Skip to main content
Log in

Programmed Cell Death in Cerebral Ischaemia

Therapeutic Implications

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Summary

Programmed cell death (PCD) is the process by which redundant neurons delete themselves during embryonic development in the nervous system. Recent data indicate that a cellular suicide process similar to PCD also contributes to the death of neurons during stroke. This suggests that pharmacological approaches that interrupt PCD may have utility in stroke. Three of these approaches are neurotrophins, endonuclease inhibitors and calpain inhibitors.

Each of these strategies has been demonstrated to inhibit PCD in different in vitro biological systems. They have also proven effective when administered to animals in which a stroke has been surgically induced. Thus, the strategy of inhibiting PCD to diminish damage during ischaemia appears to have merit, and is likely to continue to be a growing area of research that may lead to new and novel therapeutic approaches in acute and chronic neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shigeno T, Mima T, Takakura K, et al. Amelioration of delayed neuronal death in the hippocampus by nerve growth factor. J Neurosci 1991; 11: 2914–9

    PubMed  CAS  Google Scholar 

  2. Goto K, Ishige A, Sekiguchi K, et al. Effects of cycloheximide on delayed neuronal death in rat hippocampus. Brain Res 1990; 534: 299–302

    Article  PubMed  CAS  Google Scholar 

  3. Heron A, Pollard H, Dessi F, et al. Regional variability in DNA fragmentation after global ischemia evidenced by combined histological and gel electrophoresis observations in the rat brain. J Neurochem 1993; 61: 1973–6

    Article  PubMed  CAS  Google Scholar 

  4. Linnik MD, Zobrist RH, Hatfield MD. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke 1993; 24: 2002–9

    Article  PubMed  CAS  Google Scholar 

  5. Okamoto M, Matsumoto M, Ohtsuki T, et al. Internucleosomal DNA cleavage involved in ischemia-induced neuronal death. Biochem Biophys Res Commun 1993; 196: 1356–62

    Article  PubMed  CAS  Google Scholar 

  6. MacManus JP, Buchan AM, Hill IE, et al. Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci Lett 1993; 164: 89–92

    Article  PubMed  CAS  Google Scholar 

  7. MacManus JP, Hill IE, Huang Z-G, et al. DNA damage consistent with apoptosis in transient focal ischemic neocortex. Neuroreport 1994; 5: 493–6

    Article  PubMed  CAS  Google Scholar 

  8. Oppenheim RW. Cell death during development of the nervous system. Ann Rev Neurosci 1991; 14: 453–501

    Article  PubMed  CAS  Google Scholar 

  9. Johnson Jr EM, Deckwerth TL. Molecular mechanisms of developmental neuronal death. Annu Rev Neurosci 1993; 16: 31–46

    Article  PubMed  CAS  Google Scholar 

  10. Raff MC, Barres BA, Burne JF, et al. Programmed cell death and the control of cell survival: lessons from the nervous system. Science 1993; 262: 695–700

    Article  PubMed  CAS  Google Scholar 

  11. Wyllie AH, Kerr JFH, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytology 1980; 68: 251–306

    Article  CAS  Google Scholar 

  12. Schwartz LM, Smith SW, Jones MEE, et al. Do all programmed cell deaths occur via apoptosis?. Proc Natl Acad Sci USA 1993; 90: 980–4

    Article  PubMed  CAS  Google Scholar 

  13. Deshpande J, Bergstedt K, Linden T, et al. Ultrastructural changes in the hippocampal CA1 region following transient cerebral ischemia: evidence against programmed cell death. Exp Brain Res 1992; 88: 91–105

    Article  PubMed  CAS  Google Scholar 

  14. Martin DP, Schmidt RE, DiStefano PS, et al. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol 1988; 106: 829–44

    Article  PubMed  CAS  Google Scholar 

  15. Deckworth TL, Johnson EM. Temporal events associated with programmed cell death (apoptosis) of sympathetic neurons deprived of nerve growth factor. J Cell Biol 1993; 123: 1207–22

    Article  Google Scholar 

  16. Gougeon M-L, Montagnier L. Apoptosis in AIDS. Science 1993; 260: 1269–70

    Article  PubMed  CAS  Google Scholar 

  17. Mobley WC, Rutkowski JL, Tennekoon GI, et al. Nerve growth factor increases choline acetyltransferase activity in developing basal forebrain cholinergic neurons. Mol Brain Res 1986; 1: 56–62

    Article  Google Scholar 

  18. Fischer W, Bjorklund A, Chen K, et al. NGF improves spatial memory in aged rodents as a function of their age. J Neurosci 1991; 11: 1889–906

    PubMed  CAS  Google Scholar 

  19. Barinaga M. Neurotrophic factors enter the clinic. Science 1994; 264: 772–4

    Article  PubMed  CAS  Google Scholar 

  20. Yamamoto S, Yoshimine T, Fujita T, et al. Protective effect of NGF atelocollagen mini-pellet on the hippocampal delayed neuronal death in gerbils. Neurosci Lett 1992; 141: 161–5

    Article  PubMed  CAS  Google Scholar 

  21. Mattson MP, Cheng B, Smith-Swintosky VL. Mechanisms of neurotrophic factor protection against calcium- and free radical-mediated excitotoxic injury: implications for treating neurodegenerative disorders. Exp Neurol 1993; 124: 89–95

    Article  PubMed  CAS  Google Scholar 

  22. Rabizadeh S, Oh J, Zhong L, et al. Induction of apoptosis by the low affinity NGF receptor. Science 1993; 261: 345–8

    Article  PubMed  CAS  Google Scholar 

  23. Friden PM, Walus LR, Watson P, et al. Blood-brain barrier penetration and in vivo activity of an NGF conjugate. Science 1993; 259: 373–7

    Article  PubMed  CAS  Google Scholar 

  24. Olson L. NGF and the treatment of Alzheimer’s disease. Exp Neurol 1993; 124: 5–15

    Article  PubMed  CAS  Google Scholar 

  25. Tuszynski MH, Uh S, Amarai DG, et al. Nerve growth factor infusion in the primate brain reduces lesion-induced cholinergic neuronal degeneration. J Neurosci 1990; 10: 3604–14

    PubMed  CAS  Google Scholar 

  26. Anderson KJ, Dam D, Lee S, et al. Basic fibroblast growth factor prevents death of lesioned cholinergic neurons in vivo. Nature 1988; 332: 360–1

    Article  PubMed  CAS  Google Scholar 

  27. Cheng B, Mattson MP. NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemia damage by stabilizing calcium homeostasis. Neuron 1991; 7: 1031–41

    Article  PubMed  CAS  Google Scholar 

  28. Nozaki K, Finklestein SP, Beal MF. Basic fibroblast growth factor protects against hypoxia-ischemia and NMDA neurotoxicity in neonatal rats. J Cereb Blood Flow Metab 1993; 13: 221–8

    Article  PubMed  CAS  Google Scholar 

  29. Pittman RN, Wang S, DiBenedetto AJ, et al. A system for characterizing cellular and molecular events in programmed neuronal cell death. J Neurosci 1993; 13: 3669–80

    PubMed  CAS  Google Scholar 

  30. Oppenheim RW, Prevette D, Fuller F. The lack of effect of acidic and basic fibroblast growth factor on the naturally occurring death of neurons in the chick embryo. J Neurosci 1992; 12: 2726–34

    PubMed  CAS  Google Scholar 

  31. Freese A, Finklestein SP, DiFiglia M. Basic fibroblast growth factor protects striatal neurons in vitro from NMDA-receptor mediated excitotoxicity. Brain Res 1992; 575: 351–5

    Article  PubMed  CAS  Google Scholar 

  32. Nozaki K, Finklestein SP, Beal MF. Delayed administration of basic fibroblast growth factor protects against N-methyl-D-aspartate neurotoxicity in neonatal rats. Eur J Pharmacol 1993; 232: 295–7

    Article  PubMed  CAS  Google Scholar 

  33. Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980; 284: 555–6

    Article  PubMed  CAS  Google Scholar 

  34. Tominaga T, Kure S, Narisawa K, et al. Endonuclease activation following focal ischemic injury in the rat brain. Brain Res 1993; 608: 21–6

    Article  PubMed  CAS  Google Scholar 

  35. McConkey DJ, Hartzeil P, Nicotera P, et al. Calcium-activated DNA fragmentation kills immature thymocytes. FASEB J 1989; 3: 1843–9

    PubMed  CAS  Google Scholar 

  36. Batistatou A, Greene LA. Aurintricarboxylic acid rescues PC 12 cells and sympathetic neurons from cell death caused by growth factor deprivation: correlation with suppression of endonuclease activity. J Cell Biol 1991; 115: 461–72

    Article  PubMed  CAS  Google Scholar 

  37. Samples SD, Dubinsky JM. Aurintricarboxylic acid protects hippocampal neurons from glutamate excitotoxicity in vitro. J Neurochem 1993; 61: 382–5

    Article  PubMed  CAS  Google Scholar 

  38. Roberts-Lewis JM, Marcy VR, Zhao Y, et al. Aurintricarboxylic acid protects hippocampal neurons from NMDA- and ischemia-induced toxicity in vivo. J Neurochem 1993; 61: 378–81

    Article  PubMed  CAS  Google Scholar 

  39. Wang P, Kozlowski J, Cushman M. Isolation and structure elucidation of low molecular weight components of aurintricarboxylic acid. J Org Chem 1992; 57: 3861–6

    Article  CAS  Google Scholar 

  40. Zeevalk GD, Schoepp D, Nicklas WJ. Aurintricarboxylic acid prevents NMDA-mediated excitotoxicity: evidence for its action as an NMDA receptor antagonist. J Neurochem 1993; 61: 386–9

    Article  PubMed  CAS  Google Scholar 

  41. Batistatou A, Greene LA. Internucleosomal DNA cleavage and neuronal cell survival/death. J Cell Biol 1993; 122: 523–32

    Article  PubMed  CAS  Google Scholar 

  42. Siman R, Noszek JC. Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1988; 1: 279–87

    Article  PubMed  CAS  Google Scholar 

  43. Lee KS, Frank S, Vanderklish P, et al. Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc Natl Acad Sci USA 1991; 88: 7233–7

    Article  PubMed  CAS  Google Scholar 

  44. Sarin A, Adams DH, Henkart PA. Protease inhibitors selectively block T cell receptor-mediated programmed cell death in a murine T cell hybridoma and activated peripheral T cells. J Exp Med 1993; 178: 1693–700

    Article  PubMed  CAS  Google Scholar 

  45. Squier MKT, Miller ACK, Malkinson AM, et al. Calpain activation in apoptosis. J Cell Physiol 1994; 159: 229–37

    Article  PubMed  CAS  Google Scholar 

  46. Sarin A, Clerici M, Blatt SP, et al. Inhibition of activationinduced programmed cell death and restoration of defective immune responses of HIV+ donors by cysteine protease inhibitors. J Immunol 1994; 153: 862–72

    PubMed  CAS  Google Scholar 

  47. Siman R, Noszek JC, Kegerise C. Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J Neuroscience 1989; 9: 1579–90

    CAS  Google Scholar 

  48. Arlinghaus L, Mehdi S, Lee KS. Improved posthypoxic recovery with a membrane-permeable calpain inhibitor. Eur J Pharmacol 1991; 209: 123–5

    Article  PubMed  CAS  Google Scholar 

  49. Hiramatsu K, Kassell NF, Lee KS. Improved posthypoxic recovery of synaptic transmission in gerbil neocortical slices treated with a calpain inhibitor. Stroke 1993; 24: 1725–8

    Article  PubMed  CAS  Google Scholar 

  50. Mehdi S. Cell-penetrating inhibitors of calpain. Trends Biol Sci 1991; 16: 150–3

    Article  CAS  Google Scholar 

  51. Wang KKW. Developing selective inhibitors of calpain. Trends Pharmacol Sci 1991; 11: 139–42

    Article  Google Scholar 

  52. Harbeson SL, Abelleira SM, Akiyama A, et al. Stereospecific synthesis of peptidyl α-keto amides as inhibitors of calpain. J Med Chem 1994; 37: 2918–29

    Article  PubMed  CAS  Google Scholar 

  53. Rami A, Krieglstein J. Protective effects of calpain inhibitors against neuronal damage caused by cytotoxic hypoxia in vitroand ischemia in vivo. Brain Res 1993; 609: 67–70

    Article  PubMed  CAS  Google Scholar 

  54. Hong S-C, Goto Y, Lanzino G, et al. Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia. Stroke 1994; 25: 663–9

    Article  PubMed  CAS  Google Scholar 

  55. Bartus RT, Hayward NJ, Elliott PJ, et al. Calpain inhibitor AK295 protects neurons from focal brain ischemia. Stroke 1994; 25: 2265–70

    Article  PubMed  CAS  Google Scholar 

  56. Bartus RT, Baker KL, Heiser AD, et al. Postischemic administration of AK275, a calpain inhibitor, provides substantial protection against focal ischemic brain damage. J Cereb Blood Flow Metab 1994; 14: 537–44

    Article  PubMed  CAS  Google Scholar 

  57. Hengartner MO, Ellis RE, Horvitz HR. Caenorhabditis elegansgene ced-9 protects cells from programmed cell death. Nature 1992; 356: 494–9

    Article  PubMed  CAS  Google Scholar 

  58. Allsopp TE, Wyatt S, Paterson HF, et al. The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell 1993; 73: 295–307

    Article  PubMed  CAS  Google Scholar 

  59. Behl C, Hovey III L, Krajewski S, et al. Bcl-2 prevents killing of neuronal cells by glutamate but not by amyloid beta protein. Biochem Biophys Res Commun 1993; 197: 949–56

    Article  PubMed  CAS  Google Scholar 

  60. Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol 1994; 124: 1–6

    Article  PubMed  CAS  Google Scholar 

  61. Linnik MD, Zahos P, Geschwind MD, et al. Expression of bcl-2 from a defective herpes simplex virus 1 vector limits neuronal death in stroke [abstract]. Soc Neurosci Abst 1994; 20: 1479

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linnik, M.D. Programmed Cell Death in Cerebral Ischaemia. CNS Drugs 3, 239–244 (1995). https://doi.org/10.2165/00023210-199503040-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199503040-00001

Keywords

Navigation