Advertisement

CNS Drugs

, Volume 5, Issue 5, pp 358–368 | Cite as

Cognitive Adverse Effects of Antiepileptic Drugs

Incidence, Mechanisms and Therapeutic Implications
  • Reetta Kälviäinen
  • Marja Äikiä
  • Paavo J. RiekkinenSr
Adverse Effects

Summary

Several early studies suggested that differences exist between antiepileptic drugs (AEDs) in terms of their propensity to cause adverse effects on cognitive functions, favouring carbamazepine over phenobarbital (phenobarbitone), phenytoin and valproic acid (sodium valproate). The combined results of recent studies in patients and healthy volunteers reveal that at therapeutic serum concentrations phenobarbital, phenytoin, carbamazepine, oxcarbazepine and valproic acid produce nearly comparable adverse effects on higher cognitive functions.

The newer AEDs (with the exception of zonisamide and topiramate) appear to induced fewer cognitive adverse effects than the older agents. Furthermore, there is limited evidence that gabapentin, lamotrigine and vigabatrin may have beneficial effects on cognitive function. Some of the newer AEDs may also have neuroprotective effects that can prevent seizure-induced neuronal damage, and so reduce cognitive dysfunction. This is an important clinical consideration, as even modest differences between older and newer AEDs are relevant for patients.

Keywords

Carbamazepine Valproic Acid Gabapentin Antiepileptic Drug Lamotrigine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neisser U. Cognition and reality. San Francisco: W.H. Freeman and Co., 1980Google Scholar
  2. 2.
    Dodrill CB. Behavioral effects of antiepileptic drugs. In: Smith D, Treiman D, Trimble M, editors. Neurobehavioral problems in epilepsy. Advances in neurology. Vol. 55. New York: Raven Press. 1991: 213–24Google Scholar
  3. 3.
    Sutula TP, Cavazos JE, Woodard AR. Long-term structural and functional alterations induced in the hippocampus by kindling: implications for memory dysfunction and the development of epilepsy. Hippocampus 1994: 4: 254–8PubMedCrossRefGoogle Scholar
  4. 4.
    Äikiä M, Kälviäinen R, Riekkinen Sr PJ. Verbal learning and memory in newly diagnosed partial epilepsy. Epilepsy Res 1995 Oct: 22: 157–64PubMedCrossRefGoogle Scholar
  5. 5.
    Brodie MJ, McPhail E, Macphee GJA, et al. Psychomotor impairment and anticonvulsant therapy in adult epileptic patients. Eur J Clin Pharmacol 1987: 31: 655–60PubMedCrossRefGoogle Scholar
  6. 6.
    Kälviäinen R, Äikiä M, Helkala E-L, et al. Memory and attention in newly diagnosed epileptic seizure disorder. Seizure 1992: 1: 255–62PubMedCrossRefGoogle Scholar
  7. 7.
    Smith DB, Mattson RH, Cramer JA, et al. Results of a nationwide veterans administration cooperative study comparing the efficacy and toxicity of carbamazepine, phenobarbital, phenytoin and primidone. Epilepsia 1987: 28: 50–8CrossRefGoogle Scholar
  8. 8.
    Engel J, Bandler R, Gritfith NC, et al. Neurobiological evidence for epilepsy-induced interictal disturbances. In: Smith DB, Treiman DM, Trimble MR, editors. Neurobehavioral problems in epilepsy. New York: Raven Press. 1991: 97–111Google Scholar
  9. 9.
    Devinsky O. Cognitive and behavioral effects of antiepileptic. Epilepsia 1995: 36Suppl. 2: 46–65CrossRefGoogle Scholar
  10. 10.
    Dodrill CB. Cognitive and psychosocial effects of epilepsy on adults. In: Wyllie E. editor. The treatment of epilepsy: principles and practices. Philadelphia: Lea & Febiger. 1993: 1133–40Google Scholar
  11. 11.
    Loring DW, Meador KJ. Cognitive and behavioral effects of antiepileptic drugs: issues in epilepsy and quality of life. Epilepsy Foundation of America, 1993Google Scholar
  12. 12.
    Meador KJ, Loring DW. Cognitive effects of antiepileptic drugs. In: Devinsky O, Theodore WH. editors. Epilepsy and behavior. New York: Wiley-Liss, 1991: 151–70Google Scholar
  13. 13.
    Smith DB. Cognitive effects of antiepileptic drugs. In: Smith D, Treiman D, Trimble M. editors. Neurobehavioral problems in epilepsy. Advances in neurology. Vol 55. New York: Raven Press. 1991: 197–212Google Scholar
  14. 14.
    Trimble MR. Anticonvulsant drugs and cognitive function: a review of the literature. Epilepsia 1987: 28: 37–45CrossRefGoogle Scholar
  15. 15.
    Durwen HF, Eiger CE, Helmstaedter C, et al. Circumscribed improvement of cognitive performance in TLE patients with intractable seizures following reduction of anticonvulsant medication. J Epilepsy 1989: 2: 147–53CrossRefGoogle Scholar
  16. 16.
    Durwen HF, Eiger CE. Verbal differences in epileptic patients with left and right temporal lobe foci — a pharmacologically induced phenomenon? Acta Neurol Scand 1993: 87: 1–8PubMedCrossRefGoogle Scholar
  17. 17.
    Gaily EK, Granström ML, Hiilesmaa VK, et al. Head circumference in children of epileptic mothers: contributions of drug exposure and genetic background. Epilepsy Res 1990: 5: 217–22PubMedCrossRefGoogle Scholar
  18. 18.
    Ransom BR, Elmore JG. Effects of antiepileptic drugs on the developing central nervous system. In: Smith D, Treiman D, Trimble M, editors. Neurobehavioral problems in epilepsy. Advances in neurology. Vol. 55. New York: Raven Press, 1991: 225–37Google Scholar
  19. 19.
    Trimble MR, Reynolds EH. Anticonvulsant drugs and mental symptoms. Psychol Med 1976: 6: 169–78PubMedCrossRefGoogle Scholar
  20. 20.
    Shorvon SD, Reynolds EH. Reduction in polypharmacy for epilepsy. BMJ 1979: 2: 1023–5PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Thompson P, Trimble MR. Anticonvulsant drugs and cognitive functions. Epilepsia 1982: 23: 531–44PubMedCrossRefGoogle Scholar
  22. 22.
    Dodrill CB. Diphenylhydantoin serum levels, toxicity, and neuropsychological performance in patients with epilepsy. Epilepsia 1975: 16: 593–600PubMedCrossRefGoogle Scholar
  23. 23.
    Thompson P, Trimble MR. Comparative effects of anticonvulsant drugs on cognitive functioning. Br J Clin Pract 1982: 18: 154–6Google Scholar
  24. 24.
    Thompson PJ, Trimble MR. Anticonvulsant serum levels: relationship to impairments of cognitive functioning. J Neurol Neurosurg Psychiatr 1983: 46: 227–33PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Dodrill CB, Troupin AS. Psychotropic effects of carbamazepine in epilepsy: a double-blind comparison with phenytoin. Neurology 1977: 27: 1023–8PubMedCrossRefGoogle Scholar
  26. 26.
    Thompson PJ, Huppert FA, Trimble MR. Phenytoin and cognitive functions: effects on normal volunteers and implications for epilepsy. Br J Clin Psychol 1981: 20: 155–62PubMedCrossRefGoogle Scholar
  27. 27.
    Thompson PJ, Trimble MR. Sodium valproate and cognitive functioning in normal volunteers. Br J Clin Pharmacol 1981: 12: 819–24PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Andrewes DG, Bullen JG, Tomlinson L, et al. A comparative study of the cognitive effects of phenytoin and carbamazepine in new referrals with epilepsy. Epilepsia 1986: 27: 128–34PubMedCrossRefGoogle Scholar
  29. 29.
    Nichols ME, Meador KJ, Loring DW. Neuropsychological effects of antiepileptic drugs: a current perspective. J Clin Neuropharmacol 1993: 16: 471–84CrossRefGoogle Scholar
  30. 30.
    Smith DB. Anticonvulsants, seizures and performance: the Veteran’s Administration experience. In: Trimble MR, Reynolds EH, editors. Epilepsy, behaviour and cognitive function. Chichester: John Wiley & Sons Ltd, 1988: 67–78Google Scholar
  31. 31.
    Duncan JS, Shorvon SD, Trimble MR. Effects of removal of phenytoin, carbamazepine and valproate on cognitive function. Epilepsia 1990; 31: 584–91PubMedCrossRefGoogle Scholar
  32. 32.
    Gillham RA, Williams N, Wiedmann KD, et al. Cognitive function in adult epileptic patients established on anticonvulsant monotherapy. Epilepsy Res 1990; 7: 219–25PubMedCrossRefGoogle Scholar
  33. 33.
    Dodrill CB, Temkin NR. Motor speed is a contaminating factor in evaluating the cognitive effects of phenytoin. Epilepsia 1989; 30: 453–7PubMedCrossRefGoogle Scholar
  34. 34.
    Dodrill CB, Troupin AS. Neuropsychological effects of carbamazepine and phenytoin: a reanalysis. Neurology 1991; 41: 141–3PubMedCrossRefGoogle Scholar
  35. 35.
    Dodrill CB, Wilensky AJ. Neuropsychological abilities before and after 5 years of stable antiepileptic drug therapy. Epilepsia 1992; 33: 327–34PubMedCrossRefGoogle Scholar
  36. 36.
    Prevey ML, Delaney RC, Cramer JA, et al. Valproate versus carbamazepine: comparison of effects on cognitive functioning [abstract]. Epilepsia 1992; 33Suppl. 3: 110Google Scholar
  37. 37.
    Forsythe I, Butler R, Berg I, et al. Cognitive impairment in new cases of epilepsy randomly assigned to carbamazepine, phenytoin and sodium valproate. Dev Med Child Neurol 1991; 33: 524–34PubMedCrossRefGoogle Scholar
  38. 38.
    Dikmen SS, Temkin NR, Miller B, et al. Neurobehavioral effects of phenytoin prophylaxis of posttraumatic seizures. JAMA 1991; 265: 1271–7PubMedCrossRefGoogle Scholar
  39. 39.
    Smith KR, Goulding PM, Wilderman D, et al. Neurobehavioral effects of phenytoin and carbamazepine in patients recovering from brain trauma: a comparative study. Arch Neurol 1994; 51: 653–60PubMedCrossRefGoogle Scholar
  40. 40.
    Meador KJ, Loring DW, Huh K, et al. Comparative cognitive effects of anticonvulsants. Neurology 1990; 40: 391–4PubMedCrossRefGoogle Scholar
  41. 41.
    Meador KJ, Loring DW, Allen ME, et al. Comparative cognitive effects of carbamazepine and phenytoin in healthy adults. Neurology 1991; 41: 1537–40PubMedCrossRefGoogle Scholar
  42. 42.
    Meador KJ, Loring DW, Abney OL, et al. Effects of carbamazepine and phenytoin on EEG and memory in healthy adults. Epilepsia 1993; 34: 153–7PubMedCrossRefGoogle Scholar
  43. 43.
    Meador KJ, Loring DW, Moore EE, et al. Comparative cognitive effects of phenobarbital, phenytoin, and valproate in healthy adults. Neurology 1995; 45: 1494–9PubMedCrossRefGoogle Scholar
  44. 44.
    Kälviäinen R, Keränen T, Riekkinen Sr PJ. Place of newer antiepileptic drugs in the treatment of epilepsy. Drugs 1993; 46: 1009–24PubMedCrossRefGoogle Scholar
  45. 45.
    Kälviäinen R, Riekkinen PJ. New antiepileptic drugs. Exp Opin Invest Drugs 1995; 4: 955–62CrossRefGoogle Scholar
  46. 46.
    Chronopoulos A, Stafstrom C, Thurber S, et al. Neuroprotective effect of felbamate after kainic acid-induced status epilepticus. Epilepsia 1993; 43: 693–6Google Scholar
  47. 47.
    Wallis RA, Panizzon KL, Nolan JP. Glycine-induced CAI excitotoxicity in the rat hippocampal slice. Brain Res 1994; 664: 115–25PubMedCrossRefGoogle Scholar
  48. 48.
    Wasterlcin CG, Adams LM, Hattori H, et al. Felbamate reduces hypoxic-ischemic brain damage in vivo. Eur J Pharmacol 1992; 212: 275–8CrossRefGoogle Scholar
  49. 49.
    Mattson RH. Efficacy and adverse effects of established and new antiepileptic drugs. Epilepsia 1995; 36Suppl. 2: 13–26CrossRefGoogle Scholar
  50. 50.
    Ramsay RE. Clinical efficacy and safety of gabapentin. Neurology 1994; 44Suppl. 4: 23–30Google Scholar
  51. 51.
    Saletu B, Grunberger J, Linzmayer L. Evaluation of encephalothrophic and psychotropic properties of gabapentin in man by pharmaco-EEG and psychometry. Int J Clin Pharmacol Ther Toxicol 1986; 24: 362–73PubMedGoogle Scholar
  52. 52.
    Dodrill CB, Wilensky AJ, Ojemann LM. Neuropsychological, mood, and psychosocial effects of gabapentin [abstract]. Epilepsia 1992; 33Suppl. 3: 117–8Google Scholar
  53. 53.
    Abou-Khalil B, McLean M, Castro O, et al. Gabapentin in the treatment of refractory partial seizures [abstract]. Epilepsia 1990; 31: 644Google Scholar
  54. 54.
    Handforth A, Treiman DM, Norton LC. Effect of gabapentin on complex partial seizure frequency [abstract]. Neurology 1989; 39Suppl. 1: 114Google Scholar
  55. 55.
    Ojemann LM, Wilensky AJ, Temkin NR, et al. Long-term treatment with gabapentin for partial epilepsy. Epilepsy Res 1992; 13: 159–65PubMedCrossRefGoogle Scholar
  56. 56.
    Arnett JL, Dodrill CB. Effects of gabapentin on cognitive functioning and mood [abstract]. Epilepsia 1995; 36Suppl. 3: 32Google Scholar
  57. 57.
    O’Donnell RA, Miller AA. The effect of lamotrigine upon development of cortical kindled seizures in the rat. Neuropharmacology 1991; 30: 253–8PubMedCrossRefGoogle Scholar
  58. 58.
    McGeer EG, Zhu SG. Lamotrigine protects against kainate but not ibonate lesions in rat striatum. Neurosci Lett 1990; 4: 348–51CrossRefGoogle Scholar
  59. 59.
    Smith SE, Meldrum BS. Cerebroprotective effect of lamotrigine after focal ischemia in rats. Stroke 1995; 26: 117–22PubMedCrossRefGoogle Scholar
  60. 60.
    Cohen AF, Ashby L, Crowley D, et al. Lamotrigine (BW 43OC), potential anticonvulsant: effects on the central nervous system in comparison with phenytoin and diazepam. Br J Clin Pharmacol 1985; 20: 619–29PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Hamilton MJ, Cohen AF, Yuen AWC, et al. Carbamazepine and lamotrigine in healthy volunteers: relevance to early tolerance and clinical trial dosage. Epilepsia 1993; 34: 166–73PubMedCrossRefGoogle Scholar
  62. 62.
    Mervaala E, Koivisto K, Hänninen T, et al. Electrophysiological and neuropsychological profiles of lamotrigine in young and age-associated memory impairment subjects [abstract]. Neurology 1995; 46Suppl. 4: 259Google Scholar
  63. 63.
    Smith D, Baker G, Davies G, et al. Outcomes of add-on treatment with lamotrigine in partial epilepsy. Epilepsia 1993; 34: 312–22PubMedCrossRefGoogle Scholar
  64. 64.
    Fitton A, Goa KL. Lamotrigine: an update of its pharmacology and therapeutic use in epilepsy. Drugs 1995; 50: 691–713PubMedCrossRefGoogle Scholar
  65. 65.
    Brodie MJ, Richens A, Yuen AWC. Double-blind comparison of lamotrigine and carbamazepine in newly diagnosed epilepsy. Lancet 1995; 25: 476–9CrossRefGoogle Scholar
  66. 66.
    Steiner TJ, Silveira C, Yuen AWC. Comparison of lamotrigine and phenytoin monotherapy in newly diagnosed epilepsy [abstract]. Epilepsia 1994; 35: 61CrossRefGoogle Scholar
  67. 67.
    Grant S, Faulds D. Oxcarbazepine: a review of its pharmacology and therapeutic potential in epilepsy, trigeminal neuralgia and affective disorders. Drugs 1992; 43: 873–88PubMedCrossRefGoogle Scholar
  68. 68.
    Silver JM, Shin C, McNamara JO. Antiepileptogenic effects of conventional anticonvulsants in the kindling model of epilepsy. Ann Neurol 1991; 29: 356–63PubMedCrossRefGoogle Scholar
  69. 69.
    Curran HV, Java R. Memory and psychomotor effects of oxcarbazepine in healthy human volunteers. Eur J Clin Pharmacol 1993; 44: 529–33PubMedCrossRefGoogle Scholar
  70. 70.
    Laaksonen R, Kaimola K, Grahn-Teräväinen E, et al. A controlled trial of the effects of carbamazepine and oxcarbazepine on memory and attention [abstracl]. 16th International Epilepsy Congress; 1985; Hamburg.Google Scholar
  71. 71.
    Sabers A. The effect of carbamazepine, sodium-valproate and oxcarbazepine on neuropsychological functions in patients with epilepsy [abstract]. Acta Neurol Scand 1990; 82: 80Google Scholar
  72. 72.
    Äikiä M, Kälviäinen R, Sivenius J, et al. Cognitive effects of oxcarbazepine and phenytoin monotherapy in newly diagnosed epilepsy: one year follow-up. Epilepsy Res 1992; 11: 199–203PubMedCrossRefGoogle Scholar
  73. 73.
    Rogawski MA. The NMDA receptor, NMDA antagonists and epilepsy therapy: a status report. Drugs 1992; 44: 279–92PubMedCrossRefGoogle Scholar
  74. 74.
    Bannan PE, Graham DI, Lees KR, et al. Neuroprotective effect of remacemide hydrochloride in focal cerebral ischemia in the cat. Brain Res 1994; 664: 271–5PubMedCrossRefGoogle Scholar
  75. 75.
    Ordy JM, Thomas GJ. Remacemide effects on memory and hippocampal CA1 neuronal damage in the rat four-vessel occlusion model of global cerebral ischemia [abstract]. Soc Neurosci Abstr 1991; 17: 1081Google Scholar
  76. 76.
    Jamieson V. Preclinical and early clinical experience: remacemide hydrochloride safety — anticonvulsant and neuroprotectant? Satellite symposium in 21 st International Epilepsy Congress; 1995 Sept 4-8; SydneyGoogle Scholar
  77. 77.
    Halonen T, Nissinen J, Jansen J, et al. Tiagabine prevents seizures, neuronal damage and memory impairment in experimental status epilepticus. Eur J Pharmacol. In pressGoogle Scholar
  78. 78.
    Sveinbjornsdottir S, Sander JWAS, Patsalos PN, et al. Neuropsychological effects of tiagabine. a potential new antiepileptic drug. Seizure 1994; 3: 29–35PubMedCrossRefGoogle Scholar
  79. 79.
    Dodrill C, Arnett JL, Sommerville K, et al. Tiagabine [abstract]. Epilepsia 1995; 36Suppl. 3: 31Google Scholar
  80. 80.
    Kälviäinen R, Äikiä M, Mervaala E, et al. Long-term cognitive effects of tiagabine [abstract]. Epilepsia 1995; 36Suppl. 3: 149Google Scholar
  81. 81.
    Privitera M. Long-term cognitive effects of topiramate [abstract]. Epilepsia 1995; 36Suppl. 3: 152Google Scholar
  82. 82.
    Brooks J, Sachdeo R, Lim P. Topiramate: neuropsychometric assessments [abstract]. Epilepsia 1995; 36Suppl. 3: 273Google Scholar
  83. 83.
    Shin C, Rigsbee LC, McNamara JO. Anti-seizure and anti-epileptogenic effect of gamma-vinyl-gamma-aminobutyric acid in amygdaloid kindling. Brain Res 1986; 398: 370–4PubMedCrossRefGoogle Scholar
  84. 84.
    Ylinen AMA, Miettinen R, Pitkänen A, et al. Enhanced GABA-ergic inhibition preserves hippocampal structure and function in a model of epilepsy. Proc Natl Acad Sci USA 1991; 88: 7650–3PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Pitkänen A, Tuunanen J, Halonen T. Vigabatrin and carbamazepine have different efficacies in prevention of status epilepticus induced neuronal damage in the hippocampus and amygdala. Epilepsy Res. In pressGoogle Scholar
  86. 86.
    Dodrill CB, Arnett JL, Sommerville KW, et al. Evaluation of the effects of vigabatrin on cognitive abilities and quality of life in epilepsy. Neurology 1993; 43: 2501–7PubMedCrossRefGoogle Scholar
  87. 87.
    Dodrill CB, Arnett JL, Sommerville KW, et al. Effects of differing dosages of vigabatrin on cognitive abilities and quality of life in epilepsy. Epilepsia 1995; 36: 164–73PubMedCrossRefGoogle Scholar
  88. 88.
    Gillham RA, Blacklaw J, McKee PJW, et al. Effect of vigabatrin on sedation and cognitive function in patients with refractory epilepsy. J Neurol Neurosurg Psychiatry 1993; 53: 1271–5CrossRefGoogle Scholar
  89. 89.
    Grunewald RA, Thompson PJ, Corcoran R, et al. Effects of vigabatrin on partial seizures and cognitive function. J Neurol Neurosurg Psychiatry 1994; 57: 1057–63PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    McGuire AM, Duncan JS, Trimble MR. Effects of vigabatrin on cognitive function and mood when used as add-on therapy in patients with intractable epilepsy. Epilepsia 1992; 33: 128–34PubMedCrossRefGoogle Scholar
  91. 91.
    Kälviäinen R, Äikiä M, Saukkonen AM, et al. Vigabatrin vs carbamazepine monotherapy in patients with newly diagnosed epilepsy. Arch Neurol 1995; 52: 989–96PubMedCrossRefGoogle Scholar
  92. 92.
    Kälviäinen R, Äikiä M, Riekkinen PJ. Vigabatrin monotherapy in newly diagnosed patients with epilepsy: two-year comparative follow-up of efficacy, safety and cognitive effects [abstract]. Epilepsia 1995; 36Suppl. 3: 105Google Scholar
  93. 93.
    Hamoda K, Ishida S, Yagi K. Anticonvulsant effects of zonisamide on amygdaloid kindling in rats. Neuroscience 1990; 16: 407–12Google Scholar
  94. 94.
    Peters DH, Sorkin EM. Zonisamide: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in epilepsy. Drugs 1993; 45: 760–87PubMedCrossRefGoogle Scholar
  95. 95.
    Berent S, Sackellares JC, Giordani B, et al. Zonisamide (CI-912) and cognition: results from preliminary study. Epilepsia 1987; 28: 61–7PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 1996

Authors and Affiliations

  • Reetta Kälviäinen
    • 1
  • Marja Äikiä
    • 1
  • Paavo J. RiekkinenSr
    • 2
  1. 1.Department of NeurologyUniversity Hospital of KuopioKuopioFinland
  2. 2.A.I. Virtanen InstituteUniversity of KuopioKuopioFinland

Personalised recommendations