Drug Safety

, Volume 31, Issue 12, pp 1145–1147 | Cite as

Stratification for Spontaneous Report Databases

  • Johan Hopstadius
  • G. Niklas Norén
  • Andrew Bate
  • I. Ralph Edwards
Correspondence

Keywords

Information Component Oral Polio Vaccine Spontaneous Report Database Individual Case Safety Report Knowledge Discovery Process 

Notes

Acknowledgements

The authors have no conflicts of interest that are directly relevant to the content of this letter.

References

  1. 1.
    Evans SJ. Stratification for spontaneous report databases. Drug Saf 2008; 31(11): 1049–52PubMedCrossRefGoogle Scholar
  2. 2.
    Hopstadius J, Norén GN, Bate A, et al. Impact of stratification on adverse drug reaction surveillance. Drug Saf 2008; 31(11): 1035–48PubMedCrossRefGoogle Scholar
  3. 3.
    Woo EJ, Ball R, Burwen DR, et al. Effects of stratification on data mining in the US Vaccine Adverse Event Reporting System (VAERS). Drug Saf 2008; 31(8): 667–74PubMedCrossRefGoogle Scholar
  4. 4.
    Jakobsson M. Vaccine pharmacovigilance in the WHO database [masters thesis]. Uppsala: Uppsala Universitet, 2008Google Scholar
  5. 5.
    DuMouchel W. Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system. Am Statistician 1999; 53(3): 177–90Google Scholar
  6. 6.
    Norén GN, Bate A, Orre R, et al. Extending the methods used to screen the WHO drug safety database towards analysis of complex associations and improved accuracy for rare events. Stat Med 2006; 25(21): 3740–57PubMedCrossRefGoogle Scholar
  7. 7.
    Gould AL. Practical pharmacovigilance analysis strategies. Pharmacoepidemiol Drug Saf 2003; 12(7): 559–74PubMedCrossRefGoogle Scholar
  8. 8.
    Szarfman A, Tonning JM, Doraiswamy PM. Pharmacovigilance in the 21st century: New systematic tools for an old problem. Pharmacotherapy 2004; 24(9): 1099–104PubMedCrossRefGoogle Scholar
  9. 9.
    Levine JG, Tonning JM, Szarfman A. Reply: the evaluation of data mining methods for the simultaneous and systematic detection of safety signals in large databases: lessons to be learned. Br J Clin Pharmacol 2006; 61(1): 105–13PubMedCrossRefGoogle Scholar
  10. 10.
    DuMouchel W, Smith ET, Beasley R, et al. Association of asthma therapy and Churg-Strauss syndrome: an analysis of postmarketing surveillance data. Clin Ther 2004; 26(7): 1092–104PubMedCrossRefGoogle Scholar
  11. 11.
    Hauben M, Reich L. Response to letter by Levine, et al. Br J Clin Pharmacol 2006; 61(1): 115–7CrossRefGoogle Scholar
  12. 12.
    Lilienfeld D, Nicholas S, Macneil D, et al. Violation of homogeneity: a methodologic issue in the use of data mining tools. Drug Saf 2003; 26(5): 363–4PubMedCrossRefGoogle Scholar
  13. 13.
    Bate A, Edwards I, Lindquist M, et al. Violation of homogeneity: a methodological issue in the use of data mining tools [letter]. Drug Saf 2003; 26(5): 363–6CrossRefGoogle Scholar
  14. 14.
    Hopstadius J. Methods to control for confounding variables in screening for association in the WHO drug safety database [masters thesis]. Uppsala: Uppsala University, 2006Google Scholar

Copyright information

© Adis Data Information BV 2008

Authors and Affiliations

  • Johan Hopstadius
    • 1
  • G. Niklas Norén
    • 1
    • 2
  • Andrew Bate
    • 1
    • 3
  • I. Ralph Edwards
    • 1
  1. 1.Uppsala Monitoring CentreWHO Collaborating Centre for International Drug MonitoringUppsalaSweden
  2. 2.Department of MathematicsStockholm UniversityStockholmSweden
  3. 3.School of Information Systems, Computing and MathematicsBrunei UniversityLondonUK

Personalised recommendations