Advertisement

Sports Medicine

, Volume 38, Issue 5, pp 425–435 | Cite as

Cardiac Troponin T Release after Prolonged Strenuous Exercise

  • Etienne C.H.J. Michielsen
  • Will K.W.H. Wodzig
  • Marja P. Van Dieijen-Visser
Review Article

Abstract

Over the past 2 decades, there has been a large interest in cardiac troponin T (cTnT) elevations, which are often seen following endurance sport events. There have been many reports on this topic, although sometimes with different approaches. We reviewed the available literature on cTnT elevations after prolonged strenuous exercise and discovered profound differences in the percentage of subjects reported to have elevated cTnT concentrations. This could partly be attributed to differences in immunoassay characteristics, such as cross-reactivity with skeletal troponin T, and the use of different cut-off values used in the different studies. The elevations were transient, with levels decreasing to preevent concentrations within 24–48 hours. This might be explained by the relatively short half-life of cTnT, or water imbalance during and after the event. The release mechanism of cTnT, as well as the long-term positive or negative effects, remains unclear. Future research should therefore be aimed at clarifying the release mechanism of cTnT. Furthermore, the benefits and the possible long-term negative aspects of prolonged exercise should be evaluated.

Keywords

Cardiac Troponin Prolonged Exercise Antibody 1B10 Heparin Plasma Marathon Race 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

No funding was received for the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

References

  1. 1.
    Alpert JS, Thygesen K, Antman E, et al. Myocardial infarction redefined: a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 2000; 36 (3): 959–69PubMedCrossRefGoogle Scholar
  2. 2.
    Farah CS, Reinach FC. The troponin complex and regulation of muscle contraction. Faseb J 1995; 9 (9): 755–67PubMedGoogle Scholar
  3. 3.
    Townsend PJ, Farza H, Mac Geoch C, et al. Human cardiac troponin T: identification of fetal isoforms and assignment of the TNNT2 locus to chromosome 1q. Genomics 1994; 21 (2): 311–6PubMedCrossRefGoogle Scholar
  4. 4.
    Vallins WJ, Brand NJ, Dabhade N, et al. Molecular cloning of human cardiac troponin I using polymerase chain reaction. FEBS Lett 1990; 270 (1-2): 57–61PubMedCrossRefGoogle Scholar
  5. 5.
    Giannitsis E, Katus HA. Comparison of cardiac troponin T and troponin I assays: implications of analytical and biochemical differences on clinical performance. Clin Lab 2004; 50 (9-10): 521–8PubMedGoogle Scholar
  6. 6.
    Newby LK, Goldmann BU, Ohman EM. Troponin: an important prognostic marker and risk—stratification tool in non—ST—segment elevation acute coronary syndromes. J Am Coll Cardiol 2003; 41 (4 Suppl. S): 31–6SCrossRefGoogle Scholar
  7. 7.
    Engel G, Rockson SG. Rapid diagnosis of myocardial injury with troponin T and CK—MB relative index. Mol Diagn Ther 2007; 11 (2): 109–16PubMedCrossRefGoogle Scholar
  8. 8.
    Grogan R. Run, Pheidippides, run! The story of the Battle of Marathon. Br J Sports Med 1981; 15 (3): 186–9PubMedCrossRefGoogle Scholar
  9. 9.
    Kinsey TE. Pheidippides and the Marathon run. Br J Sports Med 1981; 15 (4): 285–6PubMedCrossRefGoogle Scholar
  10. 10.
    Maron BJ, Shirani J, Poliac LC, et al. Sudden death in young competitive athletes: clinical, demographic, and pathological profiles. JAMA 1996; 276 (3): 199–204PubMedCrossRefGoogle Scholar
  11. 11.
    Rich MW. Risk for sudden cardiac death associated with marathon running. J Am Coll Cardiol 1997; 29 (1): 224PubMedGoogle Scholar
  12. 12.
    Maron BJ, Poliac LC, Roberts WO. Risk for sudden cardiac death associated with marathon running. J Am Coll Cardiol 1996; 28 (2): 428–31PubMedCrossRefGoogle Scholar
  13. 13.
    Morris CK, Froelicher VF. Cardiovascular benefits of improved exercise capacity. Sports Med 1993; 16 (4): 225–36PubMedCrossRefGoogle Scholar
  14. 14.
    Vidotto C, Tschan H, Atamaniuk J, et al. Responses of N—terminal pro—brain natriuretic peptide (NT—proBNP) and cardiac troponin I (cTnI) to competitive endurance exercise in recreational athletes. Int J Sports Med 2005; 26 (8): 645–50PubMedCrossRefGoogle Scholar
  15. 15.
    Scharhag J, Herrmann M, Urhausen A, et al. Independent elevations of N—terminal pro—brain natriuretic peptide and cardiac troponins in endurance athletes after prolonged strenuous exercise. Am Heart J 2005; 150 (6): 1128–34PubMedCrossRefGoogle Scholar
  16. 16.
    Siegel AJ, Lewandrowski EL, Chun KY, et al. Changes in cardiac markers including B—natriuretic peptide in runners after the Boston marathon. Am J Cardiol 2001; 88 (8): 920–3PubMedCrossRefGoogle Scholar
  17. 17.
    Leers MP, Schepers R, Baumgarten R. Effects of a long—distance run on cardiac markers in healthy athletes. Clin Chem Lab Med 2006; 44 (8): 999–1003PubMedCrossRefGoogle Scholar
  18. 18.
    Saenz AJ, Lee-Lewandrowski E, Wood MJ, et al. Measurement of a plasma stroke biomarker panel and cardiac troponin T in marathon runners before and after the 2005 Boston marathon. Am J Clin Pathol 2006; 126 (2): 185–9PubMedCrossRefGoogle Scholar
  19. 19.
    Neumayr G, Pfister R, Mitterbauer G, et al. Effect of competitive marathon cycling on plasma N—terminal pro—brain natriuretic peptide and cardiac troponin T in healthy recreational cyclists. Am J Cardiol 2005; 96 (5): 732–5PubMedCrossRefGoogle Scholar
  20. 20.
    Shave RE, Dawson E, Whyte PG, et al. Cardiac troponin T in female athletes during a two day mountain marathon. Scott Med J 2003; 48 (2): 41–2PubMedGoogle Scholar
  21. 21.
    Rosalki SB, Roberts R, Katus HA, et al. Cardiac biomarkers for detection of myocardial infarction: perspectives from past to present. Clin Chem 2004; 50 (11): 2205–13PubMedCrossRefGoogle Scholar
  22. 22.
    Katus HA, Remppis A, Looser S, et al. Enzyme linked immuno assay of cardiac troponin T for the detection of acute myocardial infarction in patients. J Mol Cell Cardiol 1989; 21: 1349–53PubMedCrossRefGoogle Scholar
  23. 23.
    Katus HA, Looser S, Hallermayer K, et al. Development and in vitro characterization of a new immunoassay of cardiac troponin T. Clin Chem 1992; 38 (3): 386–93PubMedGoogle Scholar
  24. 24.
    Wu AH, Valdes Jr R, Apple FS, et al. Cardiac troponin—T immunoassay for diagnosis of acute myocardial infarction. Clin Chem 1994; 40 (6): 900–7PubMedGoogle Scholar
  25. 25.
    Collinson PO, Stubbs PJ, Rosalki SB. Cardiac troponin T in renal disease. Clin Chem 1995; 41 (11): 1671–3PubMedGoogle Scholar
  26. 26.
    Müller-Bardorff M, Hallermayer K, Schroder A, et al. Improved troponin T ELISA specific for cardiac troponin T isoform: assay development and analytical and clinical validation. Clin Chem 1997; 43 (3): 458–66PubMedGoogle Scholar
  27. 27.
    Baum H, Braun S, Gerhardt W, et al. Multicenter evaluation of a second—generation assay for cardiac troponin T. Clin Chem 1997; 43 (10): 1877–84PubMedGoogle Scholar
  28. 28.
    Hallermayer K, Klenner D, Vogel R. Use of recombinant human cardiac troponin T for standardization of third generation troponin T methods. Scand J Clin Lab Invest Suppl 1999; 230: 128–31PubMedGoogle Scholar
  29. 29.
    Apple FS, Murakami MM. Serum 99th percentile reference cutoffs for seven cardiac troponin assays. Clin Chem 2004; 50 (8): 1477–9PubMedCrossRefGoogle Scholar
  30. 30.
    Apple FS, Quist HE, Doyle PJ, et al. Plasma 99th percentile reference limits for cardiac troponin and creatine kinase mb mass for use with European Society of Cardiology/American College of Cardiology Consensus Recommendations. Clin Chem 2003; 49 (8): 1331–6PubMedCrossRefGoogle Scholar
  31. 31.
    Gerhardt W, Nordin G, Herbert AK, et al. Troponin T and I assays show decreased concentrations in heparin plasma compared with serum: lower recoveries in early than in late phases of myocardial injury. Clin Chem 2000; 46 (6): 817–21PubMedGoogle Scholar
  32. 32.
    Stiegler H, Fischer Y, Vazquez-Jimenez JF, et al. Lower cardiac troponin T and I results in heparin—plasma than in serum. Clin Chem 2000; 46 (9): 1338–44PubMedGoogle Scholar
  33. 33.
    Speth M, Seibold K, Katz N. Interaction between heparin and cardiac troponin T and troponin I from patients after coronary bypass surgery. Clin Biochem 2002; 35 (5): 355–62PubMedCrossRefGoogle Scholar
  34. 34.
    Collinson PO, Stubbs PJ, Kessler AC. Multicentre evaluation of the diagnostic value of cardiac troponin T, CK—MB mass, and myoglobin for assessing patients with suspected acute coronary syndromes in routine clinical practice. Heart 2003; 89 (3): 280–6PubMedCrossRefGoogle Scholar
  35. 35.
    Gaze DC, Collinson PO. Clinical effect of recalibration of the roche cardiac troponin T assay. Med Princ Pract 2006; 15 (1): 29–32PubMedCrossRefGoogle Scholar
  36. 36.
    Jernberg T, Venge P, Lindahl B. Comparison between second and third generation troponin T assay in patients with symptoms suggestive of an acute coronary syndrome but without ST segment elevation. Cardiology 2003; 100 (1): 29–35PubMedCrossRefGoogle Scholar
  37. 37.
    Shave R, Dawson E, Whyte G, et al. The cardiospecificity of the third generation cTnT assay after exercise—induced muscle damage. Med Sci Sports Exerc 2002; 34 (4): 651–4PubMedCrossRefGoogle Scholar
  38. 38.
    Roth HJ, Leithauser RM, Doppelmayr H, et al. Cardiospecificity of the 3(rd) generation cardiac troponin T assay during and after a 216 km ultra—endurance marathon run in Death Valley. Clin Res Cardiol 2007; 96 (6): 359–64PubMedCrossRefGoogle Scholar
  39. 39.
    Giannitsis E, Katus HA. 99th Percentile and analytical imprecision of troponin and creatine kinase—mb mass assays: an objective platform for comparison of assay performance. Clin Chem 2003; 49 (8): 1248–9PubMedCrossRefGoogle Scholar
  40. 40.
    Hermsen D, Apple F, Garcia-Beltran L, et al. Results from a multicenter evaluation of the 4th generation Elecsys® troponin t assay. Clin Chem 2006; 52 (12 Suppl.): A130Google Scholar
  41. 41.
    Dolci A, Dominici R, Luraschi P, et al. 10% CV concentration for the fourth generation Roche cardiac troponin T assay derived from internal quality control data. Clin Chem Lab Med 2006; 44 (12): 1495–6PubMedCrossRefGoogle Scholar
  42. 42.
    Almond CS, Shin AY, Fortescue EB, et al. Hyponatremia among runners in the Boston Marathon. N Engl J Med 2005; 352 (15): 1550–6PubMedCrossRefGoogle Scholar
  43. 43.
    Kratz A, Lewandrowski KB, Siegel AJ, et al. Effect of marathon running on hematologic and biochemical laboratory parameters, including cardiac markers. Am J Clin Pathol 2002; 118 (6): 856–63PubMedCrossRefGoogle Scholar
  44. 44.
    Neilan TG, Januzzi JL, Lee-Lewandrowski E, et al. Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston Marathon. Circulation 2006; 114: 2325–33PubMedCrossRefGoogle Scholar
  45. 45.
    Fortescue EB, Shin AY, Greenes DS, et al. Cardiac troponin increases among runners in the Boston Marathon. Ann Emerg Med 2007; 49 (2): 137–43, 143 e1PubMedCrossRefGoogle Scholar
  46. 46.
    Shave R, Dawson E, Whyte G, et al. Altered cardiac function and minimal cardiac damage during prolonged exercise. Med Sci Sports Exerc 2004; 36 (7): 1098–103PubMedCrossRefGoogle Scholar
  47. 47.
    Shave RE, Whyte GP, George K, et al. Prolonged exercise should be considered alongside typical symptoms of acute myocardial infarction when evaluating increases in cardiac troponin T. Heart 2005; 91 (9): 1219–20PubMedCrossRefGoogle Scholar
  48. 48.
    George K, Whyte G, Stephenson C, et al. Postexercise left ventricular function and cTnT in recreational marathon runners. Med Sci Sports Exerc 2004; 36 (10): 1709–15PubMedCrossRefGoogle Scholar
  49. 49.
    Mair J, Wohlfarter T, Koller A, et al. Serum cardiac troponin T after extraordinary endurance exercise. Lancet 1992; 340 (8826): 1048PubMedCrossRefGoogle Scholar
  50. 50.
    Koller A, Mair J, Mayr M, et al. Diagnosis of myocardial injury in marathon runners. Ann N Y Acad Sci 1995; 752: 234–5PubMedCrossRefGoogle Scholar
  51. 51.
    Siegel AJ, Lewandrowski KB, Strauss HW, et al. Normal postrace antimyosin myocardial scintigraphy in asymptomatic marathon runners with elevated serum creatine kinase MB isoenzyme and troponin T levels: evidence against silent myocardial cell necrosis. Cardiology 1995; 86 (6): 451–6PubMedCrossRefGoogle Scholar
  52. 52.
    Bonetti A, Tirelli F, Albertini R, et al. Serum cardiac troponin T after repeated endurance exercise events. Int J Sports Med 1996; 17 (4): 259–62PubMedCrossRefGoogle Scholar
  53. 53.
    Laslett L, Eisenbud E, Lind R. Evidence of myocardial injury during prolonged strenuous exercise. Am J Cardiol 1996; 78 (4): 488–90PubMedCrossRefGoogle Scholar
  54. 54.
    Musha H, Nagashima J, Awaya T, et al. Myocardial injury in a 100−km ultramarathon. Curr Ther Res 1997; 58 (9): 587–93CrossRefGoogle Scholar
  55. 55.
    Mair J, Schobersberger W, Koller A, et al. Risk for exercise induced myocardial injury for athletes performing prolonged strenuous endurance exercise. Am J Cardiol 1997; 80 (4): 543–4PubMedGoogle Scholar
  56. 56.
    Laslett L, Eisenbud E. Lack of detection of myocardial injury during competitive races of 100 miles lasting 18 to 30 hours. Am J Cardiol 1997; 80 (3): 379–80PubMedCrossRefGoogle Scholar
  57. 57.
    Siegel AJ, Sholar M, Yang J, et al. Elevated serum cardiac markers in asymptomatic marathon runners after competition: is the myocardium stunned? Cardiology 1997; 88 (6): 487–91PubMedCrossRefGoogle Scholar
  58. 58.
    Koller A, Mair J, Schobersberger W, et al. Effects of prolonged strenuous endurance exercise on plasma myosin heavy chain fragments and other muscular proteins: cycling vs running. J Sports Med Phys Fitness 1998; 38 (1): 10–7PubMedGoogle Scholar
  59. 59.
    Lucia A, Serratosa L, Saborido A, et al. Short—term effects of marathon running: no evidence of cardiac dysfunction. Med Sci Sports Exerc 1999; 31 (10): 1414–21PubMedCrossRefGoogle Scholar
  60. 60.
    Rifai N, Douglas PS, O’Toole M, et al. Cardiac troponin T and I, echocardiographic [correction of electrocardiographic] wall motion analyses, and ejection fractions in athletes participating in the Hawaii Ironman Triathlon. Am J Cardiol 1999; 83 (7): 1085–9PubMedCrossRefGoogle Scholar
  61. 61.
    Koller A, Summer P, Moser H. Regular exercise and subclinical myocardial injury during prolonged aerobic exercise. JAMA 1999; 282 (19): 1816PubMedCrossRefGoogle Scholar
  62. 62.
    Nagashima J, Musha H, Takada H, et al. Myocardial injury after an ultramarathon: echocardiographic assessment during isometric exercise and serum cardiac troponin T level. Int J Sports Cardiol 1999; 8 (2): 77–82Google Scholar
  63. 63.
    Whyte GP, George K, Sharma S, et al. Cardiac fatigue following prolonged endurance exercise of differing distances. Med Sci Sports Exerc 2000; 32 (6): 1067–72PubMedCrossRefGoogle Scholar
  64. 64.
    Ohba H, Takada H, Musha H, et al. Effects of prolonged strenuous exercise on plasma levels of atrial natriuretic peptide and brain natriuretic peptide in healthy men. Am Heart J 2001; 141 (5): 751–8PubMedCrossRefGoogle Scholar
  65. 65.
    Cleave P, Boswell TD, Speedy DB, et al. Plasma cardiac troponin concentrations after extreme exercise. Clin Chem 2001; 47 (3): 608–10PubMedGoogle Scholar
  66. 66.
    Koller A, Mertelseder S, Moser H. Is exercise—induced myocardial injury self—abating? Med Sci Sports Exerc 2001; 33 (5): 850–1PubMedGoogle Scholar
  67. 67.
    Shave R, Dawson E, Whyte G, et al. Markers of cardiac damage after 2 days of prolonged endurance exercise. J Sport Sci 2002; 20 (1): 58Google Scholar
  68. 68.
    Neumayr G, Pfister R, Mitterbauer G, et al. Effect of the ‘Race Across The Alps’ in elite cyclists on plasma cardiac troponins I and T. Am J Cardiol 2002; 89 (4): 484–6PubMedCrossRefGoogle Scholar
  69. 69.
    Shave RE, Dawson E, Whyte G, et al. Evidence of exercise induced cardiac dysfunction and elevated cTnT in separate cohorts competing in an ultra—endurance mountain marathon race. Int J Sports Med 2002; 23 (7): 489–94PubMedCrossRefGoogle Scholar
  70. 70.
    Apple FS, Quist HE, Otto AP, et al. Release characteristics of cardiac biomarkers and ischemia—modified albumin as measured by the albumin cobalt—binding test after a marathon race. Clin Chem 2002; 48 (7): 1097–100PubMedGoogle Scholar
  71. 71.
    Herrmann M, Scharhag J, Miclea M, et al. Post—race kinetics of cardiac troponin T and I and N—terminal pro—brain natriuretic peptide in marathon runners. Clin Chem 2003; 49 (5): 831–4PubMedCrossRefGoogle Scholar
  72. 72.
    Konig D, Schumacher YO, Heinrich L, et al. Myocardial stress after competitive exercise in professional road cyclists. Med Sci Sports Exerc 2003; 35 (10): 1679–83PubMedCrossRefGoogle Scholar
  73. 73.
    Urhausen A, Scharhag J, Herrmann M, et al. Clinical significance of increased cardiac troponins T and I in participants of ultra—endurance events. Am J Cardiol 2004; 94 (5): 696–8PubMedCrossRefGoogle Scholar
  74. 74.
    Shave RE, Dawson E, Whyte G, et al. Effect of prolonged exercise in a hypoxic environment on cardiac function and cardiac troponin T. Br J Sports Med 2004; 38 (1): 86–8PubMedCrossRefGoogle Scholar
  75. 75.
    Shave R, Dawson E, Whyte G, et al. The impact of prolonged exercise in a cold environment upon cardiac function. Med Sci Sports Exerc 2004; 36 (9): 1522–7PubMedCrossRefGoogle Scholar
  76. 76.
    Dawson EA, Shave R, George K, et al. Cardiac drift during prolonged exercise with echocardiographic evidence of reduced diastolic function of the heart. Eur J Appl Physiol 2005; 94 (3): 305–9PubMedCrossRefGoogle Scholar
  77. 77.
    Whyte G, George K, Shave R, et al. Impact of marathon running on cardiac structure and function in recreational runners. Clin Sci (Lond) 2005; 108 (1): 73–80CrossRefGoogle Scholar
  78. 78.
    George K, Oxborough D, Forster J, et al. Mitral annular myocardial velocity assessment of segmental left ventricular diastolic function after prolonged exercise in humans. J Physiol 2005; 569 (Pt 1): 305–13PubMedCrossRefGoogle Scholar
  79. 79.
    Tulloh L, Robinson D, Patel A, et al. Raised troponin T and echocardiographic abnormalities after prolonged strenuous exercise: the Australian Ironman Triathlon. Br J Sports Med 2006; 40 (7): 605–9PubMedCrossRefGoogle Scholar
  80. 80.
    Middleton N, Shave R, George K, et al. Novel application of flow propagation velocity and ischaemia—modified albumin in analysis of postexercise cardiac function in man. Exp Physiol 2006; 91 (3): 511–9PubMedCrossRefGoogle Scholar
  81. 81.
    Tian Y, Nie J, Tong TK, et al. Changes in serum cardiac troponins following a 21−km run in junior male runners. J Sports Med Phys Fitness 2006; 46 (3): 481–8PubMedGoogle Scholar
  82. 82.
    Scharhag J, Urhausen A, Schneider G, et al. Reproducibility and clinical significance of exercise—induced increases in cardiac troponins and N—terminal pro brain natriuretic peptide in endurance athletes. Eur J Cardiovasc Prev Rehabil 2006; 13 (3): 388–97PubMedCrossRefGoogle Scholar
  83. 83.
    Middleton N, Shave R, George K, et al. Left ventricular function immediately following prolonged exercise: a meta—analysis. Med Sci Sports Exerc 2006; 38 (4): 681–7PubMedCrossRefGoogle Scholar
  84. 84.
    Neilan TG, Yoerger DM, Douglas PS, et al. Persistent and reversible cardiac dysfunction among amateur marathon runners. Eur Heart J 2006; 27 (9): 1079–84PubMedCrossRefGoogle Scholar
  85. 85.
    Koller A. Exercise—induced increases in cardiac troponins and prothrombotic markers. Med Sci Sports Exerc 2003; 35 (3): 444–8PubMedCrossRefGoogle Scholar
  86. 86.
    Wu AH, Ford L. Release of cardiac troponin in acute coronary syndromes: ischemia or necrosis? Clin Chim Acta 1999; 284 (2): 161–74PubMedCrossRefGoogle Scholar
  87. 87.
    Venditti P, Di Meo S. Antioxidants, tissue damage, and endurance in trained and untrained young male rats. Arch Biochem Biophys 1996; 331 (1): 63–8PubMedCrossRefGoogle Scholar
  88. 88.
    Ogawa S, Gerlach H, Esposito C, et al. Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium: increased monolayer permeability and induction of procoagulant properties. J Clin Invest 1990; 85 (4): 1090–8PubMedCrossRefGoogle Scholar
  89. 89.
    Chen Y, Serfass RC, Mackey-Bojack SM, et al. Cardiac troponin T alterations in myocardium and serum of rats after stressful, prolonged intense exercise. J Appl Physiol 2000; 88 (5): 1749–55PubMedGoogle Scholar
  90. 90.
    Katus HA, Remppis A, Scheffold T, et al. Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction. Am J Cardiol 1991; 67: 1360–7PubMedCrossRefGoogle Scholar
  91. 91.
    Mair J, Thome-Kromer B, Wagner I, et al. Concentration time courses of troponin and myosin subunits after acute myocardial infarction. Coron Artery Dis 1994; 5 (10): 865–72PubMedGoogle Scholar
  92. 92.
    Leal-Cerro A, Garcia-Luna PP, Astorga R, et al. Serum leptin levels in male marathon athletes before and after the marathon run. J Clin Endocrinol Metab 1998; 83 (7): 2376–9PubMedCrossRefGoogle Scholar
  93. 93.
    Pastene J, Germain M, Allevard AM, et al. Water balance during and after marathon running. Eur J Appl Physiol Occup Physiol 1996; 73 (1-2): 49–55PubMedCrossRefGoogle Scholar
  94. 94.
    Denvir MA, Galloway PJ, Meighan AS, et al. Changes in skeletal and cardiac muscle enzymes during the Scottish Coast to Coast Triathlon. Scott Med J 1999; 44 (2): 49–51PubMedGoogle Scholar
  95. 95.
    Madsen LH, Christensen G, Lund T, et al. Time course of degradation of cardiac troponin I in patients with acute ST—elevation myocardial infarction: the ASSENT−2 Troponin Substudy. Circ Res 2006; 99 (10): 1141–7PubMedCrossRefGoogle Scholar
  96. 96.
    Labugger R, Organ L, Collier C, et al. Extensive troponin I and T modification detected in serum from patients with acute myocardial infarction. Circulation 2000; 102 (11): 1221–6PubMedCrossRefGoogle Scholar
  97. 97.
    Narolska NA, Piroddi N, Belus A, et al. Impaired diastolic function after exchange of endogenous troponin I with C—terminal truncated troponin I in human cardiac muscle. Circ Res 2006; 99 (9): 1012–20PubMedCrossRefGoogle Scholar
  98. 98.
    Rowe WJ. Extraordinary unremitting endurance exercise and permanent injury to normal heart. Lancet 1992; 340 (8821): 712–4PubMedCrossRefGoogle Scholar
  99. 99.
    Welsh RC, Warburton DE, Humen DP, et al. Prolonged strenuous exercise alters the cardiovascular response to dobutamine stimulation in male athletes. J Physiol 2005; 569 (Pt 1): 325–30PubMedCrossRefGoogle Scholar
  100. 100.
    Collinson PO, Gaze DC, Morris F, et al. Comparison of biomarker strategies for rapid rule out of myocardial infarction in the emergency department using ACC/ESC diagnostic criteria. Ann Clin Biochem 2006; 43 (Pt 4): 273–80PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2008

Authors and Affiliations

  • Etienne C.H.J. Michielsen
    • 1
  • Will K.W.H. Wodzig
    • 1
  • Marja P. Van Dieijen-Visser
    • 1
  1. 1.Department of Clinical ChemistryUniversity Hospital Maastrichtthe Netherlands

Personalised recommendations