Skip to main content
Log in

Biochemical Strategies for the Development of Antidepressants

  • Review Article
  • Pharmacology and Pathophysiology
  • Published:
CNS Drugs Aims and scope Submit manuscript

Summary

Evidence is available regarding the relationship between the specificity of antidepressants in modulating neurotransmitter systems and their therapeutic activity. All antidepressant treatments initiate adaptive changes in central serotonin (5-hydroxytryptamine; 5-HT) neurotransmission. This involves a desensitisation of postsynaptic serotonergic 5-HT1A receptors and an enhanced responsiveness of 5-HT2 receptors that are located postsynaptically. Antidepressants also induce changes in central noradrenergic transmission. This effect possibly arises as a consequence of alteration in serotonin heteroceptors that are located on noradrenergic terminals.

There are several different classes of antidepressants available at present that modulate biogenic amine neurotransmitters, e.g. reversible monoamine oxidase A inhibitors, selective serotonin reuptake inhibitors, α2-adrenoceptor antagonists, atypical benzodiazepines and 5-HT1A partial agonists.

The next generation of antidepressant drugs may be developed based on their ability to modify signal transductors (G proteins), or possibly to act at sites distal to receptors, such as second messenger complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leonard BE. In search of black bile: do antidepressants act by changing endogenous endocoids in the depressed patient? J Psychopharmacol 1993; 7: 1–3

    PubMed  CAS  Google Scholar 

  2. Åsberg M, Ringberger V-A, Sjoqvist F, et al. Monoamine metabolites in cerebrospinal fluid and serotonin uptake inhibitors during treatment with chlorimipramine. J Clin Pharmacol Ther 1977; 21: 2012–7

    Google Scholar 

  3. Emrich HM, Hollt V, Kissling W, et al. Beta endorphin like immunoreactivity in cerebrospinal fluid and plasma of patients with schizophrenia and other neuropsychiatric disorders. Pharmacopsychiatry 1979; 12: 269–76

    Article  CAS  Google Scholar 

  4. Tuomisto J, Tukiainen E, Ahlfors UG. Decreased uptake of 5-hydroxy-trytamine in blood platelets from patients with endogenous depression. Psychopharmacology 1979; 65: 141–7

    Article  PubMed  CAS  Google Scholar 

  5. Leonard BE. Neurotransmitter receptors, endocrine responses and the biological substrates of depression: a review. Human Psychopharmacol 1986; 1: 3–18

    Article  CAS  Google Scholar 

  6. van Praag HM, Korf J, Puite. 5-Hydroxyindole acetic acid levels in the cerebrospinal fluid of depressive patients treated with probenecid. Nature 1970; 225: 827

    Article  Google Scholar 

  7. van Praag HM, Korf J, Schut J. Cerebral monoamines and depression: an investigation of the probenecid technique. Arch Gen Psychiatry 1973; 28: 827–31

    Article  PubMed  Google Scholar 

  8. van Praag HM, de Hahn S. Central serotonin deficiency is a factor which increase depression vulnerability? Acta Psychiatr Scand 1979; 61 Suppl. 280: 86–96

    Google Scholar 

  9. van Praag HM. Depression, suicide and the metabolism of serotonin in the brain. J Affect Disord 1982; 4: 275–82

    Article  PubMed  Google Scholar 

  10. Åsberg M, Bertilsson L, Tuck D, et al. Indoleamine metabolites in the cerebrospinal fluid of depressed patients before and during treatment with nortriptyline. Clin Pharmacol Ther 1973; 14: 277–86

    PubMed  Google Scholar 

  11. Åsberg M, Traskman L, Toren P. 5-HIAA in the cerebrospinal fluid. A biochemical suicide predictor. Arch Gen Psychiatry 1976; 33: 1193–7

    Article  PubMed  Google Scholar 

  12. Åsberg M, Ringberger VA, Sjoqvist F. Monoamine metabolites in cerebrospinal fluid and serotonin uptake inhibitors during treatment with chlorimipramine. Clin Pharmacol Ther 1976; 21: 201–7

    Google Scholar 

  13. Montgomery SA. The non-selective effects of selective antidepressants. Adv Biochem Psychopharmacol 1982; 31: 49–56

    Google Scholar 

  14. Veith RC, Bielski RE, Bloom V, et al. Urinary MHPG excretion and treatment with desipramine or amitriptyline prediction of response, effect of treatment and methodological hazards. J Clin Psychopharmacol 1983; 3: 18–23

    Article  PubMed  CAS  Google Scholar 

  15. Potter WZ, Scheinin M, Golden RN, et al. Selective antidepressants on cerebrospinal fluid: lack of specificity on norepinephrine and serotonin metabolites. Arch Gen Psychiatry 1985; 42: 1171–7

    Article  PubMed  CAS  Google Scholar 

  16. Charney DS, Southwick SM, Delgado PL, et al. Current status of the receptor sensitivity hypothesis of antidepressant action. In: Amsterdam JD, editor. Pharmacotherapy of depression. New York: Marcel Dekker, 1990: 13–28

    Google Scholar 

  17. Leonard BE. Effect of antidepressants on neurotransmission: a common mechanism of action? In: Osborne NN, editor. Current aspects of the neurosciences, Vol. 4, Basingstoke: Mac-Millan, 1992: 205–38

    Google Scholar 

  18. Brunello N, Perez J, Tinelli D, et al. Biochemical and molecular changes in rat cerebral cortex after chronic anti-depressant treatment: in vitro and in vivo studies. Pharmacol Toxicol 1990; 66: 112–20

    Article  PubMed  CAS  Google Scholar 

  19. Leonard BE. From animals to man: advantages, problems and pitfalls of animal models in psychopharmacology. In: Hindmarch I, Stonier PD, editors. Human psychopharmacology — measures and methods. UK: John Wiley & Sons, 1989: 23–66

    Google Scholar 

  20. Willner P. Depression: a psychobiological synthesis. New York: John Wiley Intersciences, 1985

    Google Scholar 

  21. Oswald I, Brezinova V, Dunlevy DL. On the slowness of action of tricyclic antidepressant drugs. Br J Psychiatry 1972; 120: 673–7

    Article  PubMed  CAS  Google Scholar 

  22. Starke K. Regulation of noradrenaline release by pre-synaptic receptor systems. Rev Physiol Biochem Pharmacol 1877; 77: 1–20

    Article  Google Scholar 

  23. Starke K, Gothert M, Kilbinger H. Modulation of neurotransmitter release by pre-synaptic autoreceptors. Physiol Rev 1977; 69: 864–89

    Google Scholar 

  24. Healy D, Carney PA, Leonard BE. Monoamine related markers of depression. J Psychiat Res 1983; 17: 251–8

    Article  CAS  Google Scholar 

  25. Garcia-Sevilla JA, Zis AP, Seinick JC, et al. Platelet alpha 2 adrenergic receptors in major depressive disorders. Arch Gen Psychiatry 1981; 38: 1327–33

    Article  PubMed  CAS  Google Scholar 

  26. Healy D, O’Halloran A, Carney PA, et al. Peripheral adrenoceptors and serotonin receptors in depression. J Psychiat Res 1985; 20: 345–53

    Article  Google Scholar 

  27. Garcia-Sevilla JA. Platelet alpha 2 adrenoceptor function in depression and response to drug treatment. In: Leonard BE, Spencer PSJ, editors. Antidepressants thirty years on. London: Clinical Neurosciences, 1990: 163–8

    Google Scholar 

  28. Pandey GNM, Pysken MW, Garter DL, et al. Beta-adrenergic receptor function in affective illness. Am J Psychiatry 1979; 136: 675–8

    PubMed  CAS  Google Scholar 

  29. Butler J, Leonard BE. Post-partum depression and the effect of nomifensine treatment. Int Clin Psychopharmacol 1986; 1: 244–52

    Article  PubMed  CAS  Google Scholar 

  30. Davies B, Sudera D, Sangella G, et al. Increased number of alpha receptors in sympathetic denervation supersensitivity in man. J Clin Invest 1982; 69: 779–84

    Article  PubMed  CAS  Google Scholar 

  31. Jung RT, Shetty PS, Barrand M, et al. Role of catecholamines in the hypotensive response to dieting. BMJ 1979; 1: 12–4

    Article  PubMed  CAS  Google Scholar 

  32. Luck P, Milhailides DP, Dashwood MR, et al. Platelet hyperaggregability and increased alpha adrenoceptor density in anorexia nervosa. J Clin Endocrin Metab 57: 911-4

  33. Kafka MS, Wirz-Justice A, Walker D. Circadian and seasonal rhythms in alpha and beta-receptors in rat brain. Brain Res 1987; 287: 409–19

    Google Scholar 

  34. Murphy DL, Donnelly C, Moskowitz J. Catecholamine receptor function in depressed patients. Am J Psychiatry 1974; 131: 1389–91

    PubMed  CAS  Google Scholar 

  35. Wang YC, Pandey GN, Mendels J. Platelet adenylate cyclase in depression. Psychopharmacology 1974; 36: 291–300

    Article  CAS  Google Scholar 

  36. Siever LJ, Kafka MS, Targuin S, et al. Platelet alpha adrenergic binding and biochemical responsiveness in depressed patients and controls. Psychiat Res 1984; 11: 387–402

    Article  Google Scholar 

  37. Checkley AA. Neuroendocrine tests of monoamine function in man: a review of the amine theory and the application to the study of depressive illness. Psychol Med 1980; 10: 35–53

    Article  PubMed  CAS  Google Scholar 

  38. Born GV, Gragnani G, Martin K. Long-term effects of lithium on the uptake of 5-hydroxytryptamine by human platelets. Br J Clin Pharmacol 1980; 9: 321–6

    Article  PubMed  CAS  Google Scholar 

  39. Lampagnani M, De Gactano G. Comparative effects of ketanserin, a novel serotonin receptor antagonist, on 5-HT induced shape change and 5-HT uptake in rat and human platelets. Biochem Pharmacol 1982; 31: 3000–2

    Article  Google Scholar 

  40. Brusov OS, Beliaeve BS, Katasonov AB, et al. Does platelet serotonin receptor supersensitivity accompany endogenous depression? Biol Psychiatry 1989; 25: 375–87

    Article  PubMed  CAS  Google Scholar 

  41. Arora RC, Meltzer HY. Increased serotonin 2 receptor binding as measured by 3H-LSD in blood platelets of depressed patients. Life Sci 1989; 44: 725–34

    Article  PubMed  CAS  Google Scholar 

  42. Butler J, Leonard BE. The platelet serotonergic system in depression and following sertraline treatment. Int Clin Psychopharmacol 1988; 3: 343–7

    Article  PubMed  CAS  Google Scholar 

  43. Wood K, Harwood J, Coppen A. Platelet accumulation of histamine in controls, depressed and lithium treated patients. J Affect Disord 1984; 7: 149–58

    Article  PubMed  CAS  Google Scholar 

  44. Schachter M, Greaney DF, Grahame-Smith GD, et al. Increased platelet membrane 3H-LSD binding in patients on chronic neuroleptic treatment. Br J Clin Pharmacol 1985; 19: 453–7

    Article  PubMed  CAS  Google Scholar 

  45. Leysen JE, Awontere F, Kennis L, et al. Receptor binding profile of R414681, a novel antagonist at 5HT2 receptors. Life Sci 1981; 28: 1015–22

    Article  PubMed  CAS  Google Scholar 

  46. Omenn GS, Smith LT. A common uptake system for serotonin and dopamine in human platelets. J Clin Invest 1978; 62: 235–40

    Article  PubMed  CAS  Google Scholar 

  47. Shaskin EG, Snyder SH. Kinetics of serotonin accumulation into slices from rat brain: relationship to catecholamine uptake. J Pharmacol Exp Ther 1971; 175: 404

    Google Scholar 

  48. Stahl SM, Meltzer HY. A kinetic and pharmacological analysis of 5-Hydroxytryptamine transport by human platelets and platelet storage granules: a comparison with central serotonergic neurons. J Pharmac Exp Ther 1978; 205: 118–26

    CAS  Google Scholar 

  49. Ghose JK. Biochemical assessment of antidepressive drugs. In: Lader M, Richens A, editors. Methods in clinical pharmacology for the central nervous system. Basingstoke: MacMillan, 1982: 67–78

    Google Scholar 

  50. Paul SM, Rehavi M, Skolnick P, et al. Depressed patients have decreased binding of 3H-imipramine to the platelet serotonin transporter. Arch Gen Psychiatry 1981; 38: 1315–7

    Article  PubMed  CAS  Google Scholar 

  51. Coppen A, Swade C, Wood K. Platelet 5-hydroxytryptamine accumulation in depressive illness. Clin Chim Acta 1978; 87: 165–8

    Article  PubMed  CAS  Google Scholar 

  52. Scott M, Reading HW, London JB. Studies on human blood platelets in affective disorder. Psychopharmacology 1979; 60: 1431–5

    Article  Google Scholar 

  53. Wood K, Swade C, Abou-Saaleh MJJ, et al. Apparent supersensitivity of platelets 5-HT receptors in lithium treated patients. J Affect Disord 1985; 8: 69–72

    Article  PubMed  CAS  Google Scholar 

  54. Modai I, Apter A, Meltzer M, et al. Serotonin uptake by platelets of suicidal and aggressive adolescent psychiatric in patients. Neuropsychobiology 1989; 21: 9–13

    Article  PubMed  CAS  Google Scholar 

  55. Ashby CR, Carr LA, Cook CL, et al. Alteration of 5-HT uptake by plasma fractions in the premenstrual syndrome. J Neural Transm (Gen Sect) 1990; 79: 41–50

    Article  Google Scholar 

  56. Faull KF, Holman RB, Elliott GR, et al. Tryptolines artifacts or reality: a new method of analysis using GC/MS. Prog Clin Biol Res 1982; 90: 135–54

    PubMed  CAS  Google Scholar 

  57. Kellar KJ, Eliott GR, Holman BR, et al. Tryptoline inhibition of serotonin uptake in rat forebrain homogenates. J Pharmacol Exp Ther 1976; 168: 619–25

    Google Scholar 

  58. Kari I, Peura P, Airakinsen MM. Mass fragmentographic determination of tetrahydro-B-carboline in human blood platelets and plasma. Med Biol 1979; 57: 412–4

    PubMed  CAS  Google Scholar 

  59. Skolnick P, Crawley JN, Glowa JR, et al. Betacarboline induced anxiety states. Psychopathology 1984; 17 Suppl 3: 52–60

    Article  PubMed  CAS  Google Scholar 

  60. Huttenen P, Spencer BA. Monoamine transmitter release induced by tetrahydro-beta carboline perfused to the hippocampus of the unrestrained rat. Brain Res Bull 1985; 15: 215–20

    Article  Google Scholar 

  61. Nemeroff CB, Drishnan RR, Blazer DG, et al. Elevated plasma concentrations of alpha 1 acid glycoprotein, a putative-endogenous inhibitor of the tritiated imipramine binding site in depressed patients. Arch Gen Psychiatry 1990; 47: 337–40

    Article  PubMed  CAS  Google Scholar 

  62. Healy D, Calvin J, Whitehouse AW, et al. Alpha-1-acid glycoprotein in major depressive and eating disorders. J Affect Disord 1991; 20: 13–20

    Article  Google Scholar 

  63. Paul SM, Rehavi M, Skolnick P. Demonstration of specific “high affinity” binding sites for 3H-imipramine on human platelets. Life Sci 1980; 26: 953–9

    Article  PubMed  CAS  Google Scholar 

  64. Paul IA, Duncan GE, Powell KR, et al. Regionally specific neuronal adaptation of beta adrenergic and 5-hydroxy-tryptamine 2 receptors after antidepressant administration in the forced swim test and after chronic antidepressant treatment. J Pharmacol Exp Ther 1988; 246: 956–62

    PubMed  CAS  Google Scholar 

  65. Rehavi M, Skolnick P, Hulihan B, et al. High affinity binding of 3H desipramine to rat cerebral cortex: relationship to tricyclic antidepressant induced inhibition of noradrenaline uptake. Eur J Pharmacol 1978; 70: 597–603

    Article  Google Scholar 

  66. Davis A. Molecular aspects of the imipramine receptor. Ex-perientia 1984; 40: 782–94

    CAS  Google Scholar 

  67. Langer SZ, Schoemaker H. Effects of antidepressants on monoamine transporters. Prog Neuropsychopharmac Biol Psychiatry 1988; 12: 193–216

    Article  CAS  Google Scholar 

  68. Poirier MF, Glazin AM, Loo H, et al. Changes in 3H-5-HT uptake and 3H imipramine binding in platelets after clomipramine in healthy volunteers: comparison with maprotiline and amitriptyline. Biol Psychiatry 1987; 22: 287–302

    Article  PubMed  CAS  Google Scholar 

  69. Braddock LE, Cowen PJ, Eliott JM, et al. Changes in the binding to platelets of 3H-imipramine and 3H-yohimbine in normal subjects taking amitriptyline. Neuropharmacology 1984; 23: 285–6.

    Article  PubMed  CAS  Google Scholar 

  70. Wennogle LP, Meyerson LR. Serotonin uptake inhibitors differently modulate high affinity imipramine dissociation in human platelet membranes. Life Sci 1985; 36: 1541–50

    Article  PubMed  CAS  Google Scholar 

  71. Hrdina PD. Differences between sodium dependent and desipramine defined 3H-imipramine binding intact human platelets. Biol Psychiatry 25: 1989; 576–84

    Article  PubMed  CAS  Google Scholar 

  72. Paul SM. Serotonin reuptake sites in platelets and human brain: clinical implications [abstract]. Proceedings of Reg Symp World Psychiat Assoc; 1986 Oct: Copenhagen. Abstract no. 293

  73. Briley MS, Langer SZ, Raisman R, et al. 3H-imipramine binding sites are decreased on platelets of untreated depressed patients. Science 1980; 303: 1209–10

    Google Scholar 

  74. Tuomisto J, Tukiainen E. Decreased uptake of 5-hydroxytryptamine in blood platelets from depressed patients. Nature 1976; 262: 596–8

    Article  PubMed  CAS  Google Scholar 

  75. Suranyi-Cadotte BE, Wood PL, Nair NP, et al. Normalization on platelet 3H-imipramine binding in depressed patients during revision. Eur J Pharmacol 1982; 85: 357–8

    Article  PubMed  CAS  Google Scholar 

  76. Gay C, Langer SZ, Loo H, et al. 3H-imipramine binding to platelets: a state dependent or independent biological markers. Br J Pharmacol 1983; 78: 57

    Article  Google Scholar 

  77. McLean DR, Mihei T. Uptake of dopamine and 5-hydroxytryptamine by platelets from patients with Huntington’s chorea. Lancet 1977; 1: 249–50

    Article  PubMed  CAS  Google Scholar 

  78. Bayer SM, McCoy EE. A comparison of the 5-HT and ATP content in platelets from subjects with Down’s Syndrome. Biochem Med 1974; 9: 225–32

    Article  PubMed  CAS  Google Scholar 

  79. Marcursson JO, Andersson A, Backdstrom I. Drug inhibitors indicates a single-site model of the 5-HT uptake sites antidepressant binding site in rat and human brain. Psychopharmacology 1989; 99: 17–21

    Article  Google Scholar 

  80. Lawrence KM, De Paermentier F, Cheetha SC, et al. Brain 5-HT uptake sites labelled with 3H-paroxetine in post-mortem samples from depressed suicide victims [abstract]. Br J Pharmacol 1989; 98: 812P

    PubMed  Google Scholar 

  81. O’Connor WT, Earley B, Leonard BE. Antidepressant properties of the triazolobenzodiazepines, alprazolam and ad-inazolam: studies on the olfactory bulbectomized rat model of depression. Br J Clin Pharmacol 1985; 19: 45S–6S

    Article  Google Scholar 

  82. Blier P, de Montigny C, Chaput Y. Electrophysiological assessment of the effects of antidepressant treatments on the efficacy of 5-HT neurotransmission. Clin Neuropharmacol 1988; 11 Suppl 2: S1–10

    PubMed  CAS  Google Scholar 

  83. Sulser F. Serotonin-norepinephrine receptor interactions in the rat brain: implications for the pharmacology and pathophysiology of affective disorders. J Clin Psychiatry 1987; 18: 12

    Google Scholar 

  84. Cassano GB, Marazziti D. Is depression a disorder of a receptor superfamily? A critical review of the receptor theory of depression and the appraisal of a new heuristic model. Eur J Psychiatry 1992; 7: 259–70

    Google Scholar 

  85. Jonsson B, Bebbington P. Economic studies of the treatment of depressive illness. In: Jonsson B, Rosenbaum J, editors. Health economics of depression. Chichester: Wiley, 1993: 35–48

    Google Scholar 

  86. Song F, Freemantle N, Sheldon TA, et al. Selective serotonin reuptake inhibitors: meta-analysis of efficacy and acceptability. BMJ 1993; 306: 683–7

    Article  PubMed  CAS  Google Scholar 

  87. Buckley NA, Dawson AH, Whyte IM, et al. Greater toxicity in overdose of dothiepin than other tricyclic antidepressants. Lancet 1994; 343: 159–62

    Article  PubMed  CAS  Google Scholar 

  88. Montgomery SA. Anxiety and depression. Petersfield: Wrightson Biomedical Publishing, 1990

    Google Scholar 

  89. Editorial. Antidepressants in clinical development. Scrip 1991; 1659: 10

  90. Pinder RM, Wieringa JH. Third-generation antidepressants. Med Res Rev 1993; 13: 259–325

    Article  PubMed  CAS  Google Scholar 

  91. Leonard BE. A comparison of the pharmacological properties of the novel tricyclic antidepressant lofepramine with its major metabolite, desipramine: a review. Int Clin Pharmacol 1987; 2: 281–97

    CAS  Google Scholar 

  92. Medical Research Council. Clinical trial of the treatment of depressive illness. BMJ 1965; 1: 881–6

    Article  Google Scholar 

  93. Liebowitz MR, Quitkin FM, Stewart JW, et al. Antidepressant specificity in atypical depression. Arch Gen Psychiatry 1988; 45: 129–37

    Article  PubMed  CAS  Google Scholar 

  94. Youdim MBH, Finberg JPM. New directions in MAO A and B selective inhibitors and substrates. Biochem Pharmacol 1991; 41: 155–62

    Article  PubMed  CAS  Google Scholar 

  95. Palfreyman MG, Zreika M, McDonald IA. Tyrosine and tryptophan analogues as dual enzyme-activated inhibitors of monoamine oxidase. In: Palfreyman MG, McCann PP, Lovenberg W, et al., editors. Enzymes as targets for drug design. New York: Academic Press, 1990: 139–56

    Google Scholar 

  96. Mendis N, Pare CMV, Sandler M, et al. Is the failure of (-) deprenyl, a selective monamine B inhibiotr, to alleviate depression related to freedom from cheese effect? Psychopharmacology 1981; 73: 87–90

    Article  PubMed  CAS  Google Scholar 

  97. Prasad A, Rampling RP, Glover V, et al. Psychiatric morbidity and platelet MAO activity. Psychiat Res 1988; 22: 111–6

    Article  Google Scholar 

  98. Murphy DL, Aulakh CH, Garrick NA. How antidepressants work: cautionary conclusions based on clinical and laboratory studies of the longer-term consequences of antidepressant drug treatment. In: Porter R, Bock G, Clark S. Depression, antidepressants and receptor sensitivity. Ciba Foundation Symp 123. Chichester: John Wiley & Sons, 1986: 106–20

    Google Scholar 

  99. Limberger N, Spaeth L, Staerke K. Sub-classification of the presynaptic alpha-2 autoreceptors in rabbit brain cortex. Br J Pharmacol 1991; 103: 1251–5

    Article  PubMed  CAS  Google Scholar 

  100. Bauman PA, Maitre L. Blockade of pre-synaptic alpha- receptors and amine uptake in the rat brain by the antidepressant mianserin. Naunyn Schmiedebergs Arch Pharmacol 1977; 300: 31–8

    Article  Google Scholar 

  101. Fludder JM, Leonard BE. Chronic effects of mianserin on noradrenaline metabolism in the rat brain. Psychopharmacol 1979; 64: 329–34

    Article  CAS  Google Scholar 

  102. Smith WT, Glandin V. Panagides J, et al. Mirtazapine vs amitriptyline vs placebo in the treatment of major depressive disorder. Psychopharmacol Bull 1990; 26: 191–6

    PubMed  CAS  Google Scholar 

  103. Ruffolo RR, Rice PJ, Patil PN, et al. Differences in the applicability of the Easson-Stedman hypothesis to the alpha-1 and alpha-2 adrenergic effects of phenylethylamines and imidazolines. Eur J Pharmacol 1983; 86: 471–6

    Article  PubMed  CAS  Google Scholar 

  104. Clark RD, Michel AD, Whiting RL. Pharmacology and structure-activity relationships of alpha 2-adrenoceptor antagonists. Prog Med Chem 1986; 23: 1–39

    Article  PubMed  CAS  Google Scholar 

  105. Henry JA, Antao CA. Suicide and fatal antidepressant poisoning. Eur J Med 1992; 1: 343–8

    PubMed  CAS  Google Scholar 

  106. Leonard BE, O’Connor WT, Jancsar SM. Experimental studies on the mode of action of nomifensine. Proceedings of Royal Society of Medicine Symposium on Nomifensine; 1983: London. Royal Society of Medicine, 1984: 7–14

    Google Scholar 

  107. Perumal AS, Smith TM, Suckou RE, et al. Effect of plasma from patients containing bupropion and its metabolites on the uptake of norepinephrine. Neuropharmacology 1986; 25: 199–202

    Article  PubMed  CAS  Google Scholar 

  108. Editorial. A novel selective noradrenaline reuptake inhibitor. Scrip 1990; 1552: 24

  109. Palmier C, Puozzo C, Lenehan T, et al. Monoamine uptake inhibition by plasma for healthy volunteers after single oral doses of the antidepressant milnacipran. Eur J Clin Pharmacol 1989; 37: 235–58

    Article  PubMed  CAS  Google Scholar 

  110. Schweizer E, Weise C, Cary C, et al. Placebo-controlled trial of venlafaxine for the treatment of major depression. J Clin Psychopharmacol 1991; 11: 233–6

    Article  PubMed  CAS  Google Scholar 

  111. Fabre LG, Putman HP. A fixed dose clinical trial of fluoxetine in outpatients with major depression. Curr Ther Res 1987; 42: 901–5

    CAS  Google Scholar 

  112. Glennon RA. Site selective serotonin agonists as discriminative stimuli. In: Colpaert FC, Balster RL, editors. Transduction mechanisms of drug stimuli. Berlin: Springer, 1988: 16–31

    Google Scholar 

  113. Taylor DP. Serotonin agents in anxiety. Ann NY Acad Sci 1990; 600: 545–56

    Article  PubMed  CAS  Google Scholar 

  114. Leonard BE. The comparative pharmacology of new antidepressants. J Clin Psychiatry 1993; 54 Suppl.: 3–15

    PubMed  Google Scholar 

  115. Leonard BE. Pharmacological differences of serotonin reuptake inhibitors and possible clinical relevance. Drugs 1992; 43 Suppl 2: 3–10

    Article  PubMed  CAS  Google Scholar 

  116. Kerr JS, Sherwood N, Hindmarch I. The comparative psychopharmacology of 5-HT reuptake inhibitors. Hum Psychopharmacol 1991; 6: 313–7

    Article  CAS  Google Scholar 

  117. Leonard BE. Sub-types of serotonin receptors: biochemical changes and pharmacological consequences. Int Clin Psychopharmacol 1992; 7: 13–21

    Article  PubMed  CAS  Google Scholar 

  118. Rickels K, Amsterdam JD, Clary C, et al. Buspirone in major depression: a controlled study. J Clin Psychiatry 1991; 52: 34–8

    PubMed  CAS  Google Scholar 

  119. Johnson DAW. The use of benzodiazepines in depression. Br J Clin Pharmacol 1985; 19 Suppl 1: 31S–6S

    Article  PubMed  Google Scholar 

  120. Rickels K, Chung HR, Csanalosi IB, et al. Alprazolam, diazepam, imipramine and placebo in out-patients with major depression. Arch Gen Psychiatry 1987; 44: 862–6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonard, B.E. Biochemical Strategies for the Development of Antidepressants. CNS Drugs 1, 285–304 (1994). https://doi.org/10.2165/00023210-199401040-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199401040-00006

Keywords

Navigation