Advertisement

Sports Medicine

, Volume 13, Issue 1, pp 1–7 | Cite as

Effects of Exposure to Low Oxygen Pressure on the Central Nervous System

  • Guido Cavaletti
  • Giovanni Tredici
Leading Article

Keywords

High Altitude Acute Mountain Sickness Central Nervous System Function Central Nervous System Damage Chronic Mountain Sickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbrecht PH, Littel JK. Plasma erythropoietin in men and mice during acclimatization to different altitudes. Journal of Applied Physiology 32: 54–58, 1972PubMedGoogle Scholar
  2. Adams RD, Victor M. Principles of neurology, pp. 789–790, McGraw-Hill, New York, 1985Google Scholar
  3. Brierly JB. Cerebral hypoxia. In Blackwood JB & Corsellis JAN (Eds) Greensfield’s neuropathology, pp. 43–85, Edward Arnold, London, 1976Google Scholar
  4. Cavaletti G, Garavaglia P, Arrigoni G, Tredici G. Persistent memory impairment after high altitude climbing. International Journal of Sports Medicine 11: 176–178, 1990PubMedCrossRefGoogle Scholar
  5. Cavaletti G, Moroni R, Garavaglia P, Tredici G. Brain damage after high altitude climbs without supplementary oxygen. Lancet 1: 101, 1987PubMedCrossRefGoogle Scholar
  6. Clark CF, Heaton RK, Wiens AN. Neuropsychological functioning after prolonged high altitude exposure in mountaineering. Aviation, Space and Environmental Medicine 54: 202–207, 1983Google Scholar
  7. Dunlap K. Psychological research in aviation, Science 49: 94, 1919PubMedCrossRefGoogle Scholar
  8. Faura J, Ramos J, Reynafanje C, English E, Finne P, et al. Effect of altitude on erythropoiesis. Blood 33: 668, 1969PubMedGoogle Scholar
  9. Finnegan TP, Abraham P, Doherty TB. Ambulatory monitoring of the electroencephalogram in high altitude mountains. Electroencephalography and Clinical Neurophysiology 60: 220–224, 1985PubMedCrossRefGoogle Scholar
  10. Forster HV, Soto RJ, Dempsey JA, Hosko MJ. Effect of sojourn at 4300m altitude on electroencephalogram and visual evoked responses. Journal of Applied Physiology 39: 109–113, 1975PubMedGoogle Scholar
  11. Guyton AR. Textbook of medical physiology, p. 500, Saunders, Philadelphia, 1956Google Scholar
  12. Huang SY, Ning XH, Zhou N, Gu ZZ, Hu ST. Ventilatory function in adaptation to high altitude: studies in Tibet. In West JB & Lahiri S (Eds) High altitude and man, pp. 173–177, American Physiological Society, Bethesda, 1984Google Scholar
  13. Johnson TS, Rock PB. Acute mountain sickness, New England Journal of Medicine 319: 841–845, 1988PubMedCrossRefGoogle Scholar
  14. Kassirer MR, Von Pelejo Such R. Persistent high-altitude headache and ageusia without anosmia. Archives of Neurology 46: 340–341, 1989PubMedCrossRefGoogle Scholar
  15. Kogure K, Scheinberg P, Fujishima M, Busto R, Reinmuth OM. Effects of hypoxia on cerebral autoregulation. American Journal of Physiology 219: 1393–1396, 1970PubMedGoogle Scholar
  16. McFarland RA. Psycho-physiological studies at high altitudes in the Andes. Journal of Comparative Physiology 23: 191–225, 1937Google Scholar
  17. Milnor WR. Circulation in special districts. In Mountcastle VB (Ed.) Medical physiology, pp. 221–227, Mosby, Saint Louis, 1968Google Scholar
  18. Pigman EC. Acute mountain sickness effects and implications for exercise at intermediate altitudes. Sports Medicine 12: 71–79, 1991PubMedCrossRefGoogle Scholar
  19. Pugh LGC, Ward MP. Some effects of high altitude on man. Lancet 2: 115–121, 1956Google Scholar
  20. Regard M, Delz O, Brugger P, Landis T. Persistent cognitive impairment in climbers after repeated exposure to extreme altitude. Neurology 39: 210–213, 1989PubMedCrossRefGoogle Scholar
  21. Ryn Z. Psychopathology in alpinism. Acta Medica Polska 12: 453–467, 1971Google Scholar
  22. Selvamurthy W, Saxene RK, Krishnamurthy N, Suri ML, Malhotra MS. Changes in EEG pattern during acclimatization to high altitude (3500m) in man. Aviation, Space and Environmental Medicine 49: 968–971, 1976Google Scholar
  23. Sharma VM, Malhotra MS, Baskaran AS. Variations in psychomotor efficiency during prolonged stay at high altitude. Ergonomics 18: 511–516, 1975PubMedCrossRefGoogle Scholar
  24. Sharma VM, Malhotra MS. Ethnic variation in psychological performance under altitude stress. Aviation, Space and Environmental Medicine 47: 248:251, 1976Google Scholar
  25. Sokoloff L. Metabolism of the central nervous system in vivo. In Field J et al. (Eds) Handbook of physiology. Section 1: Neurophysiology, Vol. 3, pp. 1943–1964, Physiologic Society, Washington, 1960Google Scholar
  26. Townes BD, Horbein TF, Schoene RB, Sarnquist FH, Grant I. Human cerebral function at extreme altitude. In West JB & Lahiri S (Eds) High altitude and man, pp. 32–36, American Physiological Society, Bethesda, 1984Google Scholar
  27. Wagner PD. Central and peripheral aspects of oxygen transport and adaptations with exercise. Sports Medicine 11: 133, 1991PubMedCrossRefGoogle Scholar
  28. West JB. Do climbs to extreme altitude cause brain damage? Lancet 2: 387–388, 1986PubMedCrossRefGoogle Scholar
  29. West JB, Lahiri S, Maret KH, Peter Jr, RM, Pizzo C. Barometric pressures at extreme altitudes on Mt Everest: physiological significance. Journal of Applied Physiology 54: 1188–1194, 1983PubMedGoogle Scholar
  30. Winslow RM. Red cell function at extreme altitude. In West JB & Lahiri S (Eds) High altitude and man, pp. 59–71, American Physiological Society, Bethesda, 1984Google Scholar

Copyright information

© Adis International Limited 1992

Authors and Affiliations

  • Guido Cavaletti
    • 1
    • 2
  • Giovanni Tredici
    • 1
    • 2
  1. 1.Clinica Neurologica V and Istituto di Anatomia UmanaUniversità degli Studi di MilanoMonzaItaly
  2. 2.Istituto di Anatomia UmanaUniversità di MilanoMilanoItaly

Personalised recommendations