Advertisement

CNS Drugs

, Volume 13, Issue 5, pp 305–311 | Cite as

Inhalation Anaesthetics as Sedatives in the Intensive Care Unit

Do They Have a Role?
  • Romesh Rasanayagam
  • Kin-Leong Kong
Leading Article
  • 16 Downloads

Abstract

Many different drugs are used for sedation of patients in the intensive care unit (ICU). The vast majority of the agents used are administered intravenously; however, for the purposes of sedation, inhalational anaesthetic agents have some advantages, and potential disadvantages, over intravenous drugs. There has been some published work on the use of isoflurane as a sedative agent in this situation, with favourable comparisons with the currently used intravenous drugs. Ultimately, the role of inhalational agents as sedatives in the ICU will depend on the development of appropriate equipment and the enthusiasm of the clinicians involved.

Keywords

Isoflurane Halothane Sevoflurane Enflurane Desflurane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bion JF, Ledingham IM. Sedation in intensive care: a postal survey [letter]. Intensive Care Med 1987; 13(3): 215–6PubMedGoogle Scholar
  2. 2.
    O’Rourke PP, Crone RK. Halothane in status asthmaticus. Crit Care Med 1982; 10: 341–3PubMedCrossRefGoogle Scholar
  3. 3.
    Bierman MI, Brown M, Muren O, et al. Prolonged isoflurane anaesthesia in status asthmaticus. Crit Care Med 1986; 14: 832–3PubMedCrossRefGoogle Scholar
  4. 4.
    Revell S, Greenhalgh D, Absalom SR, et al. Isoflurane in the treatment of asthma. Anaesthesia 1988; 43: 477–9PubMedCrossRefGoogle Scholar
  5. 5.
    Sharer NM, Nunn JF, Royston JP, et al. Effects of chronic exposure to nitrous oxide on methionine synthase activity. Br J Anaesth 1983; 55: 693–701PubMedCrossRefGoogle Scholar
  6. 6.
    Amos RJ, Amess JAL, Hinds CJ, et al. Incidence and pathogenesis of acute megaloblastic bone-marrow change in patients receiving intensive care. Lancet 1982; 2: 835–9PubMedCrossRefGoogle Scholar
  7. 7.
    Eger El II, Saidman LJ. Hazards of nitrous oxide anesthesia in bowel obstruction and pneumothorax. Anesthesiology 1965; 26: 61–6PubMedCrossRefGoogle Scholar
  8. 8.
    Prys-Roberts C, Corbett JL, Kerr JH, et al. Treatment of sympathetic overactivity in tetanus. Lancet 1969; I: 542–6CrossRefGoogle Scholar
  9. 9.
    Wright R, Eade EO, Chisholm M, et al. Controlled prospective study of the effect on liver function of multiple exposures to halothane. Lancet 1975; I: 817–20CrossRefGoogle Scholar
  10. 10.
    Mazze RI. Fluorinated anaesthetic nephrotoxicity: an update. Can Anaesth Soc J 1984; 31 Suppl.: s16–22PubMedCrossRefGoogle Scholar
  11. 11.
    Mazze RI, Calverley RK, Smith NJ. Inorganic fluoride nephrotoxicity: prolonged enflurane and halothane anaesthesia in volunteers. Anesthesiology 1977; 46: 265–71PubMedCrossRefGoogle Scholar
  12. 12.
    Oikkonen M. Isoflurane and enflurane in long anaesthesias for plastic microsurgery. Acta Anaesthesiol Scand 1984; 28: 412–8PubMedCrossRefGoogle Scholar
  13. 13.
    Stoelting RK, Blitt CD, Cohen PJ, et al. Hepatic dysfunction after isoflurane anesthesia. Anesth Analg 1987; 66(2): 147–53PubMedCrossRefGoogle Scholar
  14. 14.
    Johnston RR, Eger II El, Wilson C. A comparative interaction of epinephrine with enflurane, isoflurane and halothane in man. Anesth Analg 1976; 55(5): 709–12PubMedCrossRefGoogle Scholar
  15. 15.
    Eintrei C, Leszniewski W, Carlsson C. Local application of 133Xenon for measurement of regional cerebral blood flow (rCBF) during halothane, enflurane and isoflurane anesthesia in humans. Anesthesiology 1985; 63(4): 391–4PubMedCrossRefGoogle Scholar
  16. 16.
    Reiz S, Balfors E, Sorensen MB, et al. Isoflurane: a powerful coronary vasodilator in patients with coronary artery disease. Anesthesiology 1983; 59: 91–7PubMedCrossRefGoogle Scholar
  17. 17.
    Reiz S. Myocardial ischaemia associated with general anaesthesia. Br J Anaesth 1988; 61: 68–84PubMedCrossRefGoogle Scholar
  18. 18.
    Hirshman CA, Bergman NA. Factors influencing intrapulmonary airway calibre during anaesthesia. Br J Anaesth 1990; 65: 30–42PubMedCrossRefGoogle Scholar
  19. 19.
    Cheng DCH, Edelist G. Isoflurane and primary pulmonary hypertension. Anaesthesia 1988; 43: 22–4PubMedCrossRefGoogle Scholar
  20. 20.
    Morita S, Latta W, Hambro K, et al. Accumulation of methane, acetone, and nitrogen in the inspired gas during closed-circuit anesthesia. Anesth Analg 1985; 64: 343–7PubMedCrossRefGoogle Scholar
  21. 21.
    Kong KL, Willatts SM, Prys-Roberts C. Isoflurane compared with midazolam for sedation in the intensive care unit. BMJ 1989; 298: 1277–80PubMedCrossRefGoogle Scholar
  22. 22.
    Spencer EM, Willatts SM. Isoflurane for prolonged sedation in the intensive care unit; efficacy and safety. Intensive Care Med 1992; 18: 415–21PubMedCrossRefGoogle Scholar
  23. 23.
    Millane TA, Bennett ED, Grounds RM. Isoflurane and propofol for long-term sedation in the intensive care unit. Anaesthesia 1992; 47: 768–74PubMedCrossRefGoogle Scholar
  24. 24.
    Appleyard TN, Hewlett A, Konieczko K, et al. Isoflurane sedation — a multi-centre study of 55 patients. Clin Intensive Care 1994; 5: 212–6Google Scholar
  25. 25.
    Eger El, Saidman LJ, Brandstater B. Minimum alveolar anaesthetic concentration: a standard of anesthetic potency. Anaesthesiology 1965; 26: 756–63CrossRefGoogle Scholar
  26. 26.
    Kong KL. The use of isoflurane for sedation of ventilated patients in the intensive therapy unit — a comparative study with midazolam [MD thesis]. Bristol: University of Bristol, 1991Google Scholar
  27. 27.
    Spencer EM, Willatts SM, Prys-Roberts C. Plasma inorganic fluoride concentrations during and after prolonged (>24 h) isoflurane sedation: effect on renal function. Anesth Anag 1991; 73: 731–7Google Scholar
  28. 28.
    Kharasch ED, Hankins DC, Thummel KE. Human kidney methoxyflurane and sevoflurane metabolism. Intrarenal fluoride production as a possible mechanism of methoxyflurane nephrotoxicity. Anesthesiology 1995; 82(3): 689–99Google Scholar
  29. 29.
    Kelsall AWR, Ross-Russell R, Herrick MJ. Reversible neurologic dysfunction following isoflurane sedation in pediatric intensive care. Crit Care Med 1994; 22: 1032–4PubMedCrossRefGoogle Scholar
  30. 30.
    Health and Safety Executive. Control of Substances Hazardous to Health (COSHH) requirement for anaesthetic agents. In: Occupational exposure limits 1999. Sudbury: HSE Books, 1999. (COSHH Series EH 40/96)Google Scholar
  31. 31.
    Beloucif S, Payen D. A European survey of the use of inhaled nitric oxide in the ICU. Working Group on Inhaled NO in the ICU of the European Society of Intensive Care Medicine. Intensive Care Med 1998; 24(8): 864–77PubMedCrossRefGoogle Scholar
  32. 32.
    Esteban A, Alia I. Clinical management of weaning from mechanical ventilation. Intensive Care Med 1998; 24(10): 999–1008PubMedCrossRefGoogle Scholar
  33. 33.
    McIndoe AK, Stewart P, Wilson IH. Drawover vaporizers for sedation in intensive care. Intensive Care Med 1997; 23: 704–7PubMedCrossRefGoogle Scholar
  34. 34.
    Spence AA. Environmental pollution by inhalational anaesthetics. Br J Anaesth 1987; 59: 96–103PubMedCrossRefGoogle Scholar
  35. 35.
    British National Forumlary. London: British Medical Association and Royal Pharmaceutical Society of Great Britain, 1999 MarGoogle Scholar
  36. 36.
    Kong KL. Inhalational anesthetics in the intensive care unit. In: Cheng EY, editor. Critical care clinics — sedation of the critically ill patient. Vol. 11. No. 4. Philadelphia (PA): Saunders, 1995: 899Google Scholar
  37. 37.
    Beechey APG, Hull JM, McLellan I, et al. Sedation with isoflurane. Anaesthesia 1988; 43: 419–20PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2000

Authors and Affiliations

  • Romesh Rasanayagam
    • 1
  • Kin-Leong Kong
    • 1
  1. 1.Department of AnaesthesiaCity Hospital NHS TrustBirminghamEngland

Personalised recommendations