Skip to main content
Log in

Prevention and Treatment of Motion Sickness in Children

  • Disease Management
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Motion sickness is a normal and transient response to unfamiliar or unnatural motion stimuli. The most common form of motion sickness in children appears to be car or bus sickness (travel sickness), and that produced by amusement park rides. An explanation for the causation and pathogenesis of motion sickness is provided by the neural mismatch and sensory rearrangement theory. This hypothesises that symptoms and signs of motion sickness are the result of a CNS response to unnatural motion stimuli transmitted to the vestibular nuclei, the archicerebellum, and to other brainstem, autonomic and hypothalamic areas.

There are very few studies of motion sickness in children, and no controlled studies of its pharmacological treatment in the paediatric population. It is generally agreed that infants are highly resistant to motion sickness and do not require pharmacological treatment. Susceptibility then increases with age, peaking at around 10 to 12 years. If the nonpharmacological measures designed to reduce neural sensory mismatch are insufficient to ameliorate motion sickness, the use of pharmacological treatment is advised. All agents that have some central or peripheral vestibular suppressant effect, acting on relevant areas before motion impulses reach the vomiting centre, will be effective in the prevention or active treatment of motion sickness. As motion sickness is a form of vertigo, it is not surprising that all anti-motion sickness drugs are considered antivertigo drugs. Antihistamines are the only drugs recommended for children. Cinnarizine, cyclizine, dimenhydrinate and promethazine, taken before departure, are all effective in the prevention of motion sickness. Rectal or parenteral administration are recommended for active treatment when signs of motion sickness have already appeared.

The development of new anti-motion sickness and antivertigo agents, based on recent neurochemical data, seems to be a promising field of investigation. Any such investigation should include controlled studies in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reason JT, Brand JJ. Motion sickness. London: Academic Press, 1975

    Google Scholar 

  2. Tyler DB, Bard P. Motion sickness. Physiol Rev 1949; 29: 311–69

    PubMed  CAS  Google Scholar 

  3. Money KE. Motion sickness. Physiol Rev 1970; 50: 1–39

    PubMed  CAS  Google Scholar 

  4. Graybiel A, Knepton J. Sopite syndrome: a sometimes sole manifestation of motion sickness. Aviat Space Environ Med 1976; 47: 873–82

    PubMed  CAS  Google Scholar 

  5. Rolnick A, Gordon CR. The effects of motion induced sickness on military performance. In: Gal R, Mangelsdorff AD, editors. Handbook of military psychology. Chichester: John Wiley & Sons, Ltd, 1991: 279–93

    Google Scholar 

  6. Gordon CR, Spitzer O, Doweck I, et al. Clinical features of mal de débarquement: adaptation and habituation to sea conditions. J Vestib Res 1995; 5: 363–9

    Article  PubMed  CAS  Google Scholar 

  7. Kennedy RS, Fowlkes JE, Lilienthal MG. Postural and performance changes following exposures to flight simulators. Aviat Space Environ Med 1993; 64: 912–20

    PubMed  CAS  Google Scholar 

  8. Takahashi M, Toriyabe I, Takei Y, et al. Study on experimental motion sickness in children. Acta Otolaryngol (Stockh) 1994; 114: 231–7

    Article  CAS  Google Scholar 

  9. Takahashi M, Ogata M, Miura M. Teleology of motion sickness. Acta Otolaryngol (Stockh) 1995; 115: 130–3

    Article  CAS  Google Scholar 

  10. Takahashi M, Ogata M, Miura M. The significance of motion sickness in the vestibular system. J Vestib Res 1997; 7: 179–87

    Article  PubMed  CAS  Google Scholar 

  11. Lawther A, Griffin MJ. A survey of the occurrence of motion sickness amongst passengers at sea. Aviat Space Environ Med 1988; 59: 399–406

    PubMed  CAS  Google Scholar 

  12. Banta GR, Ridley WC, McHugh J, et al. Aerobic fitness and susceptibility to motion sickness. Aviat Space Environ Med 1987; 58: 105–8

    PubMed  CAS  Google Scholar 

  13. Whinnery JE, Parnell MJ. The effects of long-term aerobic conditioning on +Gz tolerance. Aviat Space Environ Med 1987; 58: 199–204

    PubMed  CAS  Google Scholar 

  14. Jennings RT, Davis JR, Santy PA. Comparison of aerobic fitness and space motion sickness during the shuttle program. Aviat Space Environ Med 1988; 59: 448–51

    PubMed  CAS  Google Scholar 

  15. Sharma K. Prevalence and correlates of susceptibility to motion sickness. Acta Genet Med Gemellol 1997; 46: 105–21

    PubMed  CAS  Google Scholar 

  16. Reason JT. Motion sickness adaptation: a neural mismatch model. J R Soc Med 1978; 71: 819–29

    PubMed  CAS  Google Scholar 

  17. Brandt T, Daroff RB. The multisensory physiological and pathological vertigo syndromes. Ann Neurol 1980; 7: 195–203

    Article  PubMed  CAS  Google Scholar 

  18. Baloh RW, Honrubia V. Clinical neurophysiology of the vestibular system. 2nd ed. Philadelphia (PA): FA Davis Company, 1990

    Google Scholar 

  19. Brandt T. Vertigo: its multisensory syndromes. London: Springer-Verlag, 1991

    Book  Google Scholar 

  20. Rascol O, Hain TC, Brefel C, et al. Antivertigo medications and drug-induced vertigo. A pharmacological review. Drugs 1995; 50: 777–91

    CAS  Google Scholar 

  21. Barabas G, Matthews WS, Ferrari M. Childhood migraine and motion sickness. Pediatrics 1983; 72: 188–90

    PubMed  CAS  Google Scholar 

  22. Kuritzky A, Ziegler DK, Hassanein R. Vertigo, motion sickness and migraine. Headache 1981; 21: 227–31

    Article  PubMed  CAS  Google Scholar 

  23. Baloh RW Neurotology of migraine. Headache 1997; 37: 615–21

    Article  PubMed  CAS  Google Scholar 

  24. Baloh RW. Advances in neuro-otology. Curr Opin Neurol 1998; 11: 1–3

    Article  PubMed  CAS  Google Scholar 

  25. Koehler B. Benign paroxysmal vertigo of childhood: amigraine equivalent. Eur J Pediatr 1980; 134: 149–51

    Article  PubMed  CAS  Google Scholar 

  26. Abu-Arafeh I, Russell G. Paroxysmal vertigo as a migraine equivalent in children: a population-based study. Cephalalgia 1995; 15: 22–5

    Article  PubMed  CAS  Google Scholar 

  27. Aragones JM, Fortes-Rego J, Fuste J, et al. Migraine: an alternative in the diagnosis of unclassified vertigo. Headache 1993; 33: 125–8

    Article  PubMed  CAS  Google Scholar 

  28. Cutrer FM, Baloh RW. Migraine-associated dizziness. Headache 1992; 32: 300–4

    Article  PubMed  CAS  Google Scholar 

  29. Cass SP, Furman JM, Ankerstjerne JKP, et al. Migraine-related vestibulopathy. Ann Otol Rhinol Laryngol 1997; 106: 182–9

    PubMed  CAS  Google Scholar 

  30. Wood CD, Graybiel A. A theory of motion sickness based on pharmacological reactions. Clin Pharmacol Ther 1970; 11: 621–9

    PubMed  CAS  Google Scholar 

  31. Takeda N, Morita M, Hasegawa S, et al. Neurochemical mechanisms of motion sickness. Am J Otolaryngol 1989; 10: 351–9

    Article  PubMed  CAS  Google Scholar 

  32. Takeda N, Morita M, Hasegawa S, et al. Neuropharmacology of motion sickness and emesis. A review. Acta Otolaryngol (Stockh) 1993; Suppl. 501: 10–5

    Article  CAS  Google Scholar 

  33. Lucot JB. Pharmacology of motion sickness. J Vestib Res 1998; 8: 61–6

    Article  PubMed  CAS  Google Scholar 

  34. Wang SC, Chinn HI. Experimental motion sickness in dogs; functional importance of chemoceptive emetic trigger zone. Am J Physiol 1954; 178: 111–6

    PubMed  CAS  Google Scholar 

  35. Borison HL, Borison R. Motion sickness reflex arc bypasses the area postrema in cats. Exp Neurol 1986; 92: 723–37

    Article  PubMed  CAS  Google Scholar 

  36. Brizzee KR, Ordy JM, Mehler WR. Effect of ablation of area postrema on frequency and latency of motion sickness-induced emesis in the squirrel monkey. Physiol Behav 1980; 24: 849–53

    Article  PubMed  CAS  Google Scholar 

  37. Mitchelson F. Pharmacological agents affecting emesis. A review (part I). Drugs 1992; 43: 295–315

    PubMed  CAS  Google Scholar 

  38. Mitchelson F. Pharmacological agents affecting emesis. A review (part II). Drugs 1992; 43: 443–63

    PubMed  CAS  Google Scholar 

  39. Cowings PS, Suter S, Toscano WB, et al. General autonomic components of motion sickness. Psychophysiology 1986; 23: 542–51

    Article  PubMed  CAS  Google Scholar 

  40. Gordon CR, Ben-Aryeh H, Szargel R, et al. Salivary changes associated with seasickness. J Auton Nerv Syst 1989; 26: 37–42

    Article  PubMed  CAS  Google Scholar 

  41. Doweck I, Gordon CR, Shlitner A, et al. Alterations in R-R variability associated with experimental motion sickness. J Auton Nerv Syst 1997; 67: 31–7

    Article  PubMed  CAS  Google Scholar 

  42. Kohl RL. Endocrine correlates of susceptibility to motion sickness. Aviat Space Environ Med 1985; 56: 1158–65

    PubMed  CAS  Google Scholar 

  43. Matsuoka I, Ito J, Takahashi H, et al. Experimental vestibular pharmacology: a minireview with special reference to neuro-active substances and antivertigo drugs. Acta Otolaryngol (Stockh) 1985; Suppl. 419: 62–70

    Google Scholar 

  44. de Waele C, Muhlethaler M, Vidal PP. Neurochemistry of the central vestibular pathways. Brain Res Rev 1995; 20: 24–46

    Article  PubMed  Google Scholar 

  45. Golding JF, Stott JRR. Comparison of the effects of a selective muscarinic receptor antagonist and hyoscine (scopolamine) n motion sickness, skin conductance and heart rate. Br J Clin Pharmacol 1997; 43: 633–7

    Article  PubMed  CAS  Google Scholar 

  46. Wood CD. Pharmacological countermeasures against motion sickness. In: Crampton GH, editor. Motion and space sickness. Boca Raton (FL): CRC Press, Inc., 1990: 343–51

    Google Scholar 

  47. Dobie TG, May JG. Cognitive-behavioral management of motion sickness. Aviat Space Environ Med 1994; 65(10 Suppl.): C1–20

    PubMed  CAS  Google Scholar 

  48. Wood CD, Manno JE, Manno BR, et al. The effect of antimotion sickness drugs on habituation to motion. Aviat Space Environ Med 1986; 57: 539–42

    PubMed  CAS  Google Scholar 

  49. Homick JL, Kohl RL, Reschke MF, et al. Transdermal scopolamine in the prevention of motion sickness: evaluation of the time course of efficacy. Aviat Space Environ Med 1983; 54: 994–1000

    PubMed  CAS  Google Scholar 

  50. Attias J, Gordon C, Ribak J, et al. Efficacy of transdermal scopolamine against seasickness: a 3-day study at sea. Aviat Space Environ Med 1987; 58: 60–2

    PubMed  CAS  Google Scholar 

  51. Gordon C, Binah O, Attias J, et al. Transdermal scopolamine: human performance and side effects. Aviat Space Environ Med 1986; 57: 236–40

    PubMed  CAS  Google Scholar 

  52. Parrott AC. Transdermal scopolamine: a review of its effects upon motion sickness, psychological performance, and physiological functioning. Aviat Space Environ Med 1989; 60: 1–9

    PubMed  CAS  Google Scholar 

  53. Sennhauser FH, Schwarz HP. Toxic psychosis from transdermal scopolamine in a child [letter]. Lancet 1986; 2(8514): 1033

    Article  PubMed  CAS  Google Scholar 

  54. Klein BL, Ashenburg CA, Reed MD. Transdermal scopolamine intoxication in a child. Pediatr Emerg Care 1985; 1: 208–9

    Article  PubMed  CAS  Google Scholar 

  55. Johnson SF, Moore RJ. Transderm pupil and confusion in a 10 year old [letter]. Ann Neurol 1983; 13: 583

    Article  PubMed  CAS  Google Scholar 

  56. Doyle E, Byers G, McNicol LR, et al. Prevention of postoperative nausea and vomiting with transdermal hyoscine in children using patient-controlled analgesia. Br J Anaesth 1994; 72: 72–6

    Article  PubMed  CAS  Google Scholar 

  57. Ayub N, Donaldson D, Bedford D, et al. Lessons to be learned: a case study approach. Hyperactivity and confusion in the presentation of hyoscine overdose. J R Soc Health 1997; 117: 242–4

    CAS  Google Scholar 

  58. Gordon CR, Shupak A, Doweck I, et al. Allergic contact dermatitis caused by transdermal hyoscine. Br Med J 1989; 298: 1220–1

    Article  CAS  Google Scholar 

  59. Gordon CR, Mankuta D, Shupak A, et al. Recurrent classic migraine attacks following transdermal scopolamine intoxication. Headache 1991; 31: 172–4

    Article  PubMed  CAS  Google Scholar 

  60. Luetje CM, Wooten J. Clinical manifestations of transdermal scopolamine addiction. Ear Nose Throat J 1996; 75: 210–4

    PubMed  CAS  Google Scholar 

  61. Reynolds JEF, editor. Martindale. The extra pharmacopoeia. 31st ed. London: Royal Pharmaceutical Society, 1996

    Google Scholar 

  62. Rowe C, Verjee Z, Koren G. Adolescent dimenhydrinate abuse: resurgence of an old problem. J Adolesc Health 1997; 21: 47–9

    Article  PubMed  CAS  Google Scholar 

  63. Craig DF, Mellor CS. Dimenhydrinate dependence and withdrawal. Can Med Assoc J 1990; 142: 970–3

    CAS  Google Scholar 

  64. Bassett KE, Schunk JE, Crouch BL Cyclizine abuse by teenagers in Utah. Am J Emerg Med 1996; 14: 472–4

    Article  PubMed  CAS  Google Scholar 

  65. Towse G. Cinnarizine — a labyrinthine sedative. J Laryngol Otol 1980; 94: 1009–15

    Article  PubMed  CAS  Google Scholar 

  66. Philipszoon AJ. Influence of cinnarizine on the labyrinth and n vertigo. Clin Pharmacol Ther 1962; 3: 184–90

    PubMed  CAS  Google Scholar 

  67. Hargreaves J. A double-blind placebo controlled study of cinnarizine in the prophylaxis of seasickness. Practitioner 1980; 224: 547–50

    PubMed  CAS  Google Scholar 

  68. Hargreaves J. The prophylaxis of seasickness. A comparison of cinnarizine with hyoscine. Practitioner 1982; 226(1363): 160

    CAS  Google Scholar 

  69. Shupak A, Doweck I, Gordon CR, et al. Cinnarizine in the prophylaxis of seasickness: laboratory vestibular evaluation and sea study. Clin Pharmacol Ther 1994; 55: 670–80

    Article  PubMed  CAS  Google Scholar 

  70. Doweck I, Gordon CR, Spitzer O, et al. Effect of cinnarizine in the prevention of seasickness. Aviat Space Environ Med 1994; 65: 606–9

    PubMed  CAS  Google Scholar 

  71. Macnair AL. Cinnarizine in the prophylaxis of car sickness in children. Curr Med Res Opin 1983; 8: 451–5

    Article  PubMed  CAS  Google Scholar 

  72. Holmes B, Brogden RN, Heel RC, et al. Flunarizine. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use. Drugs 1984; 27: 6–44

    CAS  Google Scholar 

  73. Lee JA, Watson LA, Boothby G. Calcium antagonists in the prevention of motion sickness. Aviat Space Environ Med 1986; 57: 45–8

    PubMed  CAS  Google Scholar 

  74. Wang J-J, Dutia MB. Effects of histamine and betahistine on rat medial vestibular nucleus neurones: possible mechanism of action of anti-histaminergic drugs in vertigo and motion sickness. xp Brain Res 1995; 105: 18–24

    CAS  Google Scholar 

  75. Schmidt JT, Huizing EH. The clinical drug trial in Meniere’s disease with emphasis on the effect of betahistine SR. Acta Otolaryngol (Stockh) 1992; Suppl. 497: 1–189

    CAS  Google Scholar 

  76. Gonen A, Doweck I, Spitzer O, et al. Betahistine in the prevention of seasickness and its effects on performance [abstract]. Aviat Space Environ Med 1995; 66: 467

    Google Scholar 

  77. Noble RL. The effect of barbiturates and other substances on motion sickness in dogs. Can J Res 1948; 26 (Sect. E): 283–94

    Article  CAS  Google Scholar 

  78. McClure JA, Lycett P, Baskerville JC. Diazepam as an anti-motion sickness drug. J Otolaryngol 1982; 11: 253–9

    PubMed  CAS  Google Scholar 

  79. Chelen W, Kabrisky M, Hatsell C, et al. Use of phenytoin in the prevention of motion sickness. Aviat Space Environ Med 1990; 61: 1022–5

    PubMed  CAS  Google Scholar 

  80. Knox GW, Woodard D, Chelen W, et al. Phenytoin for motion sickness: clinical evaluation. Laryngoscope 1994; 104: 935–9

    Article  PubMed  CAS  Google Scholar 

  81. Grontved A, Brask T, Kambskard J, et al. Ginger root against seasickness. A controlled trial on the open sea. Acta Otolaryngol (Stockh) 1988; 105: 45–9

    CAS  Google Scholar 

  82. Stewart JJ, Wood MJ, Wood CD, et al. Effects of ginger on motion sickness susceptibility and gastric function. Pharmacology 1991; 42: 111–20

    Article  PubMed  CAS  Google Scholar 

  83. Holtmann S, Clarke AH, Scherer H, et al. The anti-motion sickness mechanism of ginger. A comparative study with placebo and dimenhydrinate. Acta Otolaryngol (Stockh) 1989; 108: 168–74

    Article  CAS  Google Scholar 

  84. Lucot JB, Crampton GH. Buspirone blocks motion sickness and xylazine-induced emesis in the cat. Aviat Space Environ Med 1987; 58: 989–91

    PubMed  CAS  Google Scholar 

  85. Okada F, Saito H, Matsuki N. Prophylactic effect of serotonin uptake inhibitors against motion sickness in Suncus murinus. Eur J Pharmacol 1996; 309: 33–5

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. Gordon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, C.R., Shupak, A. Prevention and Treatment of Motion Sickness in Children. Mol Diag Ther 12, 369–381 (1999). https://doi.org/10.2165/00023210-199912050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199912050-00004

Keywords

Navigation