Sports Medicine

, Volume 6, Issue 4, pp 238–245 | Cite as

Effects of Exercise on Parameters of Blood Coagulation, Platelet Function and the Prostaglandin System

  • Helmut Sinzinger
  • Irene Virgolini
Research Review


Acute exercise causes a temporary short lasting activation of blood coagulation, platelet function and the prostaglandin system, the extent of these alterations being significantly less pronounced in well trained athletes than in untrained persons. The reversal is also much faster in athletes, thus providing an underestimated indicator of the individual training status. Changes in platelet function and some plasma parameters of coagulation exhibit a significant correlation to base excess, pH and lactate. Immediately after acute exercise there is, therefore, an increased risk for acute thrombosis if an additional risk such as doping and/or smoking and/or contraceptive pill use is present. This risk is again higher in untrained than in well exercised persons. Patients with clinically manifest atherosclerosis (predominantly with risk factors) performing only occasionally anaerobic exercise are more likely to be at special risk. The overall response of the coagulation system, platelet function and prostaglandin system is significantly impaired. In contrast, regular exercise causes decreased activity of platelets and the coagulation system resulting in an improvement in haemostatic balance. As well as the psychological factors beneficially influencing the subjective feeling, it seems rather likely that the abovementioned mechanisms may be one factor underlying the decreased death rate from cardiovascular disease in persons performing regular physical activity.


Factor VIII Platelet Function Maximal Exercise Fibrinolytic Activity Apply Physiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bärtsch P, Schmidt EK, Staub PW. Fibrinopeptide A after strenuous physical exercise at high altitude. Journal of Applied Physiology 53: 40–43, 1982PubMedGoogle Scholar
  2. Belcher TE, Westby JC, Thompson MJ. Synthesis of procoagulant antihaemophilic factor in vitro. Lancet 1: 1333–1336, 1978CrossRefGoogle Scholar
  3. Bennett NB, Ogston CM, Ogston D. The effect of prolonged exercise on the components of the blood fibrinolytic enzyme system. Journal of Physiology 198: 479–485, 1968PubMedGoogle Scholar
  4. Brakman PA. A standardized fibrin plate method and a fibrinolytic assay of plasminogen. In Mooish N (Ed.) Fibrinolysis, pp. 1–124, Scheltma and Holkema, Amsterdam, 1967Google Scholar
  5. Brunner D. Active exercise for coronary patients. Rehabilitation Record 9: 29–43, 1968PubMedGoogle Scholar
  6. Burghuber O, Silberbauer K, Haber P, Sinzinger H, Wolf C. Thrombozytenfunktion bei verschiedenen Formen körperlicher Belastung. In Sport- und Leistungsmedizin/Köngreß-band, Deutscher Sportärztekongreß, pp. 117–120, 1980Google Scholar
  7. Burghuber O, Sinzinger H, Silberbauer K, Wolf C, Haber P. Decreased prostacyclin sensitivity of human platelets after jogging and squash. Prostaglandins and Medicine 6: 27–35, 1981CrossRefGoogle Scholar
  8. Cash JD, Allen AGE. The fibrinolytic response to moderate exercise and intravenous adrenaline in the same subjects. British Journal of Haematology 13: 376–383, 1967PubMedCrossRefGoogle Scholar
  9. Cohen RJ, Cohen IS, Epstein SE, Dennis LH. Alterations of fibrinolysis and blood coagulation induced by exercise, and the role of beta-adrenergic receptor-stimulation. Lancet 2: 1264–1268, 1968PubMedCrossRefGoogle Scholar
  10. Collen D, Semeraro N, Tricot JP, Vermylen J. Turnover of fibrinogen, plasminogen, and prothrombin during exercise in man. Journal of Applied Physiology 42: 865–873, 1977PubMedGoogle Scholar
  11. Davis GL, Abildgaard CF, Bernauer EM, Britton M. Fibrinolytic and haemostatic changes during and after maximal exercise in males. Journal of Applied Physiology 40: 287–292, 1976PubMedGoogle Scholar
  12. Dawson A, Ogston D. Exercise-induced thrombocytosis. Acta Haematologia 42: 241–246, 1969CrossRefGoogle Scholar
  13. Diehm C, Zimmermann R, Möri H, Harenberg A, Wirth M, et al. Der Einfluß eines Ausdauertrainings auf die Hämostase und fibrinolytische Aktivität bei Patienten mit ischämischer Herzkrankheit. Sport- und Leistungsmedizin/Kongreßband, Deutscher Sportärztekongrep, pp. 341–348, 1980Google Scholar
  14. Egeberg O. The effects of exercise on blood clotting system. Scandinavian Journal of Clinical Laboratory Investigation 15: 8–13, 1963CrossRefGoogle Scholar
  15. Ferguson EW, Barr CF, Berrier LL. Fibrinogenolysis and fibrinolysis with strenuous exercise. Journal of Applied Physiology 47: 1157–1161, 1979PubMedGoogle Scholar
  16. Fox SM, Haskel K. Physical activity and the prevention of coronary heart disease. Bulletin of New York Academic Medicine 44: 950–959, 1968Google Scholar
  17. Frishman WH, Christodoulou J, Weksler B, Smithen C, Killip T, Scheidt S. Abrupt propranolol withdrawal in angina pectoris: effects of platelet aggregation and exercise tolerance. American Heart Journal 95: 1968–1971, 1978CrossRefGoogle Scholar
  18. Hawkey CM, Britton BJ, Wood WG, Peele M, Irving MH. Changes in blood catecholamine levels and blood coagulation and fibrinolytic activity in response to graded exercise in man. British Journal of Haematology 28: 377–384, 1975CrossRefGoogle Scholar
  19. Heimburger N. Die Interaktion von Plasma-Proteinen. Die Gelben Hefte 22: 97, 1982Google Scholar
  20. Hoak SC, Spector AA, Fry GL, Warner EO. Effect of free fatty acids on ADP-induced platelet aggregation. Nature 228: 1330–1333, 1970PubMedCrossRefGoogle Scholar
  21. Hyers TM, Martin BJ, Pratt DS, Dreisin RB, Franks JJ. Enhanced thrombin and plasmin activity with exercise in man. Journal of Applied Physiology 48: 821–825, 1980PubMedGoogle Scholar
  22. Iatridis PG, Iatridis SG, Ragatz BH. The in vivo increase of factor Exercise, Coagulation and Prostaglandins VIII activity by 2,3-diphosphoglycerate. Thrombosis Research 9: 533–540, 1976PubMedCrossRefGoogle Scholar
  23. Jaffe EA, Hoyer LW, Nachman RL. Synthesis of antihemophilic factor antigen by cultured human endothelial cells. Journal of Clinical Investigation 62: 2757–2764, 1973CrossRefGoogle Scholar
  24. Khanna PK, Seth NN, Balasubramanian V, Hoon RS. Effect of submaximal exercise in fibrinolytic activity in ischaemic heart disease. British Heart Journal 37: 1273–1281, 1975PubMedCrossRefGoogle Scholar
  25. Korsan-Bengtsen K, Wilhelmsen L, Tibblin G. Blood coagulation and fibrinolysis in relation to degree of physical activity during work and leisure time. Acta Medica Scandinavica 193: 73–77, 1973PubMedCrossRefGoogle Scholar
  26. Kwann HC. Possible effects of risk factors in fibrinolysis. In Chandler (Ed.) The thrombotic process in atherogenesis, pp. 295–300, Plenum, New York, 1978CrossRefGoogle Scholar
  27. Lehmann M, Hasler K, Bergdolt E, Keul J. Alpha-2-adrenoreceptor density on intact platelets and adrenalin induced platelet aggregation in endurance- and nonendurance-trained subjects. International Journal of Sports Medicine 7: 172–176, 1986PubMedCrossRefGoogle Scholar
  28. Mandalaki T, Dessypris A, Louzou C, Poulou CP, Dimitriadou C. Marathon run III: effects on coagulation, fibrinolysis, platelet coagulation and serum Cortisol levels. Thrombosis and Haemostasis 43: 49–51, 1980PubMedGoogle Scholar
  29. Mehta J, Mehta P. Comparison of platelet function during exercise in normal subjects and coronary artery disease patients: potential role of platelet activation in myocardial ischemia. American Heart Journal 103: 49–53, 1980CrossRefGoogle Scholar
  30. Menon IS, Madras MB, Burke F, Dewar HA. Effect of strenuous and graded exercise on fibrinolytic activity. Lancet 1: 700–703, 1967PubMedCrossRefGoogle Scholar
  31. Moxley RT, Brakman P, Astrup T. Resting levels of fibrinolysis in blood in inactive and exercising men. Journal of Applied Physiology 28: 549–552, 1970PubMedGoogle Scholar
  32. Müller KM, Scheele K. Thrombozytenmorphologie und körperliche Belastung. Klinische Wochenschrift 55: 323–329, 1977PubMedCrossRefGoogle Scholar
  33. Noakes H, Opie LH, Rose AG, Kleynhans PHT. Autopsy proved coronary atherosclerosis in marathon runners. New England Journal of Medicine 301: 86–89, 1979PubMedCrossRefGoogle Scholar
  34. Paffenbarger S, Hale WE. Work activity and coronary heart mortality. New England Journal of Medicine 292: 545–551, 1975PubMedCrossRefGoogle Scholar
  35. Prentice CRM, Hassanein AA, McNicol GP, Douglas AS. Studies on blood coagulation, fibrinolysis and platelet function following exercise in normal and splenectomized people. British Journal of Haematology 23: 541–552, 1972PubMedCrossRefGoogle Scholar
  36. Röcker L, Stiege-Quast B, Schwandt HJ, Quast J. Der Einfluß korperlicher Aktivität auf das plasmatische Gerinnungssystem. In Franz and Mellerowicz (Eds) Training und Sport zur Prävention und Rehabilitation in der technisierten Umwelt, Springer-Verlag, Berlin, 1985Google Scholar
  37. Röcker L, Dygras WK, Heyduck B. Blood platelet activation and increase in thrombin activity following a marathon race. European Journal of Applied Physiology 55: 374–380, 1986CrossRefGoogle Scholar
  38. Sarajas HSS. Reaction patterns of blood platelets in exercise. In Third Paevo Nurmi Symposium Helsinki, Advances in Cardiology 18, pp. 176–181, Karger Verlag, Basel, 1976Google Scholar
  39. Schernthaner G, Mühlhauser I, Silberbauer K, Templ H, Sinzinger H. In vivo platelet function and plasma catecholamines in metabolically controlled juvenile diabetics during bicycle exercise. Vasa 8: 79–87, 1980Google Scholar
  40. Silberbauer K, Sinzinger H, Haber P, Ferlitsch A, Kummer F. Standardised ergometer exercise in trained rowers: effect on reversible platelet microaggregates and platelet aggregation. Vasa 10: 4–12, 1981PubMedGoogle Scholar
  41. Sinzinger H, Fitscha P. Jogging causes a significant increase in platelet sensitivity to prostacyclin. International Journal of Sports Medicine 7: 338–341, 1986PubMedCrossRefGoogle Scholar
  42. Stibbe J, van der Plas P. Increase of a plasma factor involved in ristocetin-induced platelet aggregation after exercise. Haemostasis 3: 137–141, 1974PubMedGoogle Scholar
  43. Stormorken H, Erikson J. Plasma antithrombin III and factor VIII antigen in relation to angiographic findings, angina and blood groups in middle-aged men. Thrombosis and Haemostasis 38: 874–880, 1977PubMedGoogle Scholar
  44. Wacholder K, Parchwitz E, Egli H, Kesseler K. Der Einfluß körperlicher Arbeit auf die Zahl der Thrombozyten und auf deren Haftneigung. Acta Haematologica 18: 59–67, 1957CrossRefGoogle Scholar
  45. Wheeler E, Davis GL, Gillespie WJ, Bern MM. Physiological changes in hemostasis associated with acute exercise. Journal of Applied Physiology 60: 986–990, 1986PubMedGoogle Scholar
  46. Winkelmann G, Meyer G, Roskamm H. Der Einfluß körperlicher Belastung auf Blutgerinnung und Fibrinolyse bei untrainierten Personen und Hochleistungssportlern. Klinische Wochenschrift 46: 712–716, 1968CrossRefGoogle Scholar

Copyright information

© ADIS Press Limited 1988

Authors and Affiliations

  • Helmut Sinzinger
    • 1
    • 2
  • Irene Virgolini
    • 1
    • 2
  1. 1.Atherosclerosis Research Group (ASF)ViennaAustria
  2. 2.Atherosclerosis and Thrombosis Research Group (ATK) of the Austrian Academy of SciencesViennaAustria

Personalised recommendations