Skip to main content
Log in

Cost Effectiveness of ACE Inhibitor Treatment for Patients with Type 1 Diabetes Mellitus

  • Original Research Article
  • Published:
PharmacoEconomics Aims and scope Submit manuscript

Abstract

Objective: Current guidelines recommend treating patients with type 1 diabetes mellitus with ACE inhibitors after the onset of microalbuminuria. Recent clinical trials have shown ACE inhibitors can affect the development of nephropathy when initiated prior to the onset of microalbuminuria. Our objective is to examine the cost effectiveness of treating adults aged over 20 years with an ACE inhibitor (captopril) immediately following diagnosis of type 1 diabetes versus treating them after the onset of microalbuminuria.

Design: Using a semi-Markov model, we calculated four main outcome measures: lifetime direct medical costs (discounted), QALYs, cumulative incidence of end-stage renal disease (ESRD), and number of days of ESRD over a lifetime. Medical costs are in 1999 US dollars.

Setting: All analyses were from the viewpoint of a single US payer responsible for all direct medical costs, including screening for microalbuminuria, ACE inhibitor treatment (captopril), management of major diabetic complications, and routine annual medical costs not specific to diabetes.

Methods: We applied the model to a hypothetical cohort of 10 000 persons newly diagnosed with type 1 diabetes. Distribution of sex and race/ethnicity within the cohort is representative of the general US population.

Results: We estimated that the incremental cost of early use of captopril for the average adult with type 1 diabetes is $US27 143 per QALY. This level varies considerably with age and glycaemic level. When the age at onset of diabetes is 20 years and glycosylated haemoglobin (HbA1c) level is 9%, the cost-effectiveness ratio is $US13 814 per QALY. When the age at onset is 25 years and HbA1c level is 7%, the cost-effectiveness ratio is $US39 530 per QALY.

Conclusion: This model, with its underlying assumptions and data, suggests that early treatment with captopril provides modest benefit at reasonable cost effectiveness, from the US single-payer perspective, in the prevention of ESRD compared with delaying treatment until diagnosis of microalbuminuria. Early treatment with other ACE inhibitors will provide similar cost effectiveness if they have equivalent efficacy, compliance and price per dose. Treatment may be considered among patients at age 20 years with new onset of type 1 diabetes. This conclusion is sensitive to the extent that ACE inhibitors delay onset of microalbuminuria. Other factors such as the patient’s age and glycaemic level must be considered when deciding to initiate early treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table III
Table IV
Table V
Table VI

Similar content being viewed by others

References

  1. Diabetes Control and Complications Trial Research Group. Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. Kidney Int 1995; 47: 1703–20

    Article  Google Scholar 

  2. DeFronzo RA. Diabetic nephropathy: etiologic and therapeutic considerations. Diabetes Rev 1995; 3: 510–64

    Google Scholar 

  3. US Renal Data System. USRDS 2001 annual data report. Bethesda (MD): National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2001

  4. Ravid M, Savin H, Jutrin I, et al. Long-term stabilizing effect of angiotensin-converting enzyme inhibition on plasma creatinine and on proteinuria in normotensive type II diabetic patients. Ann Intern Med 1993; 118: 577–81

    PubMed  CAS  Google Scholar 

  5. Viberti G, Mogensen CE, Groop LC, et al. Effect of captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. JAMA 1994; 271: 275–9

    Article  PubMed  CAS  Google Scholar 

  6. Lewis EJ, Hunsicker LG, Bain RP, et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy: The Collaborative Study Group. N Engl J Med 1993; 329: 1456–62

    Article  PubMed  CAS  Google Scholar 

  7. Kasiske BL, Kalil RS, Ma JZ, et al. Effect of antihypertensive therapy on the kidney in patients with diabetes: a meta-regression analysis. Ann Intern Med 1993; 118: 129–38

    PubMed  CAS  Google Scholar 

  8. Wiegmann TB, Herron KG, Chonko AM, et al. Effect of angiotensin-converting enzyme inhibition on renal function and albuminuria in normotensive type I diabetic patients. Diabetes 1992; 41: 62–7

    Article  PubMed  CAS  Google Scholar 

  9. Bjorck S, Mulec H, Johnsen SA, et al. Renal protective effect of enalapril in diabetic nephropathy. BMJ 1992; 304: 339–43

    Article  PubMed  CAS  Google Scholar 

  10. Mathiesen ER, Ronn B, Jensen T, et al. Relationship between blood pressure and urinary albumin excretion in development of microalbuminuria. Diabetes 1990; 39: 245–9

    Article  PubMed  CAS  Google Scholar 

  11. Mogensen CE. Long-term antihypertensive treatment inhibiting progression of diabetic nephropathy. BMJ (Clin Res Ed) 1982; 285: 685–8

    Article  CAS  Google Scholar 

  12. Christensen CK, Mogensen CE. Antihypertensive treatment: long-term reversal of progression of albuminuria in incipient diabetic nephropathy: a longitudinal study of renal function. J Diabet Complications 1987; 1: 45–52

    Article  PubMed  CAS  Google Scholar 

  13. Kiberd BA, Jindal KK. Screening to prevent renal failure in insulin dependent diabetic patients: an economic evaluation. BMJ 1995; 311: 1595–9

    Article  PubMed  CAS  Google Scholar 

  14. Kiberd BA, Jindal KK. Routine treatment of insulin-dependent diabetic patients with ACE inhibitors to prevent renal failure: an economic evaluation. Am J Kidney Dis 1998; 31: 49–54

    Article  PubMed  CAS  Google Scholar 

  15. EUCLID Study Group. Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. Lancet 1997; 349: 1787–92

    Article  Google Scholar 

  16. Ravid M, Brosh D, Levi Z, et al. Use of enalapril to attenuate decline in renal function in normotensive, normoalbuminuric patients with type 2 diabetes mellitus. Ann Intern Med 1999; 128: 982–8

    Google Scholar 

  17. American Diabetes Association. Diabetic nephropathy. Diabetes Care 2002; 25 Suppl. 1: S85–9

  18. Diabetes Control and Complications Trial Research Group. Resource utilization and costs of care in the Diabetes Control and Complications Trial. Diabetes Care 1995; 18: 1468–78

    Article  Google Scholar 

  19. Diabetes Control and Complications Trial Research Group. Lifetime benefits and costs of intensive therapy as practiced in the Diabetes Control and Complications Trial. JAMA 1996; 276: 1409–15

    Article  Google Scholar 

  20. Eastman RC, Javitt JC, Herman WH, et al. Model of complications of NIDDM: I. Model construction and assumptions. Diabetes Care 1997; 20: 725–34

    Article  PubMed  CAS  Google Scholar 

  21. Eastman RC, Javitt JC, Herman WH, et al. Model of complications of NIDDM: II. Analysis of the health benefits and cost-effectiveness of treating NIDDM with the goal of normoglycemia. Diabetes Care 1997; 20: 735–44

    Article  PubMed  CAS  Google Scholar 

  22. Eckman MH, Greenfield S, Mackey WC, et al. Foot infections in diabetic patients: decision and cost-effectiveness analysis. JAMA 1995; 273: 712–20

    Article  PubMed  CAS  Google Scholar 

  23. Health Care Financing Administration. Health Care Financing research report: end-stage renal disease, 1993–1995. Baltimore (MD): Health Care Financing Administration, 1998

    Google Scholar 

  24. Krolewski AS, Kosinski EJ, Warram JH, et al. Magnitude and determinants of coronary artery disease in juvenile-onset insulin-dependent diabetes mellitus. Am J Cardiol 1987; 59: 750–5

    Article  PubMed  CAS  Google Scholar 

  25. Diabetes Control and Complications Trial Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med 2000; 342: 381–9

    Article  Google Scholar 

  26. Javitt JC, Aiello LP, Chiang Y, et al. Preventive eye care in people with diabetes is cost-saving to the federal government: implications for Health Care Reform. Diabetes Care 1994; 17: 909–17

    Article  PubMed  CAS  Google Scholar 

  27. Balkin SW. Letter to editor. JAMA 1995; 273: 18

    Google Scholar 

  28. American Heart Association. Heart and stroke facts: statistical supplement. Dallas (TX): American Heart Association, 1999

    Google Scholar 

  29. Medical Economics. Red Book. Montvale (NJ): Medical Economics Company Inc., 2000

    Google Scholar 

  30. Medical Economics. Physicians’ desk reference. Montvale (NJ): Medical Economics Company Inc., 1998

    Google Scholar 

  31. Dasbach EJ, Fryback DG, Thornbury JR. Health utility preference differences [abstract]. Med Decis Making 1992; 12: 4

    Google Scholar 

  32. Lawrence WF, Grist TM, Brazy PC, et al. Magnetic resonance angiography in progressive renal failure. Am J Kidney Dis 1995; 25: 701–9

    Article  PubMed  CAS  Google Scholar 

  33. Cost-effectiveness in health and medicine. Oxford University Press, New York, 1996,309

  34. IMS America. National prescription audit plus basic data report, dispensed data, vol. 1 (Jan–Mar), 1998

    Google Scholar 

  35. LaPorte RE, Matsushima M, Chang YF. Prevalence and incidence of insulin-dependent diabetes. In: Diabetes in America. 2nd ed. Bethesda (MD): National Institutes of Health, 1995

    Google Scholar 

  36. Golan L, Birkmeyer JD, Welch HG. The cost-effectiveness of treating all patients with type 2 diabetes with angiotensin-converting enzyme inhibitors. Ann Intern Med 1999; 131: 660–7

    PubMed  CAS  Google Scholar 

  37. Heart Outcomes Prevention Evaluation (HOPE) Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet 2000; 355: 253–9

    Article  Google Scholar 

  38. Breyer JA, Bain RP, Evans JK, et al. Predictors of the progression of renal insufficiency in patients with insulin-dependent diabetes and overt diabetic nephropathy. Kidney Int 1996; 50: 1651–8

    Article  PubMed  CAS  Google Scholar 

  39. Klein R, Klein BE, Moss SE, et al. The lO-year incidence of renal insufficiency in people with type 1 diabetes. Diabetes Care 1999; 22: 743–51

    Article  PubMed  CAS  Google Scholar 

  40. Ravid M, Brosh D, Ravid-Safran D, et al. Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure, and hyperglycemia. Arch Intern Med 1998; 158: 998–1004

    Article  PubMed  CAS  Google Scholar 

  41. Sawicki PT, Didjurgeitt U, Muhlhauser I, et al. Smoking is associated with progression of diabetic nephropathy. Diabetes Care 1994; 17: 126–31

    Article  PubMed  CAS  Google Scholar 

  42. National Institutes of Health. Update on the Task Force Report (1987) on high blood pressure in children and adolescents: a working group report from the National High Blood Pressure Education Program. Bethesda (MD): National Institutes of Health, National High Blood Pressure Education Program, 1996

    Google Scholar 

  43. Gold AE, Reilly R, Little J, et al. The effect of glycaemic control in the pre-conception period and early pregnancy on birth weight in women with IDDM. Diabetes Care 1998; 21: 535–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Centers for Disease Control and Prevention provided funding for this manuscript. The authors have no conflicts of interest directly related to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, F.B., Sorensen, S.W., Manninen, D.L. et al. Cost Effectiveness of ACE Inhibitor Treatment for Patients with Type 1 Diabetes Mellitus. PharmacoEconomics 22, 1015–1027 (2004). https://doi.org/10.2165/00019053-200422150-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00019053-200422150-00005

Keywords

Navigation