, Volume 67, Issue 5, pp 701–723 | Cite as

Induction of Anaesthesia

A Guide to Drug Choice
Review Article


In developed countries, the choice of an anaesthetic agent for induction of anaesthesia remains based mainly on its pharmacodynamic properties. Until now, cardiovascular effects were the main factor in this decision. However, other factors, such as the depth of anaesthesia and effects on cortisol synthesis, can modify this simplistic view. A better understanding of the relationships between the pharmacokinetics and pharmacodynamics of these drugs, and the availability of new techniques, such as target-controlled infusions of anaesthetic drugs and inhalation induction, have led practitioners to the understanding that the way a drug is administered is a far more important factor for maintaining haemodynamic stability than the specific agent used. The ability of a drug to maintain spontaneous ventilation and to relax the upper airway is another factor in this decision, especially when considering difficult intubation, laryngeal mask insertion or tracheal intubation without neuromuscular blockade. Beyond the factors mentioned above, anaesthetists adapt current practice to suit patients’ willingness to comply with anaesthesia and to avoid the adverse effects that are most often feared by the patient. Although most practitioners are not concerned with the cost of anaesthesia, cost-containment policies have led some institutions to restrict the use of the more expensive drugs to particular indications. However, this is too simplistic an approach for the reduction of global costs, as other direct medical costs, such as those for staffing, form a greater proportion of total costs than do direct drug costs. Cost-benefit and cost-efficacy studies of the anaesthetics used for induction of anaesthesia are needed to help anaesthetists to choose a drug based on both cost and pharmacodynamic or pharmacokinetic properties.


Sevoflurane Tracheal Intubation Remifentanil Cerebral Perfusion Pressure Alfentanil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would especially like to thank Mrs Claire Paillier for her help reviewing the use of English in this review. No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.


  1. 1.
    Payne K, Moore EW, Elliott RA, et al. Anaesthesia for day case surgery: a survey of paediatric clinical practice in the UK. Eur J Anaesthesiol 2003; 20 (4): 325–30PubMedCrossRefGoogle Scholar
  2. 2.
    Davie MJ. General practitioner anaesthesia survey 2006. Anaesth Intensive Care 2006; 34 (6): 770–5PubMedGoogle Scholar
  3. 3.
    Chaudhri S, White M, Kenny GN. Induction of anaesthesia with propofol using a target-controlled infusion system. Anaesthesia 1992; 47 (7): 551–3PubMedCrossRefGoogle Scholar
  4. 4.
    Manara AR, Monk CR, Bolsin SN, et al. Total i.v. anaesthesia with propofol and alfentanil for coronary artery bypass grafting. Br J Anaesth 1991; 66 (6): 716–8PubMedCrossRefGoogle Scholar
  5. 5.
    Philip BK, Lombard LL, Roaf ER, et al. Comparison of vital capacity induction with sevoflurane to intravenous induction with propofol for adult ambulatory anesthesia. Anesth Analg 1999; 89 (3): 623–7PubMedGoogle Scholar
  6. 6.
    Kirkbride DA, Parker JL, Williams GD, et al. Induction of anesthesia in the elderly ambulatory patient: a double-blinded comparison of propofol and sevoflurane. Anesth Analg 2001; 93 (5): 1185–7PubMedCrossRefGoogle Scholar
  7. 7.
    Dolk A, Cannerfelt R, Anderson RE, et al. Inhalation anaesthesia is cost-effective for ambulatory surgery: a clinical comparison with propofol during elective knee arthroscopy. Eur J Anaesthesiol 2002; 19 (2): 88–92PubMedGoogle Scholar
  8. 8.
    Warden JC, Horan BF, Holland R. Morbidity and mortality associated with anaesthesia. Acta Anaesthesiol Scand 1997; 41 (7): 949PubMedCrossRefGoogle Scholar
  9. 9.
    Lienhart A, Auroy Y, Pequignot F, et al. Preliminary results from the SFAR-iNSERM inquiry on anaesthesia-related deaths in France: mortality rates have fallen ten-fold over the past two decades. Bull Acad Natl Med 1906; 188 (8): 1429–37Google Scholar
  10. 10.
    Pedersen T, Eliasen K, Henriksen E. A prospective study of risk factors and cardiopulmonary complications associated with anaesthesia and surgery: risk indicators of cardiopulmonary morbidity. Acta Anaesthesiol Scand 1990; 34 (2): 144–55PubMedCrossRefGoogle Scholar
  11. 11.
    Biboulet P, Aubas P, Dubourdieu J, et al. Fatal and non fatal cardiac arrests related to anesthesia. Can J Anaesth 2001; 48 (4): 326–32PubMedCrossRefGoogle Scholar
  12. 12.
    Holzer JF. Analysis of anesthetic mishaps: current concepts in risk management. Int Anesthesiol Clin 1984; 22 (2): 91–116PubMedCrossRefGoogle Scholar
  13. 13.
    Kawashima Y, Takahashi S, Suzuki M, et al. Anesthesia-related mortality and morbidity over a 5-year period in 2 363 038 patients in Japan. Acta Anaesthesiol Scand 2003; 47 (7): 809–17PubMedCrossRefGoogle Scholar
  14. 14.
    Taylor G, Larson Jr CP, Prestwich R. Unexpected cardiac arrest during anesthesia and surgery: an environmental study. JAMA 1976; 236 (24): 2758–60PubMedCrossRefGoogle Scholar
  15. 15.
    Fox MA, Webb RK, Singleton R, et al., for the Australian Incident Monitoring Study. Problems with regional anaesthesia: an analysis of 2000 incident reports. Anaesth Intensive Care 1993; 21 (5): 646–9PubMedGoogle Scholar
  16. 16.
    Keenan RL, Boyan CP. Cardiac arrest due to anesthesia: a study of incidence and causes. JAMA 1985; 253 (16): 2373–7PubMedCrossRefGoogle Scholar
  17. 17.
    Cohen MM, Duncan PG, Tate RB. Does anesthesia contribute to operative mortality? JAMA 1988; 260 (19): 2859–63PubMedCrossRefGoogle Scholar
  18. 18.
    Urban MK, Gordon MA, Harris SN, et al. Intraoperative hemodynamic changes are not good indicators of myocardial ischemia. Anesth Analg. 1993; 76 (5): 942–9PubMedCrossRefGoogle Scholar
  19. 19.
    Grounds RM, Twigley AJ, Carli F, et al. The haemodynamic effects of intravenous induction: comparison of the effects of thiopentone and propofol. Anaesthesia 1985; 40 (8): 735–40PubMedCrossRefGoogle Scholar
  20. 20.
    Patrick MR, Blair IJ, Feneck RO, et al. A comparison of the haemodynamic effects of propofol (‘Diprivan’) and thiopentone in patients with coronary artery disease. Postgrad Med J 1985; 61 Suppl. 3: 23–7PubMedGoogle Scholar
  21. 21.
    Rouby JJ, Andreev A, Leger P, et al. Peripheral vascular effects of thiopental and propofol in humans with artificial hearts. Anesthesiology 1991; 75 (1): 32–42PubMedCrossRefGoogle Scholar
  22. 22.
    Ebert TJ, Muzi M, Berens R, et al. Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology 1992; 76 (5): 725–33PubMedCrossRefGoogle Scholar
  23. 23.
    Rolly G, Versichelen L. Comparison of propofol and thiopentone for induction of anaesthesia in premedicated patients. Anaesthesia 1985; 40 (10): 945–8PubMedCrossRefGoogle Scholar
  24. 24.
    Nauta J, Stanley TH, de Lange S, et al. Anaesthetic induction with alfentanil: comparison with thiopental, midazolam, and etomidate. Can Anaesth Soc J 1983; 30 (1): 53–60PubMedCrossRefGoogle Scholar
  25. 25.
    O’Hare R, McAtamney D, Mirakhur RK, et al. Bolus dose remifentanil for control of haemodynamic response to tracheal intubation during rapid sequence induction of anaesthesia. Br J Anaesth 1999; 82 (2): 283–5PubMedCrossRefGoogle Scholar
  26. 26.
    Taha S, Siddik-Sayyid S, Alameddine M, et al. Propofol is superior to thiopental for intubation without muscle relaxants. Can J Anaesth 2005; 52 (3): 249–53PubMedCrossRefGoogle Scholar
  27. 27.
    Billard V, Moulla F, Bourgain JL, et al. Hemodynamic response to induction and intubation: propofol/fentanyl interaction. Anesthesiology 1994; 81 (6): 1384–93PubMedCrossRefGoogle Scholar
  28. 28.
    Wilhelm W, Biedler A, Huppert A, et al. Comparison of the effects of remifentanil or fentanyl on anaesthetic induction characteristics of propofol, thiopental or etomidate. Eur J Anaesthesiol 2002; 19 (5): 350–6PubMedGoogle Scholar
  29. 29.
    Peacock JE, Lewis RP, Reilly CS, et al. Effect of different rates of infusion of propofol for induction of anaesthesia in elderly patients. Br J Anaesth 1990; 65 (3): 346–52PubMedCrossRefGoogle Scholar
  30. 30.
    Chan VW, Chung FF. Propofol infusion for induction and maintenance of anesthesia in elderly patients: recovery and hemodynamic profiles. J Clin Anesth 1996; 8 (4): 317–23PubMedCrossRefGoogle Scholar
  31. 31.
    Gold MI, Abraham EC, Herrington C. A controlled investigation of propofol, thiopentone and methohexitone. Can J Anaesth 1987; 34 (5): 478–83PubMedCrossRefGoogle Scholar
  32. 32.
    Boysen K, Sanchez R, Krintel JJ, et al. Induction and recovery characteristics of propofol, thiopental and etomidate. Acta Anaesthesiol Scand 1989; 33 (8): 689–92PubMedCrossRefGoogle Scholar
  33. 33.
    Muzi M, Berens RA, Kampine JP, et al. Venodilation contributes to propofol-mediated hypotension in humans. Anesth Analg 1992; 74 (6): 877–83PubMedCrossRefGoogle Scholar
  34. 34.
    Price ML, Millar B, Grounds M, et al. Changes in cardiac index and estimated systemic vascular resistance during induction of anaesthesia with thiopentone, methohexitone, propofol and etomidate. Br J Anaesth 1992; 69 (2): 172–6PubMedCrossRefGoogle Scholar
  35. 35.
    Lindgren L, Yli-Hankala A, Randell T, et al. Haemodynamic and catecholamine responses to induction of anaesthesia and tracheal intubation: comparison between propofol and thiopentone. Br J Anaesth 1993; 70 (3): 306–10PubMedCrossRefGoogle Scholar
  36. 36.
    Wilmot G, Bhimsan N, Rocke DA, et al. Intubating conditions and haemodynamic changes following thiopentone or propofol for early tracheal intubation. Can J Anaesth 1993; 40 (3): 201–5PubMedCrossRefGoogle Scholar
  37. 37.
    Flaishon R, Windsor A, Sigl J, et al. Recovery of consciousness after thiopental or propofol: bispectral index and isolated forearm technique. Anesthesiology 1997; 86 (3): 613–9PubMedCrossRefGoogle Scholar
  38. 38.
    Watson KR, Shah MV. Clinical comparison of ‘single agent’ anaesthesia with sevoflurane versus target controlled infusion of propofol. Br J Anaesth 2000; 85 (4): 541–6PubMedCrossRefGoogle Scholar
  39. 39.
    Ganatra SB, D’Mello J, Butani M, et al. Conditions for insertion of the laryngeal mask airway. Comparisons between sevoflurane and propofol using fentanyl as a co-induction agent: a pilot study. Eur J Anaesthesiol 2002; 19 (5): 371–5PubMedGoogle Scholar
  40. 40.
    Nathan N, Vandroux D, Benrhaiem M, et al. Low alfentanil target-concentrations improve hemodynamic and intubating conditions during induction with sevoflurane. Can J Anaesth 2004; 51 (4): 382–7PubMedCrossRefGoogle Scholar
  41. 41.
    Fredman B, Nathanson MH, Smith I, et al. Sevoflurane for outpatient anesthesia: a comparison with propofol. Anesth Analg 1995; 81 (4): 823–8PubMedGoogle Scholar
  42. 42.
    Smith I, Ding Y, White PF. Comparison of induction, maintenance, and recovery characteristics of sevoflurane-N2O and propofol-sevoflurane-N2O with propofol-isoflurane-N2O anesthesia. Anesth Analg 1992; 74 (2): 253–9PubMedCrossRefGoogle Scholar
  43. 43.
    Jellish WS, Lien CA, Fontenot HJ, et al. The comparative effects of sevoflurane versus propofol in the induction and maintenance of anesthesia in adult patients. Anesth Analg 1996; 82 (3): 479–85PubMedGoogle Scholar
  44. 44.
    Godet G, Watremez C, El Kettani C, et al. A comparison of sevoflurane, target-controlled infusion propofol, and propofol/isoflurane anesthesia in patients undergoing carotid surgery: a quality of anesthesia and recovery profile. Anesth Analg 2001; 93 (3): 560–5PubMedCrossRefGoogle Scholar
  45. 45.
    Nathan N, Vial G, Benrhaiem M, et al. Induction with propofol target-concentration infusion vs. 8% sevoflurane inhalation and alfentanil in hypertensive patients. Anaesthesia 2001; 56 (3): 251–7PubMedCrossRefGoogle Scholar
  46. 46.
    Nathan N, Vandroux D, Benrhaiem M, et al. Low alfentanil target-concentrations improve hemodynamic and intubating conditions during induction with sevoflurane. Can J Anaesth 2004; 51 (4): 382–7PubMedCrossRefGoogle Scholar
  47. 47.
    Sivalingam P, Kandasamy R, Madhavan G, et al. Conditions for laryngeal mask insertion: a comparison of propofol versus sevoflurane with or without alfentanil. Anaesthesia 1999; 54 (3): 271–6PubMedCrossRefGoogle Scholar
  48. 48.
    Yli-Hankala A, Vakkuri A, Sarkela M, et al. Epileptiform electroencephalogram during mask induction of anesthesia with sevoflurane. Anesthesiology 1999; 91 (6): 1596–603PubMedCrossRefGoogle Scholar
  49. 49.
    Vakkuri A, Jantti V, Sarkela M, et al. Epileptiform EEG during sevoflurane mask induction: effect of delaying the onset of hyperventilation. Acta Anaesthesiol Scand 2000; 44 (6): 713–9PubMedCrossRefGoogle Scholar
  50. 50.
    Dandoy M, Poisson F, Lampl E. Cardiocirculatory arrest during anesthesia with propofol and fentanyl [in French]. Ann Fr Anesth Reanim 1990; 9 (5): 465PubMedCrossRefGoogle Scholar
  51. 51.
    Ricos P, Trillo L, Crespo MT, et al. Bradycardia and asystole associated with the simultaneous administration of propofol and fentanyl during anesthetic induction. Rev Esp Anestesiol Reanim 1994; 41 (3): 194–5PubMedGoogle Scholar
  52. 52.
    Altermatt FR, Munoz HR. Asystole with propofol and remifentanil. Br J Anaesth 2000; 84 (5): 696–7PubMedGoogle Scholar
  53. 53.
    Wang J, Winship S, Russell G. Induction of anaesthesia with sevoflurane and low-dose remifentanil: asystole following laryngoscopy. Br J Anaesth 1998; 81 (6): 994–5PubMedCrossRefGoogle Scholar
  54. 54.
    Kurdi O, Deleuze A, Marret E, et al. Asystole during anaesthetic induction with remifentanil and sevoflurane. Br J Anaesth 2001; 87 (6): 943PubMedGoogle Scholar
  55. 55.
    Cardinal V, Martin R, Tetrault JP, et al. Severe bradycardia and asystole with low dose sufentanil during induction with sevoflurane: a report of three cases. Can J Anaesth 2004; 51 (8): 806–9PubMedCrossRefGoogle Scholar
  56. 56.
    Ebert TJ, Muzi M, Berens R, et al. Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology 1992; 76 (5): 725–33PubMedCrossRefGoogle Scholar
  57. 57.
    Latson TW, McCarroll SM, Mirhej MA, et al. Effects of three anesthetic induction techniques on heart rate variability. J Clin Anesth 1992; 4 (4): 265–76PubMedCrossRefGoogle Scholar
  58. 58.
    Zheng D, Upton RN, Martinez AM, et al. The influence of the bolus injection rate of propofol on its cardiovascular effects and peak blood concentrations in sheep. Anesth Analg 1998; 86 (5): 1109–15PubMedGoogle Scholar
  59. 59.
    Sato M, Tanaka M, Umehara S, et al. Baroreflex control of heart rate during and after propofol infusion in humans. Br J Anaesth 2005; 94 (5): 577–81PubMedCrossRefGoogle Scholar
  60. 60.
    Nagasaki G, Tanaka M, Nishikawa T. The recovery profile of baroreflex control of heart rate after isoflurane or sevoflurane anesthesia in humans. Anesth Analg 2001; 93 (5): 1127–31PubMedCrossRefGoogle Scholar
  61. 61.
    Constant I, Dubois MC, Piat V, et al. Changes in electroencephalogram and autonomic cardiovascular activity during induction of anesthesia with sevoflurane compared with halothane in children. Anesthesiology 1999; 91 (6): 1604–15PubMedCrossRefGoogle Scholar
  62. 62.
    Suzer O, Suzer A, Aykac Z, et al. Direct cardiac effects in isolated perfused rat hearts measured at increasing concentrations of morphine, alfentanil, fentanyl, ketamine, etomidate, thiopentone, midazolam and propofol. Eur J Anaesthesiol 1998; 15 (4): 480–5PubMedGoogle Scholar
  63. 63.
    Mulier JP, Wouters PF, Van Aken H, et al. Cardiodynamic effects of propofol in comparison with thiopental: assessment with a transesophageal echocardiographic approach. Anesth Analg 1991; 72 (1): 28–35PubMedCrossRefGoogle Scholar
  64. 64.
    Belo SE, Kolesar R, Mazer CD. Intracoronary propofol does not decrease myocardial contractile function in the dog. Can J Anaesth 1994; 41 (1): 43–9PubMedCrossRefGoogle Scholar
  65. 65.
    Gelissen HP, Epema AH, Henning RH, et al. Inotropic effects of propofol, thiopental, midazolam, etomidate, and ketamine on isolated human atrial muscle. Anesthesiology 1996; 84 (2): 397–403PubMedCrossRefGoogle Scholar
  66. 66.
    Lepage JY, Pinaud ML, Helias JH, et al. Left ventricular function during propofol and fentanyl anesthesia in patients with coronary artery disease: assessment with a radionuclide approach. Anesth Analg 1988; 67 (10): 949–55PubMedCrossRefGoogle Scholar
  67. 67.
    Bilotta F, Fiorani L, La Rosa I, et al. Cardiovascular effects of intravenous propofol administered at two infusion rates: a transthoracic echocardiographic study. Anaesthesia 2001; 56 (3): 266–71PubMedCrossRefGoogle Scholar
  68. 68.
    Ismail S, Azam SI, Khan FA. Effect of age on haemodynamic response to tracheal intubation: a comparison of young, middle-aged and elderly patients. Anaesth Intensive Care 2002; 30 (5): 608–14PubMedGoogle Scholar
  69. 69.
    Habib AS, Parker JL, Maguire AM, et al. Effects of remifentanil and alfentanil on the cardiovascular responses to induction of anaesthesia and tracheal intubation in the elderly. Br J Anaesth 2002; 88 (3): 430–3PubMedCrossRefGoogle Scholar
  70. 70.
    Holzman RS, van der Velde ME, Kaus SJ, et al. Sevoflurane depresses myocardial contractility less than halothane during induction of anesthesia in children. Anesthesiology 1996; 85 (6): 1260–7PubMedCrossRefGoogle Scholar
  71. 71.
    Rivenes SM, Lewin MB, Stayer SA, et al. Cardiovascular effects of sevoflurane, isoflurane, halothane, and fentanyl-midazolam in children with congenital heart disease: an echocardiographic study of myocardial contractility and hemodynamics. Anesthesiology 2001; 94 (2): 223–9PubMedCrossRefGoogle Scholar
  72. 72.
    Morray JP, Geiduschek JM, Ramamoorthy C, et al. Anesthesia-related cardiac arrest in children: initial findings of the Pediatric Perioperative Cardiac Arrest (POCA) Registry. Anesthesiology 2000; 93 (1): 6–14PubMedCrossRefGoogle Scholar
  73. 73.
    Obal D, Scharbatke H, Barthel H, et al. Cardioprotection against reperfusion injury is maximal with only two minutes of sevoflurane administration in rats. Can J Anaesth 2003; 50 (9): 940–5PubMedCrossRefGoogle Scholar
  74. 74.
    Yvon A, Hanouz JL, Haelewyn B, et al. Mechanisms of sevoflurane-induced myocardial preconditioning in isolated human right atria in vitro. Anesthesiology 2003; 99 (1): 27–33PubMedCrossRefGoogle Scholar
  75. 75.
    Obal D, Dettwiler S, Favoccia C, et al. The influence of mitochondrial KATP-channels in the cardioprotection of preconditioning and postconditioning by sevoflurane in the rat in vivo. Anesth Analg 2005; 101 (5): 1252–60PubMedCrossRefGoogle Scholar
  76. 76.
    De Hert SG, Cromheecke S, ten Broecke PW, et al. Effects of propofol, desflurane, and sevoflurane on recovery of myocardial function after coronary surgery in elderly high-risk patients. Anesthesiology 2003; 99 (2): 314–23PubMedCrossRefGoogle Scholar
  77. 77.
    Van der Linden PJ, Daper A, Trenchant A, et al. Cardioprotective effects of volatile anesthetics in cardiac surgery. Anesthesiology 2003; 99 (2): 516–7CrossRefGoogle Scholar
  78. 78.
    De Hert SG, Van der Linden PJ, Cromheecke S, et al. Cardioprotective properties of sevoflurane in patients undergoing coronary surgery with cardiopulmonary bypass are related to the modalities of its administration. Anesthesiology 2004; 101 (2): 299–310PubMedCrossRefGoogle Scholar
  79. 79.
    De Hert SG, Van der Linden PJ, Cromheecke S, et al. Choice of primary anesthetic regimen can influence intensive care unit length of stay after coronary surgery with cardiopulmonary bypass. Anesthesiology 2004; 101 (1): 9–20PubMedCrossRefGoogle Scholar
  80. 80.
    Gooding JM, Corssen G. Effect of etomidate on the cardiovascular system. Anesth Analg 1977; 56 (5): 717–9PubMedCrossRefGoogle Scholar
  81. 81.
    Gooding JM, Weng JT, Smith RA, et al. Cardiovascular and pulmonary responses following etomidate induction of anesthesia in patients with demonstrated cardiac disease. Anesth Analg 1979; 58 (1): 40–1PubMedCrossRefGoogle Scholar
  82. 82.
    Keyl C, Lemberger P, Palitzsch KD, et al. Cardiovascular autonomic dysfunction and hemodynamic response to anesthetic induction in patients with coronary artery disease and diabetes mellitus. Anesth Analg 1999; 88 (5): 985–91PubMedGoogle Scholar
  83. 83.
    Allolio B, Stuttmann R, Leonhard U, et al. Adrenocortical suppression by a single induction dose of etomidate. Klin Wochenschr 1984; 62 (21): 1014–7PubMedCrossRefGoogle Scholar
  84. 84.
    Absalom A, Pledger D, Kong A. Adrenocortical function in critically ill patients 24h after a single dose of etomidate. Anaesthesia 1999; 54 (9): 861–7PubMedCrossRefGoogle Scholar
  85. 85.
    Schenarts CL, Burton JH, Riker RR. Adrenocortical dysfunction following etomidate induction in emergency department patients. Acad Emerg Med 2001; 8 (1): 1–7PubMedCrossRefGoogle Scholar
  86. 86.
    Malerba G, Romano-Girard F, Cravoisy A, et al. Risk factors of relative adrenocortical deficiency in intensive care patients needing mechanical ventilation. Intensive Care Med 2005; 31 (3): 388–92PubMedCrossRefGoogle Scholar
  87. 87.
    Pedersen T, Engbaek J, Klausen NO, et al. Effects of low-dose ketamine and thiopentone on cardiac performance and myocardial oxygen balance in high-risk patients. Acta Anaesthesiol Scand 1982; 26 (3): 235–9PubMedCrossRefGoogle Scholar
  88. 88.
    Stefansson T, Wickstrom I, Haljamae H. Hemodynamic and metabolic effects of ketamine anesthesia in the geriatric patient. Acta Anaesthesiol Scand 1982; 26 (4): 371–7PubMedCrossRefGoogle Scholar
  89. 89.
    Kaplan JA, Cooperman LH. Alarming reactions to ketamine in patients taking thyroid medication: treatment with propranolol. Anesthesiology 1971; 35 (2): 229–30PubMedCrossRefGoogle Scholar
  90. 90.
    Waxman K, Shoemaker WC, Lippmann M. Cardiovascular effects of anesthetic induction with ketamine. Anesth Analg 1980; 59 (5): 355–8PubMedCrossRefGoogle Scholar
  91. 91.
    Marlow R, Reich DL, Neustein S, et al. Haemodynamic response to induction of anaesthesia with ketamine/midazolam. Can J Anaesth 1991; 38 (7): 844–8PubMedCrossRefGoogle Scholar
  92. 92.
    Sprung J, Schuetz SM, Stewart RW, et al. Effects of ketamine on the contractility of failing and nonfailing human heart muscles in vitro.Google Scholar
  93. 93.
    Knoche E, Traub E, Dick W. Effects of diazepam and flunitrazepam on the undesired postoperative side-effects of ketamine anaesthesia (author’s transl) [in German]. Anaesthesist 1978; 27 (6): 302–8PubMedGoogle Scholar
  94. 94.
    Grace RF. The effect of variable-dose diazepam on dreaming and emergence phenomena in 400 cases of ketamine-fentanyl anaesthesia. Anaesthesia 2003; 58 (9): 904–10PubMedCrossRefGoogle Scholar
  95. 95.
    St Pierre M, Landsleitner B, Schwilden H, et al. Awareness during laryngoscopy and intubation: quantitating incidence following induction of balanced anesthesia with etomidate and cisatracurium as detected with the isolated forearm technique. J Clin Anesth 2000; 12 (2): 104–8PubMedCrossRefGoogle Scholar
  96. 96.
    Passot S, Servin F, Allary R, et al. Target-controlled versus manually-controlled infusion of propofol for direct laryngoscopy and bronchoscopy. Anesth Analg 2002; 94 (5): 1212–6PubMedCrossRefGoogle Scholar
  97. 97.
    Servin FS. TCI compared with manually controlled infusion of propofol: a multicentre study. Anaesthesia 1998; 53 Suppl. 1: 82–6PubMedCrossRefGoogle Scholar
  98. 98.
    Hu C, Horstman DJ, Shafer SL. Variability of target-controlled infusion is less than the variability after bolus injection. Anesthesiology 2005; 102 (3): 639–45PubMedCrossRefGoogle Scholar
  99. 99.
    Passot S, Servin F, Pascal J, et al. A comparison of target- and manually controlled infusion of propofol and etomidate/desflurane anesthesia in elderly patients undergoing hip fracture surgery. Anesth Analg 2005; 100 (5): 1338–42PubMedCrossRefGoogle Scholar
  100. 100.
    Hunt-Smith J, Donaghy A, Leslie K, et al. Safety and efficacy of target controlled infusion (Diprifusor) vs manually controlled infusion of propofol for anaesthesia. Anaesth Intensive Care 1999; 27 (3): 260–4PubMedGoogle Scholar
  101. 101.
    Lehmann A, Boldt J, Rompert R, et al. Target-controlled infusion or manually controlled infusion of propofol in high-risk patients with severely reduced left ventricular function. J Cardiothorac Vasc Anesth 2001; 15 (4): 445–50PubMedCrossRefGoogle Scholar
  102. 102.
    Lehmann A, Boldt J, Thaler E, et al. Bispectral index in patients with target-controlled or manually-controlled infusion of propofol. Anesth Analg 2002; 95 (3): 639–44PubMedGoogle Scholar
  103. 103.
    Gale T, Leslie K, Kluger M. Propofol anaesthesia via target controlled infusion or manually controlled infusion: effects on the bispectral index as a measure of anaesthetic depth. Anaesth Intensive Care 2001; 29 (6): 579–84PubMedGoogle Scholar
  104. 104.
    Breslin DS, Mirakhur RK, Reid JE, et al. Manual versus target-controlled infusions of propofol. Anaesthesia 2004; 59 (11): 1059–63PubMedCrossRefGoogle Scholar
  105. 105.
    De Castro V, Godet G, Mencia G, et al. Target-controlled infusion for remifentanil in vascular patients improves hemodynamics and decreases remifentanil requirement. Anesth Analg 2003; 96 (1): 33–8PubMedGoogle Scholar
  106. 106.
    Godet G, Reina M, Raux M, et al. Anaesthesia for carotid endarterectomy: comparison of hypnotic- and opioid-based techniques. Br J Anaesth 2004; 92 (3): 329–34PubMedCrossRefGoogle Scholar
  107. 107.
    Vuyk J, Engbers FH, Burm AG, et al. Pharmacodynamic interaction between propofol and alfentanil when given for induction of anesthesia. Anesthesiology 1996; 84 (2): 288–99PubMedCrossRefGoogle Scholar
  108. 108.
    Wakeling HG, Zimmerman JB, Howell S, et al. Targeting effect compartment or central compartment concentration of propofol: what predicts loss of consciousness? Anesthesiology 1999; 90 (1): 92–7PubMedCrossRefGoogle Scholar
  109. 109.
    Struys MM, De Smet T, Depoorter B, et al. Comparison of plasma compartment versus two methods for effect compartment-controlled target-controlled infusion for propofol. Anesthesiology 2000; 92 (2): 399–406PubMedCrossRefGoogle Scholar
  110. 110.
    Barvais L, Rausin I, Glen JB, et al. Administration of propofol by target-controlled infusion in patients undergoing coronary artery surgery. J Cardiothorac Vasc Anesth 1996; 10 (7): 877–83PubMedCrossRefGoogle Scholar
  111. 111.
    Lieutaud T, Billard V, Khalaf H, et al. Muscle relaxation and increasing doses of propofol improve intubating conditions. Can J Anaesth 2003; 50 (2): 121–6PubMedCrossRefGoogle Scholar
  112. 112.
    Sie MY, Goh PK, Chan L, et al. Bispectral index during modified rapid sequence induction using thiopentone or propofol and rocuronium. Anaesth Intensive Care 2004; 32 (1): 28–30PubMedGoogle Scholar
  113. 113.
    Beck GN, Masterson GR, Richards J, et al. Comparison of intubation following propofol and alfentanil with intubation following thiopentone and suxamethonium. Anaesthesia 1993; 48 (10): 876–80PubMedCrossRefGoogle Scholar
  114. 114.
    Baillard C, Adnet F, Borron SW, et al. Tracheal intubation in routine practice with and without muscular relaxation: an observational study. Eur J Anaesthesiol 2005; 22 (9): 672–7PubMedCrossRefGoogle Scholar
  115. 115.
    Barker P, Langton JA, Wilson IG, et al. Movements of the vocal cords on induction of anaesthesia with thiopentone or propofol. Br J Anaesth 1992; 69 (1): 23–5PubMedCrossRefGoogle Scholar
  116. 116.
    Erhan E, Ugur G, Gunusen I, et al. Propofol — not thiopental or etomidate — with remifentanil provides adequate intubating conditions in the absence of neuromuscular blockade. Can J Anaesth 2003; 50 (2): 108–15PubMedCrossRefGoogle Scholar
  117. 117.
    Doi M, Gajraj RJ, Mantzaridis H, et al. Prediction of movement at laryngeal mask airway insertion: comparison of auditory evoked potential index, bispectral index, spectral edge frequency and median frequency. Br J Anaesth 1999; 82 (2): 203–7PubMedCrossRefGoogle Scholar
  118. 118.
    Coste C, Guignard B, Menigaux C, et al. Nitrous oxide prevents movement during orotracheal intubation without affecting BIS value. Anesth Analg 2000; 91 (1): 130–5PubMedGoogle Scholar
  119. 119.
    McKeating K, Bali IM, Dundee JW. The effects of thiopentone and propofol on upper airway integrity. Anaesthesia 1988; 43 (8): 638–40PubMedCrossRefGoogle Scholar
  120. 120.
    Cros AM, Lopez C, Kandel T, et al. Determination of sevoflurane alveolar concentration for tracheal intubation with remifentanil, and no muscle relaxant. Anaesthesia 2000; 55 (10): 965–9PubMedCrossRefGoogle Scholar
  121. 121.
    Joo HS, Perks WJ, Belo SE. Sevoflurane with remifentanil allows rapid tracheal intubation without neuromuscular blocking agents. Can J Anaesth 2001; 48 (7): 646–50PubMedCrossRefGoogle Scholar
  122. 122.
    Sivalingam P, Kandasamy R, Dhakshinamoorthi P, et al. Tracheal intubation without muscle relaxant: a technique using sevoflurane vital capacity induction and alfentanil. Anaesth Intensive Care 2001; 29 (4): 383–7PubMedGoogle Scholar
  123. 123.
    Meaudre E, Boret H, Suppini A, et al. Sufentanil supplementation of sevoflurane during induction of anaesthesia: a randomized study. Eur J Anaesthesiol 2004; 21 (10): 793–6PubMedGoogle Scholar
  124. 124.
    Stevens JB, Vescovo MV, Harris KC, et al. Tracheal intubation using alfentanil and no muscle relaxant: is the choice of hypnotic important? Anesth Analg 1997; 84 (6): 1222–6PubMedGoogle Scholar
  125. 125.
    Erhan E, Ugur G, Alper I, et al. Tracheal intubation without muscle relaxants: remifentanil or alfentanil in combination with propofol. Eur J Anaesthesiol 2003; 20 (1): 37–43PubMedCrossRefGoogle Scholar
  126. 126.
    McNeil IA, Culbert B, Russell I. Comparison of intubating conditions following propofol and succinylcholine with propofol and remifentanil 2 micrograms kg−1 or 4 micrograms kg−1. Br J Anaesth 2000; 85 (4): 623–5PubMedCrossRefGoogle Scholar
  127. 127.
    Thompson JP, Hall AP, Russell J, et al. Effect of remifentanil on the haemodynamic response to orotracheal intubation. Br J Anaesth 1998; 80 (4): 467–9PubMedCrossRefGoogle Scholar
  128. 128.
    Upton RN, Ludbrook GL. A model of the kinetics and dynamics of induction of anaesthesia in sheep: variable estimation for thiopental and comparison with propofol. Br J Anaesth 1999; 82 (6): 890–9PubMedCrossRefGoogle Scholar
  129. 129.
    Ludbrook GL, Upton RN. A physiological model of induction of anaesthesia with propofol in sheep: 2. Model analysis and implications for dose requirements. Br J Anaesth 1997; 79 (4): 505–13PubMedCrossRefGoogle Scholar
  130. 130.
    Minto CF, Power I. New opioid analgesics: an update. Int Anesthesiol Clin 1997; 35 (2): 49–65PubMedCrossRefGoogle Scholar
  131. 131.
    Iamaroon A, Pitimana-Aree S, Prechawai C, et al. Endotracheal intubation with thiopental/succinylcholine or sevoflurane-nitrous oxide anesthesia in adults: a comparative study. Anesth Analg 2001; 92 (2): 523–8PubMedCrossRefGoogle Scholar
  132. 132.
    Cros AM, Chopin F, Lopez C, et al. Anesthesia induction with sevoflurane in adult patients with predictive signs of difficult intubation. Ann Fr Anesth Reanim 2002; 21 (4): 249–55PubMedCrossRefGoogle Scholar
  133. 133.
    Favier JC, Da Conceicao M, Genco G, et al. Fiberoptic intubation in adult patients with predictive signs of difficult intubation: inhalational induction using sevoflurane and an endoscopic facial mask. Ann Fr Anesth Reanim 2003; 22 (2): 96–102PubMedCrossRefGoogle Scholar
  134. 134.
    Joo HS, Perks WJ, Belo SE. Sevoflurane with remifentanil allows rapid tracheal intubation without neuromuscular blocking agents. Can J Anaesth 2001; 48 (7): 646–50PubMedCrossRefGoogle Scholar
  135. 135.
    Sivalingam P, Kandasamy R, Dhakshinamoorthi P, et al. Tracheal intubation without muscle relaxant: a technique using sevoflurane vital capacity induction and alfentanil. Anaesth Intensive Care 2001; 29 (4): 383–7PubMedGoogle Scholar
  136. 136.
    Sparr HJ, Giesinger S, Ulmer H, et al. Influence of induction technique on intubating conditions after rocuronium in adults: comparison with rapid-sequence induction using thiopentone and suxamethonium. Br J Anaesth 1996; 77 (3): 339–42PubMedCrossRefGoogle Scholar
  137. 137.
    Upton RN, Ludbrook GL. A physiological model of induction of anaesthesia with propofol in sheep: 1. Structure and estimation of variables. Br J Anaesth 1997; 79 (4): 497–504PubMedCrossRefGoogle Scholar
  138. 138.
    Upton RN, Ludbrook GL, Grant C. The cerebral and systemic kinetics of thiopentone and propofol in halothane anaesthetized sheep. Anaesth Intensive Care 2001; 29 (2): 117–23PubMedGoogle Scholar
  139. 139.
    Mirakhur RK, Shepherd WF, Elliott P. Intraocular pressure changes during rapid sequence induction of anaesthesia: comparison of propofol and thiopentone in combination with vecuronium. Br J Anaesth 1988; 60 (4): 379–83PubMedCrossRefGoogle Scholar
  140. 140.
    Zimmerman AA, Funk KJ, Tidwell JL. Propofol and alfentanil prevent the increase in intraocular pressure caused by succinylcholine and endotracheal intubation during a rapid sequence induction of anesthesia. Anesth Analg 1996; 83 (4): 814–7PubMedGoogle Scholar
  141. 141.
    Scott H, Bateman C, Price M. The use of remifentanil in general anaesthesia for caesarean section in a patient with mitral valve disease. Anaesthesia 1998; 53 (7): 695–7PubMedCrossRefGoogle Scholar
  142. 142.
    Johannsen EK, Munro AJ. Remifentanil in emergency caesarean section in pre-eclampsia complicated by thrombocytopenia and abnormal liver function. Anaesth Intensive Care 1999; 27 (5): 527–9PubMedGoogle Scholar
  143. 143.
    Orme RM, Grange CS, Ainsworth QP, et al. General anaesthesia using remifentanil for caesarean section in parturients with critical aortic stenosis: a series of four cases. Int J Obstet Anesth 2004; 13 (3): 183–7PubMedCrossRefGoogle Scholar
  144. 144.
    Kee WD, Khaw KS, Ma KC, et al. Maternal and neonatal effects of remifentanil at induction of general anesthesia for cesarean delivery: a randomized, double-blind, controlled trial. Anesthesiology 2006; 104 (1): 14–20CrossRefGoogle Scholar
  145. 145.
    Capogna G, Celleno D, Sebastiani M, et al. Propofol and thiopentone for caesarean section revisited: maternal effects and neonatal outcome. Int J Obstet Anesth 1991; 1 (1): 19–23PubMedCrossRefGoogle Scholar
  146. 146.
    Celleno D, Capogna G, Emanuelli M, et al. Which induction drug for cesarean section? A comparison of thiopental sodium, propofol, and midazolam. J Clin Anesth 1993; 5 (4): 284–8PubMedCrossRefGoogle Scholar
  147. 147.
    Moore EW, Davies MW. Inhalational versus intravenous induction: a survey of emergency anaesthetic practice in the United Kingdom. Eur J Anaesthesiol 2000; 17 (1): 33–7PubMedGoogle Scholar
  148. 148.
    Payne K, Moore EW, Elliott RA, et al. Anaesthesia for day case surgery: a survey of paediatric clinical practice in the UK. Eur J Anaesthesiol 2003; 20 (4): 325–30PubMedCrossRefGoogle Scholar
  149. 149.
    Brown GW, Patel N, Ellis FR. Comparison of propofol and thiopentone for laryngeal mask insertion. Anaesthesia 1991; 46 (9): 771–2PubMedCrossRefGoogle Scholar
  150. 150.
    Scanlon P, Carey M, Power M, et al. Patient response to laryngeal mask insertion after induction of anaesthesia with propofol or thiopentone. Can J Anaesth 1993; 40 (9): 816–8PubMedCrossRefGoogle Scholar
  151. 151.
    Koh KF, Chen FG, Cheong KF, et al. Laryngeal mask insertion using thiopental and low dose atracurium: a comparison with propofol. Can J Anaesth 1999; 46 (7): 670–4PubMedCrossRefGoogle Scholar
  152. 152.
    Grewal K, Samsoon G. Facilitation of laryngeal mask airway insertion: effects of remifentanil administered before induction with target-controlled propofol infusion. Anaesthesia 2001; 56 (9): 897–901PubMedCrossRefGoogle Scholar
  153. 153.
    Lee MP, Kua JS, Chiu WK. The use of remifentanil to facilitate the insertion of the laryngeal mask airway. Anesth Analg 2001; 93 (2): 359–62PubMedGoogle Scholar
  154. 154.
    Minto CF, Schnider TW, Gregg KM, et al. Using the time of maximum effect site concentration to combine pharmacokinetics and pharmacodynamics. Anesthesiology 2003; 99 (2): 324–33PubMedCrossRefGoogle Scholar
  155. 155.
    Ang S, Cheong KF, Ng TI. Alfentanil co-induction for laryngeal mask insertion. Anaesth Intensive Care 1999; 27 (2): 175–8PubMedGoogle Scholar
  156. 156.
    Drage MP, Nunez J, Vaughan RS, et al. Jaw thrusting as a clinical test to assess the adequate depth of anaesthesia for insertion of the laryngeal mask. Anaesthesia 1996; 51 (12): 1167–70PubMedCrossRefGoogle Scholar
  157. 157.
    Muzi M, Robinson BJ, Ebert TJ, et al. Induction of anesthesia and tracheal intubation with sevoflurane in adults. Anesthesiology 1996; 85 (3): 536–43PubMedCrossRefGoogle Scholar
  158. 158.
    Nakata Y, Goto T, Saito H, et al. The placement of the cuffed oropharyngeal airway with sevoflurane in adults: a comparison with the laryngeal mask airway. Anesth Analg 1998; 87 (1): 143–6PubMedGoogle Scholar
  159. 159.
    Plastow SE, Hall JE, Pugh SC. Fentanyl supplementation of sevoflurane induction of anaesthesia. Anaesthesia 2000; 55 (5): 475–8PubMedCrossRefGoogle Scholar
  160. 160.
    Siau C, Liu EH. Nitrous oxide does not improve sevoflurane induction of anesthesia in adults. J Clin Anesth 2002; 14 (3): 218–22PubMedCrossRefGoogle Scholar
  161. 161.
    Joo HS, Perks WJ. Sevoflurane versus propofol for anesthetic induction: a meta-analysis. Anesth Analg 2000; 91 (1): 213–9PubMedGoogle Scholar
  162. 162.
    Ti LK, Chow MY, Lee TL. Comparison of sevoflurane with propofol for laryngeal mask airway insertion in adults. Anesth Analg 1999; 88 (4): 908–12PubMedGoogle Scholar
  163. 163.
    Siddik-Sayyid SM, Aouad MT, Taha SK, et al. A comparison of sevoflurane-propofol versus sevoflurane or propofol for laryngeal mask airway insertion in adults. Anesth Analg 2005; 100 (4): 1204–9PubMedCrossRefGoogle Scholar
  164. 164.
    Milde LN, Milde JH, Michenfelder JD. Cerebral functional, metabolic, and hemodynamic effects of etomidate in dogs. Anesthesiology 1985; 63 (4): 371–7PubMedCrossRefGoogle Scholar
  165. 165.
    Todd MM, Warner DS, Sokoll MD, et al. A prospective, comparative trial of three anesthetics for elective supratentorial craniotomy: propofol/fentanyl, isoflurane/nitrous oxide, and fentanyl/nitrous oxide. Anesthesiology 1993; 78 (6): 1005–20PubMedCrossRefGoogle Scholar
  166. 166.
    Bazin JE. Effects of anesthetic agents on intracranial pressure [in French]. Ann Fr Anesth Reanim 1997; 16 (4): 445–52PubMedCrossRefGoogle Scholar
  167. 167.
    Albanese J, Viviand X, Potie F, et al. Sufentanil, fentanyl, and alfentanil in head trauma patients: a study on cerebral hemodynamics. Crit Care Med 1999; 27 (2): 407–11PubMedCrossRefGoogle Scholar
  168. 168.
    Steiner LA, Johnston AJ, Chatfield DA, et al. The effects of large dose propofol on cerebrovascular pressure autoregulation in head-injured patients. Anesth Analg 2003; 97 (10): 572–6PubMedCrossRefGoogle Scholar
  169. 169.
    Ravussin P, Guinard JP, Ralley F, et al. Effect of propofol on cerebrospinal fluid pressure and cerebral perfusion pressure in patients undergoing craniotomy. Anaesthesia 1988; 43 (3 Suppl.): 37–41PubMedCrossRefGoogle Scholar
  170. 170.
    Pinaud M, Lelousque JN, Chetanneau A, et al. Effect of propofol on cerebral hemodynamics and metabolism in patients with brain trauma. Anesthesiology 1990; 73 (3): 404–9PubMedCrossRefGoogle Scholar
  171. 171.
    Watts AD, Eliasziw M, Gelb AW. Propofol and hyperventilation for the treatment of increased intracranial pressure in rabbits. Anesth Analg 1998; 87 (3): 564–8PubMedGoogle Scholar
  172. 172.
    Modica PA, Tempelhoff R. Intracranial pressure during induction of anaesthesia and tracheal intubation with etomidate-induced EEG burst suppression. Can J Anaesth 1992; 39 (3): 236–41PubMedCrossRefGoogle Scholar
  173. 173.
    Schwedler M, Miletich DJ, Albrecht RF. Cerebral blood flow and metabolism following ketamine administration. Can Anaesth Soc J 1982; 29 (3): 222–6PubMedCrossRefGoogle Scholar
  174. 174.
    Werner C, Kochs E, Rau M, et al. Dose-dependent blood flow velocity changes in the basal cerebral arteries following low-dose ketamine. J Neurosurg Anesthesiol 1990; 2 (2): 86–91PubMedCrossRefGoogle Scholar
  175. 175.
    Langsjo JW, Maksimow A, Salmi E, et al. S-ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans. Anesthesiology 2005; 103 (2): 258–68PubMedCrossRefGoogle Scholar
  176. 176.
    Strebel S, Lam AM, Matta B, et al. Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology 1995; 83 (1): 66–76PubMedCrossRefGoogle Scholar
  177. 177.
    Albanese J, Arnaud S, Rey M, et al. Ketamine decreases intracranial pressure and electroencephalographic activity in traumatic brain injury patients during propofol sedation. Anesthesiology 1997; 87 (6): 1328–34PubMedCrossRefGoogle Scholar
  178. 178.
    Sakai K, Cho S, Fukusaki M, et al. The effects of propofol with and without ketamine on human cerebral blood flow velocity and CO(2) response. Anesth Analg 2000; 90 (2): 377–82PubMedGoogle Scholar
  179. 179.
    Conti A, Iacopino DG, Fodale V, et al. Cerebral haemodynamic changes during propofol-remifentanil or sevoflurane anaesthesia: transcranial Doppler study under bispectral index monitoring. Br J Anaesth 2006; 97 (3): 333–9PubMedCrossRefGoogle Scholar
  180. 180.
    Thwaites A, Edmends S, Smith I. Inhalation induction with sevoflurane: a double-blind comparison with propofol. Br J Anaesth 1997; 78 (4): 356–61PubMedCrossRefGoogle Scholar
  181. 181.
    Nathan N, Peyclit A, Lahrimi A, et al. Comparison of sevoflurane and propofol for ambulatory anaesthesia in gynaecological surgery. Can J Anaesth 1998; 45 (12): 1148–50PubMedCrossRefGoogle Scholar
  182. 182.
    Baker CE, Smith I. Sevoflurane: a comparison between vital capacity and tidal breathing techniques for the induction of anaesthesia and laryngeal mask airway placement. Anaesthesia 1999; 54 (9): 841–4PubMedCrossRefGoogle Scholar
  183. 183.
    Luntz SP, Janitz E, Motsch J, et al. Cost-effectiveness and high patient satisfaction in the elderly: sevoflurane versus propofol anaesthesia. Eur J Anaesthesiol 2004; 21 (2): 115–22PubMedGoogle Scholar
  184. 184.
    Tang J, Chen L, White PF, et al. Recovery profile, costs, and patient satisfaction with propofol and sevoflurane for fast-track office-based anesthesia. Anesthesiology 1999; 91 (1): 253–61PubMedCrossRefGoogle Scholar
  185. 185.
    van den Berg AA, Chitty DA, Jones RD, et al. Intravenous or inhaled induction of anesthesia in adults? An audit of preoper-ative patient preferences. Anesth Analg 2005; 100 (5): 1422–4PubMedCrossRefGoogle Scholar
  186. 186.
    Moerman N, van Dam FS, Oosting J. Recollections of general anaesthesia: a survey of anaesthesiological practice. Acta Anaesthesiol Scand 1992; 36 (8): 767–71PubMedCrossRefGoogle Scholar
  187. 187.
    Macario A, Fleisher LA. Is there value in obtaining a patient’s willingness to pay for a particular anesthetic intervention? Anesthesiology 2006; 104 (5): 906–9PubMedCrossRefGoogle Scholar
  188. 188.
    Dwyer R, Bennett HL, Eger EI, et al. Effects of isoflurane and nitrous oxide in subanesthetic concentrations on memory and responsiveness in volunteers. Anesthesiology 1992; 77 (5): 888–98PubMedCrossRefGoogle Scholar
  189. 189.
    Tong D, Chung F. Recall after total intravenous anaesthesia due to an equipment misuse. Can J Anaesth 1997; 44 (1): 73–7PubMedCrossRefGoogle Scholar
  190. 190.
    Apfel CC, Kranke P, Katz MH, et al. Volatile anaesthetics may be the main cause of early but not delayed postoperative vomiting: a randomized controlled trial of factorial design. Br J Anaesth 2002; 88 (5): 659–68PubMedCrossRefGoogle Scholar
  191. 191.
    Habib AS, White WD, Eubanks S, et al. A randomized comparison of a multimodal management strategy versus combination antiemetics for the prevention of postoperative nausea and vomiting. Anesth Analg 2004; 99 (1): 77–81PubMedCrossRefGoogle Scholar
  192. 192.
    Lien CA, Hemmings HC, Belmont MR, et al. A comparison: the efficacy of sevoflurane-nitrous oxide or propofol-nitrous oxide for the induction and maintenance of general anesthesia. J Clin Anesth 1996; 8 (8): 639–43PubMedCrossRefGoogle Scholar
  193. 193.
    Smith I, Terhoeve PA, Hennart D, et al. A multicentre comparison of the costs of anaesthesia with sevoflurane or propofol. Br J Anaesth 1999; 83 (4): 564–70PubMedCrossRefGoogle Scholar
  194. 194.
    Myles PS, Hunt JO, Fletcher H, et al. Part I: propofol, thiopental, sevoflurane, and isoflurane: a randomized, controlled trial of effectiveness. Anesth Analg 2000; 91 (5): 1163–9PubMedGoogle Scholar
  195. 195.
    Shao X, Li H, White PF, et al. Bisulfite-containing propofol: is it a cost-effective alternative to Diprivan for induction of anesthesia? Anesth Analg 2000; 91 (4): 871–5PubMedCrossRefGoogle Scholar
  196. 196.
    Yogendran S, Prabhu A, Hendy A, et al. Vital capacity and patient controlled sevoflurane inhalation result in similar induction characteristics. Can J Anaesth 2005; 52 (1): 45–9PubMedCrossRefGoogle Scholar
  197. 197.
    Fleischmann E, Akca O, Wallner T, et al. Onset time, recovery duration, and drug cost with four different methods of inducing general anesthesia. Anesth Analg 1999; 88 (4): 930–5PubMedGoogle Scholar
  198. 198.
    Pollard BJ, Elliott RA, Moore EW. Anaesthetic agents in adult day case surgery. Eur J Anaesthesiol 2003; 20 (1): 1–9PubMedCrossRefGoogle Scholar
  199. 199.
    Kern C, Weber A, Aurilio C, et al. Patient evaluation and comparison of the recovery profile between propofol and thiopentone as induction agents in day surgery. Anaesth Intensive Care 1998; 26 (2): 156–61PubMedGoogle Scholar
  200. 200.
    Kharasch ED, Karol MD, Lanni C, et al. Clinical sevoflurane metabolism and disposition: I. Sevoflurane and metabolite pharmacokinetics. Anesthesiology 1995; 82 (6): 1369–78PubMedCrossRefGoogle Scholar
  201. 201.
    Bailey JM. Context-sensitive half-times and other decrement times of inhaled anesthetics. Anesth Analg 1997; 85 (3): 681–6PubMedGoogle Scholar
  202. 202.
    Dashfield AK, Birt DJ, Thurlow J, et al. Recovery characteristics using single-breath 8% sevoflurane or propofol for induction of anaesthesia in day-case arthroscopy patients. Anaesthesia 1998; 53 (11): 1062–6PubMedCrossRefGoogle Scholar
  203. 203.
    Fish WH, Hobbs AJ, Daniels MV. Comparison of sevoflurane and total intravenous anaesthesia for daycase urological surgery. Anaesthesia 1999; 54 (10): 1002–6PubMedCrossRefGoogle Scholar
  204. 204.
    Smith I, Thwaites AJ. Target-controlled propofol vs. sevoflurane: a double-blind, randomised comparison in day-case anaesthesia. Anaesthesia 1999; 54 (8): 745–52PubMedCrossRefGoogle Scholar
  205. 205.
    Yang H, Choi PT, McChesney J, et al. Induction with sevoflurane-remifentanil is comparable to propofol-fentanyl-rocuronium in PONV after laparoscopic surgery. Can J Anaesth 2004; 51 (7): 660–7PubMedCrossRefGoogle Scholar
  206. 206.
    Suttner S, Boldt J, Schmidt C, et al. Cost analysis of target-controlled infusion-based anesthesia compared with standard anesthesia regimens. Anesth Analg 1999; 88 (1): 77–82PubMedGoogle Scholar
  207. 207.
    Weinger MB. Drug wastage contributes significantly to the cost of routine anesthesia care. J Clin Anesth 2001; 13 (7): 491–7PubMedCrossRefGoogle Scholar
  208. 208.
    Odin I, Feiss P. Low flow and economics of inhalational anaesthesia. Best Pract Res Clin Anaesthesiol 2005; 19 (3): 399–413PubMedCrossRefGoogle Scholar
  209. 209.
    Nouette-Gaulain K, Lemoine P, Cros AM, et al. Induction of anaesthesia with target-controlled inhalation of sevoflurane in adults with the ZEUS anaesthesia machine. Ann Fr Anesth Reanim 2005; 24 (7): 802–6PubMedCrossRefGoogle Scholar
  210. 210.
    Hendrickx JF, Vandeput DM, De Geyndt AM, et al. Maintaining sevoflurane anesthesia during low-flow anesthesia using a single vaporizer setting change after overpressure induction. J Clin Anesth 2000; 12 (4): 303–7PubMedCrossRefGoogle Scholar
  211. 211.
    Hendrickx JF, Vandeput DM, De Geyndt AM, et al. Coasting after overpressure induction with sevoflurane. J Clin Anesth 2000; 12 (2): 100–3PubMedCrossRefGoogle Scholar
  212. 212.
    Pontone S, Finkel S, Desmonts JM, et al. Is the relative complexity index beta an accurate indicator of the cost of anesthesia? Ann Fr Anesth Reanim 1993; 12 (6): 539–43PubMedCrossRefGoogle Scholar
  213. 213.
    Orkin FK. Meaningful cost reduction. Penny wise, pound foolish. Anesthesiology 1995; 83 (6): 1135–7Google Scholar
  214. 214.
    Friedman DM, Sokal SM, Chang Y, et al. Increasing operating room efficiency through parallel processing. Ann Surg 2006; 243 (1): 10–4PubMedCrossRefGoogle Scholar
  215. 215.
    Gan T, Sloan F, Dear Gde L, et al. How much are patients willing to pay to avoid postoperative nausea and vomiting? Anesth Analg. 2001; 92 (2): 393–400PubMedCrossRefGoogle Scholar
  216. 216.
    Bishai D, Brice R, Girod I, et al. Conjoint analysis of French and German parents’ willingness to pay for meningococcal vaccine. Pharmacoeconomics 2007; 25 (2): 143–54PubMedCrossRefGoogle Scholar
  217. 217.
    Gan TJ, Ing RJ, de L Dear G, et al. How much are patients willing to pay to avoid intraoperative awareness? J Clin Anesth 2003; 15 (2): 108–12PubMedCrossRefGoogle Scholar
  218. 218.
    van den Bosch JE, Bonsel GJ, Moons KG, et al. Effect of postoperative experiences on willingness to pay to avoid postoperative pain, nausea, and vomiting. Anesthesiology 2006; 104 (5): 1033–9PubMedCrossRefGoogle Scholar
  219. 219.
    Orkin FK. Moving toward value-based anesthesia care. J Clin Anesth 1993; 5 (2): 91–8PubMedCrossRefGoogle Scholar
  220. 220.
    Macario A, Chung A, Weinger MB. Variation in practice patterns of anesthesiologists in California for prophylaxis of postoperative nausea and vomiting. J Clin Anesth 2001; 13 (5): 353–60PubMedCrossRefGoogle Scholar
  221. 221.
    Elliott RA, Payne K, Moore JK, et al. Clinical and economic choices in anaesthesia for day surgery: a prospective randomised controlled trial. Anaesthesia 2003; 58 (5): 412–21PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2007

Authors and Affiliations

  1. 1.Department of Anaesthesia and Intensive CareCHU DupuytrenLimoges CédexFrance

Personalised recommendations