google Scholar
  52. 52.
    Khan NS, Das I. Oxidative stress and superoxide dismutase in schizophrenia. Biochem Soc Trans 1997; 25(3): 418SGoogle Scholar
  53. 53.
    Mukherjee S, Mahadik SP, Scheffer R, et al. Impaired antioxidant defense at the onset of psychosis. Schizophr Res 1996; 19: 19–26CrossRefGoogle Scholar
  54. 54.
    Stoklasova A, Zapletalek M, Kudrnova K, et al. Glutathione peroxidase activity of blood in chronic schizophrenics [in Czech]. Sb Ved Pr Lek Fak Karlovy University Hradci Kralove Suppl. 1986; 29(1–2): 103–8Google Scholar
  55. 55.
    Golse B, Debray-Ritzen P, Puget K, et al. Dosages de la superoxyde dismutases 1 plaquettaire dans les pychoses infantiles de développement. Nouv Presse Med 1977; 6: 2449PubMedGoogle Scholar
  56. 56.
    Zhang ZJ, Ramchand CN, Ramchand R, et al. Glutathione peroxidase (GSHPx) activity in plasma and fibroblasts from schizophrenics and control. Biol Psychiatry 1998; 29: 103–4Google Scholar
  57. 57.
    Yao JK, Reddy R, van Kammen DP. Human plasma glutathione peroxidase and symptom severity in schizophrenia. Biol Psychiatry 1999; 45: 1512–5PubMedCrossRefGoogle Scholar
  58. 58.
    Buckman TD, Kling AS, Eiduson S, et al. Platelet glutathione peroxidase and monoamine oxidase activity in schizophrenics with CT scan abnormalities: Relation to psychosocial variables. Psychiatry Res 1990; 31: 1–14PubMedCrossRefGoogle Scholar
  59. 59.
    Harman D. Aging prospects for future increases in the functional life span. Age 1994; 17: 119–46CrossRefGoogle Scholar
  60. 60.
    Vanella A, Goremia E, D’Urso G, et al. Superoxide dismutase activity in aging rat brian. Gerontology 1982; 228: 108–3CrossRefGoogle Scholar
  61. 61.
    Marvilli L, Mondov B, Federicop R, et al. Superoxide dismutase activity in developing rat brian. J Neurochem 1978; 31: 363–4CrossRefGoogle Scholar
  62. 62.
    Hiramastsu M, Kohno M, Edamatsu R, et al. Increased superoxide dismutase activity in aged human cerebrospinal fluid and rat brain determined by electron spin resonance spectrometry using spin trap method. J Neurochem 1992; 58: 116–4CrossRefGoogle Scholar
  63. 63.
    Mori A, Packer L. Disorders of the oxidative stress defense system in senescence-accelerated mice (SAM, and prolongation of life span by supplementation with antioxidants and free radical spin traps. In: Packer L, Ong A, editors. Biological oxidants and antioixidants: molecular mechanisms and health effects. Champaign (IL): AOCS Press, 1998: 327–4Google Scholar
  64. 64.
    Sohal RS, Ku HH, Agarwal S, et al. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 1994; 74: 121–33PubMedCrossRefGoogle Scholar
  65. 65.
    Shigenaga MK, Hagen T, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A 1994; 91: 10771–8PubMedCrossRefGoogle Scholar
  66. 66.
    Harman D. Aging and Disease: Extending functional life span. Ann N Y Acad Sci 1996; 786: 321–6PubMedCrossRefGoogle Scholar
  67. 67.
    Miquel J, Economos AC, Fleming J, et al. Mitochondrial role in cell aging. Exp Gerontol 1998; 15: 575–91CrossRefGoogle Scholar
  68. 68.
    Clapp NK, Satterfield LC, Bowler ND. Effects of the antioxidant butyrated hydroxyltoluence(BHT) on mortality in BALB/C mice. J Gerontol 1979; 34: 497–50PubMedCrossRefGoogle Scholar
  69. 69.
    Comfort A. Effect of ethoxyquin on longevity of c3h mice. Nature 1991; 229: 254–5CrossRefGoogle Scholar
  70. 70.
    Heidrick ML, Heidrick LC, Cook DE. Effect of dietary 2-mercaptoethanol on the life span, immune system, tumor incidence and lipid peroxidation damage in spleen lymphocytes of aging bc3f mice. Mech Aging 1984; 27: 341–58CrossRefGoogle Scholar
  71. 71.
    Harman D. The aging process. Proc Natl Acad Science U S A 1981; 78: 7124–8CrossRefGoogle Scholar
  72. 72.
    Mukherjee S, Mahadik SP, Correnti EE. The antioxidant defense system at the onset of psychosis. Biol Psychiatry 1994; 35: 701Google Scholar
  73. 73.
    Szabo L, Lajko K, Barabas K, et al. Effects of neuroleptics on lipid peroxidation and peroxide metabolism enzyme activities in various discrete areas of the rat brain. Gen Pharmacol 1983; 14: 537–39PubMedCrossRefGoogle Scholar
  74. 74.
    Ohtsuka Y, Yabunaka N, Fujisawa H, et al. Effect of thermal stress on glutathione metabolism in human erythrocytes. Euro J Appl Physiol Occup Physiol 1994; 68: 87–91CrossRefGoogle Scholar
  75. 75.
    Scarpellini F, Sbracia M, Scarpellini L. Psychological stress and lipoperoxidation in miscarriage. Ann N Y Acad Sci 1994; 709: 210–3PubMedCrossRefGoogle Scholar
  76. 76.
    Hughes R, Hatsukami K, Mitchell E, et al. Prevalence of smoking among psychiatric outpatients. Am J Psychiatry 1986; 143: 993–7PubMedGoogle Scholar
  77. 77.
    Lohr JB, Flynn K. Smoking and schizophrenia. Schizophr Res 1992; 8: 93–102PubMedCrossRefGoogle Scholar
  78. 78.
    Olincy A, Young DA, Freedman R. Increased levels of the nicotine metabolite continine in schizophrenic smokers compared to other smokers. Biol Psychiatry 1997; 42: 1–5PubMedCrossRefGoogle Scholar
  79. 79.
    Church DF, Pryor WA. Free radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perpect 1985; 64: 111–26CrossRefGoogle Scholar
  80. 80.
    Chow KC.Vitamin E and cigarette smoking-induced oxidative damage. In: Packer L, Fuchs J, editors. Vitamin E in health and disease. New York: Marcel Decker, 1992: 683–97Google Scholar
  81. 81.
    Pryor WA, Stone K. Oxidants in cigarette smoke. Ann N Y Acad Sci 1992; 686: 29Google Scholar
  82. 82.
    Stegmayr B, Johansson I, Huhtasaari F, et al. Use of smokeless tobacco and cigarettes: effects on plasma levels of antioxidant vitamins. Int J Vitam Nutr Res 1993; 63: 195–200PubMedGoogle Scholar
  83. 83.
    Halliwell B. Cigarette smoking and health: a radical view. J R Soc Health 1993; 113: 91–6PubMedCrossRefGoogle Scholar
  84. 84.
    Papas AM. Determinants of antioxidant status in humans. Lipids 1996; 31 Suppl.: 77S–82SCrossRefGoogle Scholar
  85. 85.
    Becker K, Boetticher D, Leichsenring M. Antioxidant vitamins in malnourished Nigerian children. Int J Vitam Nutr Res 1994; 64: 306–10PubMedGoogle Scholar
  86. 86.
    Parfitt VJ, Rubba P, Bolton C, et al. A comparison of antioxidant status and free radical peroxidation on plasma lipoproteins in healthy young persons from Naples and Bristol. Eur Heart J 1994; 15: 871–6PubMedGoogle Scholar
  87. 87.
    Lecomte E, Herbeth B, Pirollet P et al. Effect of alcohol consumption on blood antioxidant nutrients and oxidative stress indicators. Am J Clin Nutr 1994; 60: 255–61PubMedGoogle Scholar
  88. 88.
    Evans DR, Puczkovski PY, Brandsma MJ, et al. Elevated plasma lipid peroxides in schizophrenic patients without dementia. Biol Psychiatry 1996; 39: 588CrossRefGoogle Scholar
  89. 89.
    Guliaeva NV, Levshina IP, Obidin AM. Indices of lipid free radical oxidation and the antiradical protection of the brain: the neurochemical correlates of the development of the general adaptation syndrome. Zh Vyssh Nerv Deiat Im I P Paviova 1988; 38: 731–37Google Scholar
  90. 90.
    Peet M, Laugharne J, Rangarajan N et al. Tardive dyskinesia, lipid peroxidation, and sustained amelioration with vitamin E treatment. Int Clin Psychopharmacol 1993; 8: 151–53PubMedCrossRefGoogle Scholar
  91. 91.
    Prilipko LL. The possible role of lipid peroxidation in the pathophysiology of mental disorders. In: Packer L, Prilipko L, Christen Y, editors. Free radicals in the brain. Berlin: Spinger-Verlag, 1992: 146–52CrossRefGoogle Scholar
  92. 92.
    Pall HS, Williams AC, Blake DR, et al. Evidence of enhanced lipid peroxidation in the cerebrospinal fluid of patients taking phenothiazines. Lancet 1987; II: 596–7CrossRefGoogle Scholar
  93. 93.
    Lohr JB, Kuczenski R, Bracha HS, et al. Increased indices of free radical activity in the cerebrospinal fluid of patients with tardive dyskinesia. Biol Psychiatry 1990; 28: 535–9PubMedCrossRefGoogle Scholar
  94. 94.
    Mahadik SP, Mukherjee S, Scheffer R, et al. Elevated plasma lipid peroxides at the onset of nonaffective psychosis. Biol Psychiatry 1998; 43: 674–79PubMedCrossRefGoogle Scholar
  95. 95.
    Kovaleva ES, Orlov ON, Tsutsul’kovskia MIA, et al. Lipid peroxidation processes in patients with schizophrenia. Zh Nevropatol Psikiatr 1989; 89: 108–10Google Scholar
  96. 96.
    Phillips M, Sabas M, Greenberg J. Increased pentane and carbon disulfide in the breath of patients with schizophrenia. J Clin Pathol 1993; 46: 861–4PubMedCrossRefGoogle Scholar
  97. 97.
    Floyd RA. Mitochondrial damage in neurodegenerative disease. In: Packer L, Hiramatsu M, Yoshikawa T, editors. Free radicals in brain physiology and disorders. San Diego (CA): Academic Press, 1996: 313–29Google Scholar
  98. 98.
    Cavelier L, Jazin EE, Eriksson I, et al. Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics. Genomics 1995; 29: 217–24PubMedCrossRefGoogle Scholar
  99. 99.
    Radi R, Castro L, Rodriguez M, et al. Free radical damage to mitochondria. In: Beal MF, Howell N, Bodis-Wellner I, editors. Mitochondria and free radicals in neurodegenerative diseases. New York (NY): Wiley-Liss, 1997: 57–89Google Scholar
  100. 100.
    Buchsbaum MS, Neuchterlein KH, Haier RJ, et al. Glucose metabolic rate in normals and schizophrenics during the continuous performance test assessed by Positron Emission Tomography. Br J Psychiatry 1990; 156: 217–7CrossRefGoogle Scholar
  101. 101.
    Wise CD, Baden MM, Stein L. Post-mortem measurement of enzymes in human brain: evidence of a central noradrenergic deficit in schizophrenia. J Psychiatr Res 1974; 11: 185–98PubMedCrossRefGoogle Scholar
  102. 102.
    Loven DP, James JF, Biggs L, et al. Increased manganese-superoxide dismutase activity in postmortem brain from neuroleptic-treated psychotic patients. Biol Psychiatry 1996; 40: 230–32PubMedCrossRefGoogle Scholar
  103. 103.
    Miyakawa T, Sumiyoshi Deshimaru M. Electron microscopic study on schizophrenia: mechanism of pathological changes. Acta Neuropathol (Berlin) 1972; 20: 67–77CrossRefGoogle Scholar
  104. 104.
    Averback P. Structural lesions of the brain of young schizophrenics. Can J Neurol Sci 1981; 8: 73–6PubMedGoogle Scholar
  105. 105.
    Senitz D, Winkelmann E. Über morphologische befunde in der orbitofrontalen rinde bei menschen mit schizophrenen psychosen. Eine golgi-und eine elektonenoptische Studie. Psychiatr Neurol Med Psychol Beih 1981; 33: 1–9Google Scholar
  106. 106.
    Roberts GW. Schizophrenia: A neuropathological perspective. Br J Psychiatry 1991; 158: 8–17PubMedCrossRefGoogle Scholar
  107. 107.
    Kane J, Lieberman J, Woerner M, et al. Tardive dyskinesia: New Research. In: Schulz SC, Tamminga CA, editors. Schizophrenia. New York (NY): Scientific Progress Oxford University Press 1989: 381–86Google Scholar
  108. 108.
    Crow TJ, Cross AJ, Johnstone EC, et al. Abnormal involuntary movements in schizophrenia: Are they related to the disease process or its treatment? Are they associated with changes in the dopamine receptors? J Clin Psychopharmacol 1982; 2: 336–40PubMedCrossRefGoogle Scholar
  109. 109.
    Cadet JL, Lohr JB, Jeste DV. Free radicals and tardive dyskinesia. Trends Neurosci 1986; 9: 107–8CrossRefGoogle Scholar
  110. 110.
    Cadet JL, Lohr JB. Possible involvement of free radicals in neuroleptic-induced movement disorders. Evidence from treatment of tardive dyskinesia with vitamin E. Ann N Y Acad Sci 1989; 570: 176–85Google Scholar
  111. 111.
    Zubenko GS, Cohen BM. A cell membrane correlate of tardive dyskinesia in patients treated with phenothiazines. Psychopharmacology 1986; 88: 230–36PubMedCrossRefGoogle Scholar
  112. 112.
    Lohr JB, Cadet JL, Lohr MA, et al. Alpha-tocopherol in tardive dyskinesia. Lancet 1987; I: 913–4CrossRefGoogle Scholar
  113. 113.
    Elkashef AM, Ruskin PE, Bacher N, et al. Vitamin E in the treatment of tardive dyskinesia. Am J Psychiatry 1990; 147: 505–6PubMedGoogle Scholar
  114. 114.
    Keshaven MS, Mallinger AG, Pettegrew JW, et al. Erythrocyte membrane phospholipids in psychotic patients. Psychiatry Res 1993; 49: 89–95CrossRefGoogle Scholar
  115. 115.
    Mahadik SP, Mukherjee S, Correnti E, et al. Distribution of plasma membrane phospholipids and cholesterol in skin fibroblasts from drug-naive patients at the onset of psychosis. Schizophr Res 1994; 13: 239–47PubMedCrossRefGoogle Scholar
  116. 116.
    Horrobin DF, Manku MS, Morse-Fisher N, et al. Essential fatty acids in plasma phospholipids in schizophrenics. Biol Psychiatry 1989; 25: 562–8PubMedCrossRefGoogle Scholar
  117. 117.
    Peet M, Laugharne JDE, Mellor J, et al. Essential fatty acid deficiency in eyrthrocyte membranes from chronic schizophrenic patients, and the clinical effects of dietary supplementation. Prostaglandins Leukot Essent Fatty Acids 1996; 55: 71–5PubMedCrossRefGoogle Scholar
  118. 118.
    Mahadik SP, Mukherjee S, Correnti EE, et al. Plasma membrane phospholipid fatty acid composition of cultured skin fibroblasts from schizophrenic patients: comparison with bipolar and normal controls. Psychiatry Res 1996; 63: 133–42PubMedCrossRefGoogle Scholar
  119. 119.
    Reddy RD, Yao JK, Zeigler M, et al. Essential fatty acids and outcome in first-episode schizophrenia. Schizophr Res 1999; 36: 108Google Scholar
  120. 120.
    Yao JK, Stanley JA, Reddy RD, et al. Correlations between RBC fatty acids and 31P MRS brain measures in schizophrenia. Biol Psychiatry 2000; 47: 41SCrossRefGoogle Scholar
  121. 121.
    Horrobin DF. Schizophrenia as a membrane lipid disorder which is expressed throughout the body. Prostaglandins Leukotr Essent Fatty Acids 1996; 55: 3–7CrossRefGoogle Scholar
  122. 122.
    Pettegrew JW, Keshavan MS, Panchalingam K, et al. Alterations in brain high energy phosphate and membrane phospholipid metabolism in first episode drug naive schizophrenics. Arch Gen Psychiatry 1991; 48: 563–8PubMedCrossRefGoogle Scholar
  123. 123.
    Pettegrew JW, Keshaven MS, Minshew NJ. 31P nuclear magnetic resonance spectroscopy: Neuro-development and schizophrenia. Schizophr Bull 1993; 19: 335–53CrossRefGoogle Scholar
  124. 124.
    Deicken RF, Merrin E, Calabrese G, et al. 31Phosphorus MRSI in the frontal and parietal lobes in schizophrenia. Biol Psychiatry 1993; 33: 46AGoogle Scholar
  125. 125.
    Fukazako H, Takeuchi K, Fujimoto T, et al. 31P magnetic resonance spectroscopy of schizophrenic patients with neuroleptic resistant positive and negative symptoms. Biol Psychiatry 1992;31: 204A-5AGoogle Scholar
  126. 126.
    Fukuzako H, Fukuzako T, Takeuchi K, et al. Phosphorus magnetic resonance spectroscopy in schizophrenia: correlation between membrane phospholipid metabolism in temporal lobe and positive symptoms. Prog Neuropsychopharmacol Biol Psychiatry 1996; 20: 629–40PubMedCrossRefGoogle Scholar
  127. 127.
    Stanley JA, Williamson PC, Drost DJ, et al. The study of schizophrenia via in vivo 31P and 1H MRS. Schizophr Res 1993; 9: 210CrossRefGoogle Scholar
  128. 128.
    Williamson P, Drost D, Stanley J, et al. Localized phosphorus 31 magnetic resonance spectroscopy in chronic schizophrenic patients and normal controls [letter]. Arch Gen Psychiatry 1991; 48: 578PubMedCrossRefGoogle Scholar
  129. 129.
    Keshaven MS, Pettegrew JW, Ward R. Are membrane phospholipid changes in schizophrenia familial? Biol Psychiatry 1993; 33: 37A-162AGoogle Scholar
  130. 130.
    Cohen G. Enzymatic/nonenzymatic sources of oxyradicals and regulation of antiodant defences. Ann N Y Acad Sci 1994; 738: 8–14PubMedCrossRefGoogle Scholar
  131. 131.
    Zhang F, Dryhurst G. Effects of 1-cysteine on the oxidative chemistry of dopamine: new reaction pathways of potential relevance to ideopathic Parkinson’s disease. J Med Chem 1994; 37: 1084–98PubMedCrossRefGoogle Scholar
  132. 132.
    Ben-Shacher D, Zuk B, Glinka Y. Dopamine neurotoxicity: Inhibition of mitochondrial respiration. J Neurochem 1995; 64: 718–23CrossRefGoogle Scholar
  133. 133.
    Cadet JL, Kahler LA. Free radical mechanisms in schizophrenia and tardive dyskinesia. Neurosci Biobehav Rev 1994; 18:457–67PubMedCrossRefGoogle Scholar
  134. 134.
    Michel PP, Hefti F. Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture. J Neurosci Res 1990; 76: 428–35CrossRefGoogle Scholar
  135. 135.
    Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neuro-degenerative disorders. Science 1993; 262: 689–95PubMedCrossRefGoogle Scholar
  136. 136.
    Patel M, Day BJ, Crapo JD, et al. Requirement for superoxide in excitotoxic cell death. Neuron 1996; 16: 345PubMedCrossRefGoogle Scholar
  137. 137.
    Ciani E, Groneng L, Voltattorni M, et al. Inhibition of free radical production or free radical scavenging protects from excitatoxic cell death mediated by glutamate in cultures of cerebellar granule cells. Brain Res 1996; 728: 1–6PubMedCrossRefGoogle Scholar
  138. 138.
    MacGregor DG, Higgins MJ, Jones PA, et al. Ascorbate attenuates the systemic kainate-induced neurotoxicity in the rat hippocampus. Brain Res 1996; 727: 133–44PubMedCrossRefGoogle Scholar
  139. 139.
    Iuliano L, Pedersen JZ, Pratico D, et al. Role of hydroxyl radicals in the activation of human platelets. Eur J Biochem 1994; 221: 695–704PubMedCrossRefGoogle Scholar
  140. 140.
    Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995; 52: 998–1007PubMedCrossRefGoogle Scholar
  141. 141.
    Carlsson M, Carlsson A. Schizophrenia: a subcortical neuro-transmitter imbalance syndrome? Schizophr Bull 1990; 16: 425–32PubMedCrossRefGoogle Scholar
  142. 142.
    Hitri A, Hurd YL, Wyatt RJ, et al. Molecular, functional and biochemical characteristics of the dopamine transporter: Regional differences and clinical relevance. Clin Neuropharm 1994; 17: 1–22CrossRefGoogle Scholar
  143. 143.
    Maguire PA, Druse MJ. The influence of cholesterol on synap-tic fluidity and dopamine uptake. Brain Res Bull 1989; 22: 431–37PubMedCrossRefGoogle Scholar
  144. 144.
    Hitri A, Casanova MF, Kleinman JE, et al. Age-related changes in [3H]GBR 12935 binding site density in the prefrontal cortex of controls and schizphrenics. Biol Psychiatry 1995; 37: 175–82PubMedCrossRefGoogle Scholar
  145. 145.
    Davidson B, Kurstjens NP, Patton J, et al. Essential fatty acids modulate apomorphine activity at receptors in cat caudate slices. Eur J Pharmacol 1988; 149: 317–22PubMedCrossRefGoogle Scholar
  146. 146.
    Leysen JE, Pauwels PJ. 5-HT2 receptors, roles and regulation. Ann N Y Acad Sci 1990; 600: 183–91PubMedCrossRefGoogle Scholar
  147. 147.
    Felder CC, Kanterman RY, Ma AL, et al. Serotonin stimulates phospholipase A2 and the release of arachidonic acid in hippocampal neurons by a type 2 serotonin receptor that is independent of inositolphospholipid hydrolysis. Proc Nat Acad Sci U S A 1990; 87: 2187–91CrossRefGoogle Scholar
  148. 148.
    Yao JK, van Kammen DP, Moss HB, et al. A decreased serotonergic responsivity in platelets of unmedicated patients with Schizophrenia. Psychiatry Res 1996; 63: 123–32PubMedCrossRefGoogle Scholar
  149. 149.
    Ohmori T, Abekawa T, Koyama T. The role of glutamate in the behavioral and neurotoxic effects of methamphetamine. Neurochem Int 1996; 29: 301–7PubMedCrossRefGoogle Scholar
  150. 150.
    Yamada K, Kanba S, Anamizu S, et al. Low superoxide dismutase activity in schizophrenic patients with tardive dyskinesia. Psychol Med 1997; 27: 1223–5PubMedCrossRefGoogle Scholar
  151. 151.
    Yao JK, van Kammen DP, Reddy RD, et al. Superoxide dismutase and negative symptoms in schizophrenia. Biol Psychiatry 1998; 43: 123S-4SGoogle Scholar
  152. 152.
    Mahadik SP, Evans DR. Essential fatty acids in the treatment of schizophrenia. Drugs of Today 1997; 33: 5–17Google Scholar
  153. 153.
    Reddy R, Yao JK. Schizophrenia: role of oxidative stress and essential fatty acids. In: Basu, Tk, Temple NJ, Garg ML, editors. Antioxidants in human health. Wallingford, Oxon: Cab International 1999; 27: 351–66Google Scholar
  154. 154.
    Mahadik SP, Scheffer RE. Oxidative injury and potential use of antioxidants in schizophrenia. Prostaglandins Leukotr Essent Fatty Acids 1996; 55: 45–54CrossRefGoogle Scholar
  155. 155.
    Mahadik SP, Gowda S. Antioxidants in the treatment of schizophrenia. Drugs of Today 1996; 32: 553–65Google Scholar
  156. 156.
    Vatassery GT. Vitamin E: Neurochemical aspects and relevance to nervous system disorders. In: Connor JR. editor. Metals and oxidative damage in neurological disorders. New York (NY): Plenum Press, 1997: 175–88Google Scholar
  157. 157.
    Duffy PH, Leakey JE, Pipkin JL, et al. The physiologic, neurologic and behavioral effects of caloric restriction related to aging, disease, and environmental factors. Environ Res 1997; 73: 242–8PubMedCrossRefGoogle Scholar
  158. 158.
    Ryder MI, Fujitaki R, Johnson G, et al. Alterations of neutrophil oxidative burst by in vitro smoke exposure: implications for oral and systemic diseases. Ann Peridont 1998; 3: 76–87CrossRefGoogle Scholar
  159. 159.
    DiLuzio NR, Hartman AD. Role of lipid peroxidation on the pathogenesis of the ethanol-induced fatty liver. Fed Proc 1967; 26: 1436Google Scholar
  160. 160.
    Shaw S, Javatilleke E, Ross WA, et al. Ethanol-induced lipid peroxidation: Potentiation by long-term alcohol feeding and attenuation by methionine. J Lab Clin Med 1981; 98: 417PubMedGoogle Scholar
  161. 161.
    Vatassery GT, Smith WE, Quach HT. A liquid chromatographic method for the simultaneous determination of α-tocopherol and tocopherolquinone in human red blood cells aqnd other biological samples where tocopherol is easily oxidized during sample treatment. Anal Biochem 1993; 214: 426–30PubMedCrossRefGoogle Scholar
  162. 162.
    Sokol RJ. Vitamin E and neurologic function in man. Free Radie Biol Med 1989 6: 189–207CrossRefGoogle Scholar
  163. 163.
    Adler LA, Peselow E, Rotrosen J, et al. Vitamin E treatment of tardive dyskinesia. Am J Psychiatry 1993; 50: 1405–7Google Scholar
  164. 164.
    Egan MF, Hyde TM, Albers GW, et al. Treatment of tardive dyskinesia with vitamin E. Am J Psychiatry 1992; 149: 773–7PubMedGoogle Scholar
  165. 165.
    Corrigan FM, Van Rhijn AG, Mackay AV, et al. Vitamin E treatment of tardive dyskinesia [letter]. Am J Psychiatry 1993; 150: 991–2PubMedGoogle Scholar
  166. 166.
    Shriqui CL, Bradwejn J, Annable L, et al. Vitamin E in the treatment of tardive dyskinesia: a double-blind placebo-controlled study. Am J Psychiatry 1992; 149: 391–93PubMedGoogle Scholar
  167. 167.
    Adler LA, Edson R, Lavori P, et al. Long-term treatment effects of vitamin E for tardive dyskinesia. Biol Psychiatry 1998; 43: 868–72PubMedCrossRefGoogle Scholar
  168. 168.
    Lohr JB, Lavori P. Whither vitamin E and tardive dyskinesia? Biol Psychiatry 1998; 43: 861–2PubMedCrossRefGoogle Scholar
  169. 169.
    Sram RJ, Binkova B. Side effects of psychotropic therapy. In: Packer L, Prilipko L, Christen Y, editors. Free radicals in the brain. Berlin: Spinger-Verlag, 1992: 153–66CrossRefGoogle Scholar
  170. 170.
    World Health Organization. Schizophrenia: an international follow-up study. New York: Wiley 1979Google Scholar
  171. 171.
    Christensen O, Christensen E. Fat consumption and schizophrenia. Acta Psychiat Scand 1988; 78: 587–91PubMedCrossRefGoogle Scholar
  172. 172.
    Horrobin DF. The relationship between schizophrenia and essential fatty acids and eicosanoid production. Prostaglandins Leukotr Essent Fatty Acids 1992; 46: 71–7CrossRefGoogle Scholar
  173. 173.
    Nohria V, Vaddadi KS. Tardive dyskinesia and essential fatty acids: an animal model study. In: Horrobin DF, editor. Clinical Uses of Essential Fatty Acids. Montreal: Eden Press 1982: 199–204Google Scholar
  174. 174.
    Costall B, Kelly M, Naylor RJ. The antidyskinetic action of dihomo-gamma-linolenic acid in the rodent. Br J Pharmacol 1984; 83: 733–40PubMedCrossRefGoogle Scholar
  175. 175.
    Bourguignon A. Trial of evening primrose oil in the treatment of schizophrenia. L’Encephale 1984; 10: 241–50PubMedGoogle Scholar
  176. 176.
    Soulairac A, Lambinet H, Neuman JC. Schizophrenia and PGs: Therapeutic effects of PG precursors in the form of evening primrose oil. Ann Med Psychol (Paris) 1983; 8: 883–90Google Scholar
  177. 177.
    Wolkin A, Jordan B, Peselow E, et al. Essential fatty acid supplementation in tardive dyskinesia. Am J Psychiatry 1986; 143: 912–14PubMedGoogle Scholar
  178. 178.
    Vaddadi KS. Dyskinesias and their treatment with essential fatty acids: A review. Prostaglandins, Leukotr Essent Fatty Acids 1996; 55: 89–94CrossRefGoogle Scholar
  179. 179.
    Mellor JE, Laugharne JDE, Peet M. Omega-3 fatty acid supplementation in schizophrenia patients. Hum Psychopharmacol 1996; 11: 39–46CrossRefGoogle Scholar
  180. 180.
    Shah S, Vankar GK, Telang SD, et al. Eicosapentaenoic acid (EPA) as an adjunct in the treatment of schizophrenia. Schizophr Res 1998; 20: 158CrossRefGoogle Scholar
  181. 181.
    Peet M. New Strategies for the treatment of schizophrenia: ω-3 polyunsaturated fatty acids. In: Peet M, Glen I, Horrobin D, editors. Phospholipid spectrum disorder in psychiatry. Lancashire: Marius Press 1999: 18: 189–92Google Scholar
  182. 182.
    Puri BK, Richardson AJ, Horrobin DF, et al. Eicosapentaenoic acid treatment in schizophrenia associated with symptom remission, normalisation of blood fatty acids, reduced neuronal membrane phospholipid turnover and structural brain changes. Int J Clin Pract 2000; 54: 57–63PubMedGoogle Scholar
  183. 183.
    Meltzer HY. Biological studies in schizophrenia. Schizophr Bull 1987; 13: 77–111PubMedCrossRefGoogle Scholar
  184. 184.
    Jesberger JA, Richardson JS. Oxygen free radicals and brain dysfunction. Int J Neurosci 1991; 57: 1–17PubMedCrossRefGoogle Scholar
  185. 185.
    Elkashef AM, Wyatt RJ. Tardive dyskinesia: possible involvement of free radicals and treatment with vitamin E. Schizophr Bull 1999; 25: 731–40PubMedCrossRefGoogle Scholar
  186. 186.
    The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. N Engl J Med 1994; 330: 1029–35CrossRefGoogle Scholar
  187. 187.
    Halliwell B. The antioxidant paradox. Lancet 2000; 355: 1179–80PubMedCrossRefGoogle Scholar
  188. 188.
    Richardson A, Easton T, McDaid AM, et al. Essential fatty acids in dyslexia: theory, evidence and clinical trials. In: Peet M, Glen I, Horrobin DF, editors. Phospholipid spectrum disorder in psychiatry. Lancashire: Marius Press. 1999: 21: 225–41Google Scholar
  189. 189.
    Stordy B. Long-chain fatty acids in the management of dyslexia and dyspraxia. In: Peet M, Glen I, Horrobin DF, editors. Phospholipid Spectrum disorder in psychiatry. Lancashire: Marius Press 1999; 23: 251–60Google Scholar
  190. 190.
    Fenton W, Hibbeln J, Knable M. Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biol Psychiatry 2000; 47: 8–21PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2001

Authors and Affiliations

  • Jeffrey K. Yao
    • 1
    • 2
  • Ravinder D. Reddy
    • 2
  • Daniel P. van Kammen
    • 3
  1. 1.VA Pittsburgh Healthcare System, Neurochemistry and Psychopharmacology Laboratory (Building 13)PittsburghUSA
  2. 2.Department of Psychiatry, Western Psychiatric Institute & ClinicUniversity of Pittsburgh Medical CenterPittsburghUSA
  3. 3.The Robert Wood Johnson Pharmaceutical Research InstituteRaritanUSA

Personalised recommendations