, Volume 67, Issue 17, pp 2511–2537 | Cite as

Crohn’s Disease

A Review of Current Treatment with a Focus on Biologics
  • Julián Panés
  • Fernando Gomollón
  • Carlos Taxonera
  • Joaquin Hinojosa
  • Juan Clofent
  • Vilar Nos
Review Article


Crohn’s disease is a debilitating and expensive disease that is growing in incidence in both developing and developed countries. While conventional therapies, such as corticosteroids and immunosuppressants, continue to play a vital role in treating this condition, it is evident that many affected individuals do not respond to therapy or develop intolerable adverse effects. The addition of modern biological therapies to the Crohn’s disease armamentarium is providing a change in expectations for disease outcome. Infliximab and adalimumab are currently the only biological agents approved for induction and maintenance treatment in adults (infliximab and adalimumab) and children (infliximab) with Crohn’s disease. Furthermore, infliximab has a beneficial effect on perianal fistulas. Other tumour necrosis factor (TNF)-α inhibitors, such as certolizumab pegol, also demonstrate promising results in adults with moderate to severe active disease. In addition, adalimumab and certolizumab pegol have shown clinical efficacy in patients who are intolerant to or lose response to infliximab, suggesting that switching between agents may allow response to be maintained over time. The primary safety concerns with TNFα inhibitors include increased risk of serious infection (including reactivation of tuberculosis), malignancy (particularly lymphoma) and demyelinating disease. Other agents in development include recombinant human anti-inflammatory cytokines, agents that target pro-inflammatory cytokines and granulocyte-macrophage colony-stimulating factors. Further prospective studies will provide interesting insight into different mechanisms by which factors involved in the pathophysiology of Crohn’s disease can be modulated.


Infliximab Etanercept Adalimumab Natalizumab Certolizumab Pegol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Podolsky DK. Inflammatory bowel disease. N Engl J Med 2002; 347(6): 417–29PubMedCrossRefGoogle Scholar
  2. 2.
    Stange EF, Travis SP, Vermeire S, et al. European evidence based consensus on the diagnosis and management of Crohn’s disease: definitions and diagnosis. Gut 2006; 55 Suppl. 1: i1-15Google Scholar
  3. 3.
    Knutson D, Greenberg G, Cronau H. Management of Crohn’s disease: a practical approach. Am Fam Physician 2003; 68(4): 707–14PubMedGoogle Scholar
  4. 4.
    Schwartz DA, Loftus Jr EV, Tremaine WJ, et al. The natural history of fistulizing Crohn’s disease in Olmsted County, Minnesota. Gastroenterology 2002; 122(4): 875–80PubMedCrossRefGoogle Scholar
  5. 5.
    Loftus EV. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence and environmental influences. Gastroenterology 2004; 126(6): 1504–17PubMedCrossRefGoogle Scholar
  6. 6.
    Shivananda S, Lennard-Jones J, Logan R, et al. Incidence of inflammatory bowel disease across Europe: is there a difference between north and south? Results of the European Collaborative Study on Inflammatory Bowel Disease (EC-IBD). Gut 1996; 39(5): 690–7PubMedCrossRefGoogle Scholar
  7. 7.
    Vind I, Riis L, Jess T, et al. Increasing incidences of inflammatory bowel disease and decreasing surgery rates in Copenhagen city and county, 2003–2005: a population-based study from the Danish Crohn colitis database. Am J Gastroenterol 2006; 101(6): 1274–82PubMedCrossRefGoogle Scholar
  8. 8.
    Jacobsen BA, Fallingborg J, Rasmussen HH, et al. Increase in incidence and prevalence of inflammatory bowel disease in northern Denmark: a population-based study, 1978–2002. Eur J Gastroenterol Hepatol 2006; 18(6): 601–6PubMedCrossRefGoogle Scholar
  9. 9.
    Loftus Jr EV, Schoenfeld P, Sandborn WJ. The epidemiology and natural history of Crohn’s disease in population-based patient cohorts from North America: a systematic review. Aliment Pharmacol Ther 2002; 16(1): 51–60PubMedCrossRefGoogle Scholar
  10. 10.
    Loftus Jr EV, Sandborn WJ. Epidemiology of inflammatory bowel disease. Gastroenterol Clin North Am 2002; 31(1): 1–20PubMedCrossRefGoogle Scholar
  11. 11.
    Hait E, Bousvaros A, Grand R. Pediatric inflammatory bowel disease: what children can teach adults. Inflamm Bowel Dis 2005; 11(6): 519–27PubMedCrossRefGoogle Scholar
  12. 12.
    Bousvaros A, Sylvester F, Kugathasan S, et al. Challenges in pediatric inflammatory bowel disease. Inflamm Bowel Dis 2006; 12(9): 885–913PubMedCrossRefGoogle Scholar
  13. 13.
    Ardizzone S, Bianchi Porro G. Biologic therapy for inflammatory bowel disease. Drugs 2005; 65(16): 2253–86PubMedCrossRefGoogle Scholar
  14. 14.
    Braegger CP, Nicholls S, Murch SH, et al. Tumour necrosis factor alpha in stool as a marker of intestinal inflammation. Lancet 1992; 339(8785): 89–91PubMedCrossRefGoogle Scholar
  15. 15.
    Schreiber S, Nikolaus S, Hampe J, et al. Tumour necrosis factor alpha and interleukin 1beta in relapse of Crohn’s disease. Lancet 1999; 353(9151): 459–61PubMedCrossRefGoogle Scholar
  16. 16.
    Garcia-Rodriguez LA, Ruigomez A, Panes J. Acute gastroenteritis is followed by an increased risk of inflammatory bowel disease. Gastroenterology 2006; 130(6): 1588–94PubMedCrossRefGoogle Scholar
  17. 17.
    Vermeire S, Rutgeerts P. Current status of genetics research in inflammatory bowel disease. Genes Immun 2005; 6(8): 637–45PubMedGoogle Scholar
  18. 18.
    Abreu MT. Nod2 in normal and abnormal intestinal immune function. Gastroenterology 2005; 129(4): 1302–4PubMedCrossRefGoogle Scholar
  19. 19.
    Cho JH. Significant role of genetics in IBD: the NOD2 gene. Rev Gastroenterol Disord 2003; 3 Suppl. 1: S18–22PubMedGoogle Scholar
  20. 20.
    Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411(6837): 603–6PubMedCrossRefGoogle Scholar
  21. 21.
    Aldhous MC, Nimmo ER, Satsangi J. NOD2/CARD15 and the Paneth cell: another piece in the genetic jigsaw of inflammatory bowel disease. Gut 2003; 52(11): 1533–5PubMedCrossRefGoogle Scholar
  22. 22.
    Rosenstiel P, Huse K, Till A, et al. A short isoform of NOD2/ CARD15, NOD2-S, is an endogenous inhibitor of NOD2/ receptor-interacting protein kinase 2-induced signaling pathways. Proc Natl Acad Sci U S A 2006; 103(9): 3280–5PubMedCrossRefGoogle Scholar
  23. 23.
    Behr MA, Schurr E. Mycobacteria in Crohn’s disease: a persistent hypothesis. Inflamm Bowel Dis 2006; 12(10): 1000–4PubMedCrossRefGoogle Scholar
  24. 24.
    Economou M, Trikalinos TA, Loizou KT, et al. Differential effects of NOD2 variants on Crohn’s disease risk and pheno-type in diverse populations: a metaanalysis. Am J Gastroenterol 2004; 99(12): 2393–404PubMedCrossRefGoogle Scholar
  25. 25.
    Rioux JD, Daly MJ, Silverberg MS, et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 2001; 29(2): 223–8PubMedCrossRefGoogle Scholar
  26. 26.
    Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314(5804): 1461–3PubMedCrossRefGoogle Scholar
  27. 27.
    Brant SR, Picco MF, Achkar JP, et al. Defining complex contributions of NOD2/CARD15 gene mutations, age at onset, and tobacco use on Crohn’s disease phenotypes. Inflamm Bowel Dis 2003; 9(5): 281–9PubMedCrossRefGoogle Scholar
  28. 28.
    Alvarez-Lobos M, Arostegui JI, Sans M, et al. Crohn’s disease patients carrying Nod2/CARD15 gene variants have an increased and early need for first surgery due to stricturing disease and higher rate of surgical recurrence. Ann Surg 2005; 242(5): 693–700PubMedCrossRefGoogle Scholar
  29. 29.
    Blanchard JF, Bernstein CN, Wajda A, et al. Small-area variations and sociodemographic correlates for the incidence of Crohn’s disease and ulcerative colitis. Am J Epidemiol 2001; 154(4): 328–35PubMedCrossRefGoogle Scholar
  30. 30.
    Armitage EL, Aldhous MC, Anderson N, et al. Incidence of juvenile-onset Crohn’s disease in Scotland: association with northern latitude and affluence. Gastroenterology 2004; 127(4): 1051–7PubMedCrossRefGoogle Scholar
  31. 31.
    Cosnes J, Beaugerie L, Carbonnel F, et al. Smoking cessation and the course of Crohn’s disease: an intervention study. Gastroenterology 2001; 120(5): 1093–9PubMedCrossRefGoogle Scholar
  32. 32.
    Lindberg E, Tysk C, Andersson K, et al. Smoking and inflammatory bowel disease: a case control study. Gut 1988; 29(3): 352–7PubMedCrossRefGoogle Scholar
  33. 33.
    Calkins BM. A meta-analysis of the role of smoking in inflammatory bowel disease. Dig Dis Sci 1989; 34(12): 1841–54PubMedCrossRefGoogle Scholar
  34. 34.
    Freeman HJ. Natural history and clinical behavior of Crohn’s disease extending beyond two decades. J Clin Gastroenterol 2003; 37(3): 216–9PubMedCrossRefGoogle Scholar
  35. 35.
    Silverberg MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol 2005; 19 Suppl. A: 5–36PubMedGoogle Scholar
  36. 36.
    Hinojosa J, Nos P, Ramirez JJ, et al. Evolutive pattern in Crohn’s disease: a simplified index using clinical parameters predicts obstructive behaviour. Eur J Gastroenterol Hepatol 2001; 13(3): 245–9PubMedCrossRefGoogle Scholar
  37. 37.
    Bell SJ, Williams AB, Wiesel P, et al. The clinical course of fistulating Crohn’s disease. Aliment Pharmacol Ther 2003; 17(9): 1145–51PubMedCrossRefGoogle Scholar
  38. 38.
    Carter MJ, Lobo AJ, Travis SP. Guidelines for the management of inflammatory bowel disease in adults. Gut 2004; 53 Suppl. 5: V1–16PubMedCrossRefGoogle Scholar
  39. 39.
    Bernstein CN, Nabalamba A. Hospitalization, surgery, and re-admission rates of IBD in Canada: a population-based study. Am J Gastroenterol 2006; 101(1): 110–8PubMedCrossRefGoogle Scholar
  40. 40.
    Jess T, Loftus Jr EV, Harmsen WS, et al. Survival and cause specific mortality in patients with inflammatory bowel disease: a long term outcome study in Olmsted County, Minnesota, 1940–2004. Gut 2006; 55(9): 1248–54PubMedCrossRefGoogle Scholar
  41. 41.
    Wolters FL, Russel MG, Sijbrandij J, et al. The European Collaborative Study Group on Inflammatory Bowel Disease. Disease outcome of inflammatory bowel disease patients: general outline of a Europe-wide population-based 10-year clinical follow-up study. Scand J Gastroenterol Suppl 2006 May; (243): 46–54Google Scholar
  42. 42.
    Juan J, Estiarte R, Colome E, et al. Burden of illness of Crohn’s disease in Spain. Dig Liver Dis 2003; 35(12): 853–61PubMedCrossRefGoogle Scholar
  43. 43.
    Feagan BG, Vreeland MG, Larson LR, et al. Annual cost of care for Crohn’s disease: a payor perspective. Am J Gastroenterol 2000; 95(8): 1955–60PubMedCrossRefGoogle Scholar
  44. 44.
    Cohen RD, Larson LR, Roth JM, et al. The cost of hospitalization in Crohn’s disease. Am J Gastroenterol 2000; 95(2): 524–30PubMedCrossRefGoogle Scholar
  45. 45.
    Best WR, Becktel JM, Singleton JW, et al. Development of a Crohn’s disease activity index: National Cooperative Crohn’s Disease Study. Gastroenterology 1976; 70(3): 439–44PubMedGoogle Scholar
  46. 46.
    Travis SP, Stange EF, Lemann M, et al. European evidence based consensus on the diagnosis and management of Crohn’s disease: current management. Gut 2006; 55 Suppl. 1: i16–35PubMedCrossRefGoogle Scholar
  47. 47.
    Cabre E, Gassull MA. Nutritional and metabolic issues in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care 2003; 6(5): 569–76PubMedCrossRefGoogle Scholar
  48. 48.
    Griffiths AM, Ohlsson A, Sherman PM, et al. Meta-analysis of enteral nutrition as a primary treatment of active Crohn’s disease. Gastroenterology 1995; 108(4): 1056–67PubMedCrossRefGoogle Scholar
  49. 49.
    Johnson GJ, Cosnes J, Mansfield JC. Review article: smoking cessation as primary therapy to modify the course of Crohn’s disease. Aliment Pharmacol Ther 2005; 21(8): 921–31PubMedCrossRefGoogle Scholar
  50. 50.
    Zavoilo GB. Emerging drugs for the treatment and management of inflammatory bowel disease. Drug and Market Development 2004; Aug: 609–15Google Scholar
  51. 51.
    Summers RW, Switz DM, Sessions Jr JT, et al. National Cooperative Crohn’s Disease Study: results of drug treatment. Gastroenterology 1979; 77 (4 Pt 2): 847–69PubMedGoogle Scholar
  52. 52.
    Otley A, Steinhart AH. Budesonide for induction of remission in Crohn’s disease. Cochrane Database Syst Rev 2005; (4): CD000296Google Scholar
  53. 53.
    Rutgeerts P, Lofberg R, Malchow H, et al. A comparison of budesonide with prednisolone for active Crohn’s disease. N Engl J Med 1994; 331(13): 842–5PubMedCrossRefGoogle Scholar
  54. 54.
    Mary JY, Modigliani R. Development and validation of an endoscopic index of the severity for Crohn’s disease: a prospective multicentre study. Groupe d’Etudes Therapeutiques des Affections Inflammatoires du Tube Digestif (GETAID). Gut 1989; 30(7): 983–9PubMedGoogle Scholar
  55. 55.
    Present DH, Korelitz BI, Wisch N, et al. Treatment of Crohn’s disease with 6-mercaptopurine: a long-term, randomized, double-blind study. N Engl J Med 1980; 302(18): 981–7PubMedCrossRefGoogle Scholar
  56. 56.
    Sandborn W, Sutherland L, Pearson D, et al. Azathioprine or 6-mercaptopurine for inducing remission of Crohn’s disease. Cochrane Database Syst Rev 2000; (2): CD000545Google Scholar
  57. 57.
    Pearson DC, May GR, Fick G, et al. Azathioprine for maintaining remission of Crohn’s disease. Cochrane Database Syst Rev 2000; (2): CD000067Google Scholar
  58. 58.
    Markowitz J, Grancher K, Kohn N, et al. A multicenter trial of 6-mercaptopurine and prednisone in children with newly diagnosed Crohn’s disease. Gastroenterology 2000; 119(4): 895–902PubMedCrossRefGoogle Scholar
  59. 59.
    Feagan BG, Rochon J, Fedorak RN, et al. Methotrexate for the treatment of Crohn’s disease: the North American Crohn’s Study Group Investigators. N Engl J Med 1995; 332(5): 292–7PubMedCrossRefGoogle Scholar
  60. 60.
    Perencevich M, Burakoff R. Use of antibiotics in the treatment of inflammatory bowel disease. Inflamm Bowel Dis 2006; 12(7): 651–64PubMedCrossRefGoogle Scholar
  61. 61.
    Judge TA, Lichtenstein GR. Treatment of fistulizing Crohn’s disease. Gastroenterol Clin North Am 2004; 33(2): 421–54, xi–xiiPubMedCrossRefGoogle Scholar
  62. 62.
    Caprilli R, Gassull MA, Escher JC, et al. European evidence based consensus on the diagnosis and management of Crohn’s disease: special situations. Gut 2006; 55 Suppl. 1: i36–58PubMedCrossRefGoogle Scholar
  63. 63.
    Panaccione R, Ferraz JG, Beck P. Advances in medical therapy of inflammatory bowel disease. Curr Opin Pharmacol 2005; 5(6): 566–72PubMedGoogle Scholar
  64. 64.
    Nesbitt AM, Henry AJ. High affinity and potency of the pegylated fab’ fragment CDP870: a direct comparison with other anti-TNF agents [abstract no. 781]. Am J Gastroenterol 2004; 99 Suppl. 10: S253Google Scholar
  65. 65.
    Rutgeerts P, Sandborn WJ, Fedorak RN, et al. Onercept for moderate-to-severe Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Clin Gastroenterol Hepatol 2006; 4(7): 888–93PubMedCrossRefGoogle Scholar
  66. 66.
    Kirman I, Whelan RL, Nielsen OH. Infliximab: mechanism of action beyond TNF-alpha neutralization in inflammatory bowel disease. Eur J Gastroenterol Hepatol 2004; 16(7): 639–41PubMedCrossRefGoogle Scholar
  67. 67.
    Fossati G, Nesbitt AM. Effect of anti-TNF agents, adalimumab, etanercept, infliximab, and certolizumab PEGOL (CDP870) on the induction of apoptosis in activated peripheral blood lymphocytes and monocytes [abstract]. Am J Gastroenterol 2005; 100 Suppl. 9: S298–9Google Scholar
  68. 68.
    ten Hove T, van Montfrans C, Peppelenbosch MP, et al. Infliximab treatment induces apoptosis of lamina propria T lymphocytes in Crohn’s disease. Gut 2002; 50(2): 206–11PubMedCrossRefGoogle Scholar
  69. 69.
    Van den Brande JM, Braat H, van den Brink GR, et al. Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn’s disease. Gastroenterology 2003; 124(7): 1774–85PubMedCrossRefGoogle Scholar
  70. 70.
    van Deventer SJ. Transmembrane TNF-alpha, induction of apoptosis, and the efficacy of TNF-targeting therapies in Crohn’s disease. Gastroenterology 2001; 121(5): 1242–6PubMedCrossRefGoogle Scholar
  71. 71.
    Siddiqui MA, Scott LJ. Infliximab: a review of its use in Crohn’s disease and rheumatoid arthritis. Drugs 2005; 65(15): 2179–208PubMedCrossRefGoogle Scholar
  72. 72.
    Fossati G, Nesbitt AM. In vitro complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity by the anti-TNF agents adalimumab, etanercept, infliximab, and certolizumab pegol (CDP870) [abstract no. 807]. Am J Gastroenterol 2005; 100 Suppl. 9: S299Google Scholar
  73. 73.
    Targan SR, Hanauer SB, van Deventer SJ, et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease: Crohn’s Disease cA2 Study Group. N Engl J Med 1997; 337(15): 1029–35PubMedCrossRefGoogle Scholar
  74. 74.
    Rutgeerts P, D’Haens G, Targan S, et al. Efficacy and safety of retreatment with anti-tumor necrosis factor antibody (infliximab) to maintain remission in Crohn’s disease. Gastroenterology 1999; 117(4): 761–9PubMedCrossRefGoogle Scholar
  75. 75.
    Hanauer SB, Feagan BG, Lichtenstein GR, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet 2002; 359(9317): 1541–9PubMedCrossRefGoogle Scholar
  76. 76.
    Hanauer SB, Sandborn WJ, Rutgeerts P, et al. Human antitumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial. Gastroenterology 2006; 130(2): 323–33PubMedCrossRefGoogle Scholar
  77. 77.
    Sandborn WJ, Colombel JF, Enns R, et al. Natalizumab induction and maintenance therapy for Crohn’s disease. N Engl J Med 2005; 353(18): 1912–25PubMedCrossRefGoogle Scholar
  78. 78.
    Colombel JF, Hanauer SB, Sandborn WJ, et al. Certolizumab pegol administered subcutaneously is effective in anti-TNF naive patients and in patients previously treated with infliximab [abstract]. Gut 2006; 55 Suppl. V: A21Google Scholar
  79. 79.
    Sandborn WJ, Rutgeerts P, Enns R, et al. Adalimumab induction therapy for Crohn disease previously treated with infliximab therapy: a randomized trial. Ann Intern Med 2007; 146: 829–38PubMedGoogle Scholar
  80. 80.
    Schreiber S, Rutgeerts P, Fedorak RN, et al. A randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn’s disease. Gastroenterology 2005; 129(3): 807–18PubMedCrossRefGoogle Scholar
  81. 81.
    Sandborn WJ, Feagan BG, Stoinov S, et al. Certolizumab pegol for the treatment of Crohn’s disease. N Engl J Med 2007 Jul 19; 357(3): 228–38PubMedCrossRefGoogle Scholar
  82. 82.
    Schreiber S, Khaliq-Kareemi M, Lawrance IC, et al., PRECISE 2 study investigators. Maintenance therapy with certolizumab pegol for Crohn’s disease. N Engl J Med 2007 Jul 19; 357(3): 239–50PubMedCrossRefGoogle Scholar
  83. 83.
    Present DH, Rutgeerts P, Targan S, et al. Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med 1999; 340(18): 1398–405PubMedCrossRefGoogle Scholar
  84. 84.
    Sands BE, Anderson FH, Bernstein CN, et al. Infliximab maintenance therapy for fistulizing Crohn’s disease. N Engl J Med 2004; 350(9): 876–85PubMedCrossRefGoogle Scholar
  85. 85.
    Rutgeerts P, Feagan BG, Lichtenstein GR, et al. Comparison of scheduled and episodic treatment strategies of infliximab in Crohn’s disease. Gastroenterology 2004; 126(2): 402–13PubMedCrossRefGoogle Scholar
  86. 86.
    Hommes D, Baert F, van Assche G. A randomised controlled trial evaluating the ideal medical management for Crohn’s disease (CD): top-down versus step-up strategies [abstract]. Gastroenterology 2005; 128 Suppl. 2: A577Google Scholar
  87. 87.
    Lemann M, Mary JY, Duclos B, et al. Infliximab plus azathioprine for steroid-dependent Crohn’s disease patients: a randomized placebo-controlled trial. Gastroenterology 2006; 130(4): 1054–61PubMedCrossRefGoogle Scholar
  88. 88.
    Kinney T, Rawlins M, Kozarek R, et al. Immunomodulators and “on demand” therapy with infliximab in Crohn’s disease: clinical experience with 400 infusions. Am J Gastroenterol 2003; 98(3): 608–12PubMedGoogle Scholar
  89. 89.
    Schroder O, Blumenstein I, Schulte-Bockholt A, et al. Combining infliximab and methotrexate in fistulizing Crohn’s disease resistant or intolerant to azathioprine. Aliment Pharmacol Ther 2004; 19(3): 295–301PubMedCrossRefGoogle Scholar
  90. 90.
    Parsi MA, Lashner BA, Achkar JP, et al. Type of fistula determines response to infliximab in patients with fistulous Crohn’s disease. Am J Gastroenterol 2004; 99(3): 445–9PubMedCrossRefGoogle Scholar
  91. 91.
    Hlavaty T, Pierik M, Henckaerts L, et al. Polymorphisms in apoptosis genes predict response to infliximab therapy in luminal and fistulizing Crohn’s disease. Aliment Pharmacol Ther 2005; 22(7): 613–26PubMedCrossRefGoogle Scholar
  92. 92.
    Pazianas M, Rhim AD, Weinberg AM, et al. The effect of anti-TNF-alpha therapy on spinal bone mineral density in patients with Crohn’s disease. Ann N Y Acad Sci 2006; 1068: 543–56PubMedCrossRefGoogle Scholar
  93. 93.
    Baldassano R, Braegger CP, Escher JC, et al. Infliximab (REMICADE) therapy in the treatment of pediatric Crohn’s disease. Am J Gastroenterol 2003; 98(4): 833–8PubMedCrossRefGoogle Scholar
  94. 94.
    Lamireau T, Cezard JP, Dabadie A, et al. Efficacy and tolerance of infliximab in children and adolescents with Crohn’s disease. Inflamm Bowel Dis 2004; 10(6): 745–50PubMedCrossRefGoogle Scholar
  95. 95.
    Borrelli O, Bascietto C, Viola F, et al. Infliximab heals intestinal inflammatory lesions and restores growth in children with Crohn’s disease. Dig Liver Dis 2004; 36(5): 342–7PubMedCrossRefGoogle Scholar
  96. 96.
    Sandborn WJ, Hanauer SB, Rutgeerts P, et al. Adalimumab for maintenance treatment of Crohn’s Disease: results of the CLASSIC II trial. Gut. Epub 2007 Feb 13Google Scholar
  97. 97.
    Colombel J, Sandborn WJ, Rutgeerts P, et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: the CHARM trial. Gastroenterology 2007; 132: 52–65PubMedCrossRefGoogle Scholar
  98. 98.
    Youdim A, Vasiliauskas EA, Targan SR, et al. A pilot study of adalimumab in infliximab-allergic patients. Inflamm Bowel Dis 2004; 10(4): 333–8PubMedCrossRefGoogle Scholar
  99. 99.
    Sandborn WJ, Hanauer S, Loftus Jr EV, et al. An open-label study of the human anti-TNF monoclonal antibody adalimumab in subjects with prior loss of response or intolerance to infliximab for Crohn’s disease. Am J Gastroenterol 2004; 99(10): 1984–9PubMedCrossRefGoogle Scholar
  100. 100.
    Papadakis KA, Shaye OA, Vasiliauskas EA, et al. Safety and efficacy of adalimumab (D2E7) in Crohn’s disease patients with an attenuated response to infliximab. Am J Gastroenterol 2005; 100(1): 75–9PubMedCrossRefGoogle Scholar
  101. 101.
    Hinojosa J, Garcia S, Bastida G, et al. Efficacy and safety of 4 weeks of adalimumab treatment in subjects with active luminal Crohn’s disease who lost response or showed intolerance to infliximab [abstract]. Gastroenterology 2006; 130 Suppl. 2: A656Google Scholar
  102. 102.
    Hinojosa J, Gomollon F, Nos P, et al. Four-week results of adalimumab treatment in subjects with fistulizing Crohn’s disease who have failed response or showed intolerance to infliximab [abstract]. Gastroenterology 2006; 130 Suppl. 2: A120Google Scholar
  103. 103.
    Winter TA, Wright J, Ghosh S, et al. Intravenous CDP870, a PEGylated Fab’ fragment of a humanized antitumour necrosis factor antibody, in patients with moderate-to-severe Crohn’s disease: an exploratory study. Aliment Pharmacol Ther 2004; 20(11–12): 1337–46PubMedCrossRefGoogle Scholar
  104. 104.
    Schreiber S, Lawrance I, McColm J, et al. How effective is anti-TNF-alpha therapy? A re-analysis of the PRECISE 2 maintenance trial of monthly subcutaneous certolizumab pegol in active Crohn’s disease using remission to redefine all efficacy measures [abstract]. Gastroenterology 2006; 130 Suppl. 2: 483Google Scholar
  105. 105.
    Schreiber S, Colombel JF, Panes J, et al. Recent onset Crohn’s disease shows higher remission rates and durability of response to treatment with subcutaneous monthly certolizumab pegol: results from an analysis of the PRECISE 2 phase III study [abstract]. Gut 2006; 55 Suppl. V: A131Google Scholar
  106. 106.
    Sandborn WJ, Hanauer SB, Rutgeerts PJ, et al. Re-induction and maintenance therapy with subcutaneous certolizumab pegol in patients with Crohn. Gastroenterology 2007; 132 (4 Suppl. 2): A505Google Scholar
  107. 107.
    Schreiber S, Hanauer SB, Feagan BG, et al. Long-term treatment with certolizumab pegol for up to 18 months in patients with active Crohn. Gastroenterology 2007; 132 (4 Suppl. 2): A504Google Scholar
  108. 108.
    Schreiber S, Feagan BG, Hanauer SB, et al. Safety and tolerability of subcutaneous certolizumab pegol in active Crohn’s disease: results from two phase III studies (PRECISE program) [abstract]. Gastroenterology 2006; 130 Suppl. 2: A479Google Scholar
  109. 109.
    Sandborn WJ, Hanauer SB, Katz S, et al. Etanercept for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology 2001; 121(5): 1088–94PubMedCrossRefGoogle Scholar
  110. 110.
    Rutgeerts P, Lemmens L, Van Assche G, et al. Treatment of active Crohn’s disease with onercept (recombinant human soluble p55 tumour necrosis factor receptor): results of a randomized, open-label, pilot study. Aliment Pharmacol Ther 2003; 17(2): 185–92PubMedCrossRefGoogle Scholar
  111. 111.
    Khanna D, McMahon M, Furst DE. Safety of tumour necrosis factor-alpha antagonists. Drug Saf 2004; 27(5): 307–24PubMedCrossRefGoogle Scholar
  112. 112.
    Friesen CA, Calabro C, Christenson K, et al. Safety of infliximab treatment in pediatric patients with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 2004; 39(3): 265–9PubMedCrossRefGoogle Scholar
  113. 113.
    Winthrop KL. Risk and prevention of tuberculosis and other serious opportunistic infections associated with the inhibition of tumor necrosis factor. Nat Clin Pract Rheumatol 2006; 2(11): 602–10PubMedCrossRefGoogle Scholar
  114. 114.
    Carmona L, Gomez-Reino JJ, Rodriguez-Valverde V, et al. Effectiveness of recommendations to prevent reactivation of latent tuberculosis infection in patients treated with tumor necrosis factor antagonists. Arthritis Rheum 2005; 52(6): 1766–72PubMedCrossRefGoogle Scholar
  115. 115.
    Nathan DM, Angus PW, Gibson PR. Hepatitis B and C virus infections and anti-tumor necrosis factor-alpha therapy: guidelines or clinical approach. J Gastroenterol Hepatol 2006; 21(9): 1366–71PubMedCrossRefGoogle Scholar
  116. 116.
    US National Institutes of Health. infliximab (REMICADE®) Treatment Along With Pegylated Interferon α-2b (PEG-INTRON®) and ribavirin (REBETOL®) in the treatment of hepatitis C virus infection (PARTNER Study) [online]. Available from URL: [Accessed 2007 Sep 28]
  117. 117.
    Lichtenstein GR, Feagan BG, Cohen RD, et al. Serious infections and mortality in association with therapies for Crohn’s disease: TREAT registry. Clin Gastroenterol Hepatol 2006; 4(5): 621–30PubMedCrossRefGoogle Scholar
  118. 118.
    Colombel JF, Loftus Jr EV, Tremaine WJ, et al. The safety profile of infliximab in patients with Crohn’s disease: the Mayo clinic experience in 500 patients. Gastroenterology 2004; 126(1): 19–31PubMedCrossRefGoogle Scholar
  119. 119.
    Bongartz T, Sutton AJ, Sweeting MJ, et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 2006; 295(19): 2275–85PubMedCrossRefGoogle Scholar
  120. 120.
    Geborek P, Bladstrom A, Turesson C, et al. Tumour necrosis factor blockers do not increase overall tumour risk in patients with rheumatoid arthritis, but may be associated with an increased risk of lymphomas. Ann Rheum Dis 2005; 64(5): 699–703PubMedCrossRefGoogle Scholar
  121. 121.
    Atzeni F, Turiel M, Capsoni F, et al. Autoimmunity and anti-TNF-alpha agents. Ann N Y Acad Sci 2005; 1051: 559–69PubMedCrossRefGoogle Scholar
  122. 122.
    Baert F, Noman M, Vermeire S, et al. Influence of immunogenecity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med 2003; 348(7): 601–8PubMedCrossRefGoogle Scholar
  123. 123.
    van de Putte LBA, Atkins C, Malaise M, et al. Efficacy and safety of adalimumab as monotherapy in patients with rheumatoid arthritis for whom previous disease modifying antirheumatic drug treatment has failed. Ann Rheum Dis 2004; 63: 508–16PubMedCrossRefGoogle Scholar
  124. 124.
    Ghosh S, Goldin E, Gordon FH, et al. Natalizumab for active Crohn’s disease. N Engl J Med 2003; 348(1): 24–32PubMedCrossRefGoogle Scholar
  125. 125.
    Gordon FH, Lai CW, Hamilton MI, et al. A randomized placebo-controlled trial of a humanized monoclonal antibody to alpha4 integrin in active Crohn’s disease. Gastroenterology 2001; 121(2): 268–74PubMedCrossRefGoogle Scholar
  126. 126.
    Macdonald JK, McDonald JW. Natalizumab for induction of remission in Crohn’s disease. Cochrane Database Syst Rev 2006; (3): CD006097Google Scholar
  127. 127.
    Yousry TA, Major EO, Ryschkewitsch C, et al. Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med 2006; 354(9): 924–33PubMedCrossRefGoogle Scholar
  128. 128.
    Ito H, Takazoe M, Fukuda Y, et al. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology 2004; 126(4): 989–96; discussion 47PubMedCrossRefGoogle Scholar
  129. 129.
    Mannon PJ, Fuss IJ, Mayer L, et al. Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med 2004; 351(20): 2069–79PubMedCrossRefGoogle Scholar
  130. 130.
    Schreiber S, Fedorak RN, Nielsen OH, et al. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease: Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology 2000; 119(6): 1461–72PubMedCrossRefGoogle Scholar
  131. 131.
    Fedorak RN, Gangl A, Elson CO, et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease: the Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology 2000; 119(6): 1473–82PubMedCrossRefGoogle Scholar
  132. 132.
    Sands BE, Winston BD, Salzberg B, et al. Randomized, controlled trial of recombinant human interleukin-11 in patients with active Crohn’s disease. Aliment Pharmacol Ther 2002; 16(3): 399–406PubMedCrossRefGoogle Scholar
  133. 133.
    Dieckgraefe BK, Korzenik JR. Treatment of active Crohn’s disease with recombinant human granulocyte-macrophage colony-stimulating factor. Lancet 2002; 360(9344): 1478–80PubMedCrossRefGoogle Scholar
  134. 134.
    Korzenik JR, Dieckgraefe BK. An open-labelled study of granulocyte colony-stimulating factor in the treatment of active Crohn’s disease. Aliment Pharmacol Ther 2005; 21(4): 391–400PubMedCrossRefGoogle Scholar
  135. 135.
    Hommes DW, Mikhajlova TL, Stoinov S, et al. Fontolizumab, a humanised anti-interferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn’s disease. Gut 2006; 55(8): 1131–7PubMedCrossRefGoogle Scholar
  136. 136.
    Reinisch W, Hommes DW, Van Assche G, et al. A dose escalating, placebo controlled, double blind, single dose and multidose, safety and tolerability study of fontolizumab, a humanised anti-interferon gamma antibody, in patients with moderate to severe Crohn’s disease. Gut 2006; 55(8): 1138–44PubMedCrossRefGoogle Scholar
  137. 137.
    Feagan BG, Enns R, Fedorak RN, et al. Infliximab for the treatment of Crohn’s disease: efficacy, safety and pharmacoeconomics. Can J Clin Pharmacol 2001; 8(4): 188–98PubMedGoogle Scholar
  138. 138.
    Koelewijn C, Schrijvers A, Oldenburg B. Infliximab use in patients with Crohn’s disease: quality of life, costs and resource use. Neth J Med 2006; 64(7): 212–8PubMedGoogle Scholar
  139. 139.
    Siegel CA, Hur C, Korzenik JR, et al. Risks and benefits of infliximab for the treatment of Crohn’s disease. Clin Gastroenterol Hepatol 2006; 4(8): 1017–24; quiz 976PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2007

Authors and Affiliations

  • Julián Panés
    • 1
  • Fernando Gomollón
    • 2
  • Carlos Taxonera
    • 3
  • Joaquin Hinojosa
    • 4
  • Juan Clofent
    • 5
  • Vilar Nos
    • 6
  1. 1.Department of GastroenterologyHospital ClinicBarcelonaSpain
  2. 2.Servicio de Aparato DigestivoHospital Clinico UniversitarioZaragozaSpain
  3. 3.Department of GastroenterologyHospital Clinico San CarlosMadridSpain
  4. 4.Hospital de SaguntoValenciaSpain
  5. 5.Department of GastroenterologyUniversity Hospital of VigoVigoSpain
  6. 6.Department of GastroenterologyHospital Universitari de ValenciaValenciaSpain

Personalised recommendations