, Volume 66, Issue 16, pp 2075–2093 | Cite as

Disease-Modifying Therapies in Alzheimer’s Disease

How Far Have We Come?
  • Michael Hüll
  • Mathias Berger
  • Michael Heneka
Leading Article


Currently, there are no disease-modifying therapies available for Alzheimer’s disease (AD). Acetylcholinesterase inhibitors and memantine are licensed for AD and have moderate symptomatic benefits. Epidemiological studies have suggested that NSAIDs, estrogen, HMG-CoA reductase inhibitors (statins) or tocopherol (vitamin E) can prevent AD. However, prospective, randomised studies have not convincingly been able to demonstrate clinical efficacy. Major progress in molecular medicine suggests further drug targets.

The metabolism of the amyloid-precursor protein and the aggregation of its Aβ fragment are the focus of current studies. Aβ peptides are produced by the enzymes β- and γ-secretase. Inhibition of γ-secretase has been shown to reduce Aβ production. However, γ-secretase activity is also involved in other vital physiological pathways. Involvement of γ-secretase in cell differentiation may preclude complete blockade of γ-secretase for prolonged times in vivo. Inhibition of β-secretase seems to be devoid of serious adverse effects according to studies with knockout animals. However, targeting β-secretase is hampered by the lack of suitable inhibitors to date. Other approaches focus on enzymes that cut inside the Aβ sequence such as α-secretase and neprilysin. Stimulation of the expression or activity of α-secretase or neprilysin has been shown to enhance Aβ degradation. Furthermore, inhibitors of Aβ aggregation have been described and clinical trials have been initiated. Peroxisome proliferator activated receptor-γ agonists and selected NSAIDs may be suitable to modulate both Aβ production and inflammatory activation. On the basis of autopsy reports, active immunisation against Aβ in humans seems to have proven its ability to clear amyloid deposits from the brain. However, a first clinical trial with active vaccination against the full length Aβ peptide has been halted because of adverse effects. Further trials with vaccination or passive transfer of antibodies are planned.


Nerve Growth Factor Memantine Amyloid Plaque Rasagiline Leuprorelin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This publication is part of the German Research Network on Dementia and was funded by the German Federal Ministry for Education and Research (grant 01 G1 0420). The authors have no conflicts of interest that are directly relevant to the content of this review.


  1. 1.
    Fillit HM, O’Connell AW, Brown WM, et al. Barriers to drug discovery and development for Alzheimer disease. Alzheimer Dis Assoc Disord 2002; 16 Suppl. 1: S1–8PubMedCrossRefGoogle Scholar
  2. 2.
    Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: a Delphi consensus study. Lancet 2005; 366(9503): 2112–7PubMedCrossRefGoogle Scholar
  3. 3.
    Bond J, Stave C, Sganga A, et al. Inequalities in dementia care across Europe: key findings of the Facing Dementia Survey. Int J Clin Pract Suppl 2005; (146): 8–14PubMedCrossRefGoogle Scholar
  4. 4.
    Fillit H, Hill J. Economics of dementia and pharmacoeconomics of dementia therapy. Am J Geriatr Pharmacother 2005; 3(1): 39–49PubMedCrossRefGoogle Scholar
  5. 5.
    Ferris SH. Clinical trials in AD: are current formats and outcome measures adequate? Alzheimer Dis Assoc Disord 2002; 16 Suppl. 1: S13–17PubMedCrossRefGoogle Scholar
  6. 6.
    Dickerson BC, Sperling RA. Neuroimaging biomarkers for clinical trials of disease-modifying therapies in Alzheimer’s disease. NeuroRx 2005; 2(2): 348–60PubMedCrossRefGoogle Scholar
  7. 7.
    Blennow K. Cerebrospinal fluid protein biomarkers for Alzheimer’s disease. NeuroRx 2004; 1(2): 213–25PubMedCrossRefGoogle Scholar
  8. 8.
    Thal LJ, Kantarci K, Reiman EM, et al. The role of biomarkers in clinical trials for Alzheimer disease. Alzheimer Dis Assoc Disord 2006; 20(1): 6–15PubMedCrossRefGoogle Scholar
  9. 9.
    McDermott MP, Hall WJ, Oakes D, et al. Design and analysis of two-period studies of potentially disease-modifying treatments. Control Clin Trials 2002; 23(6): 635–49PubMedCrossRefGoogle Scholar
  10. 10.
    Jack CR, Slomkowski M, Gracon S, et al. MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD. Neurology 2003; 60(2): 253–60PubMedCrossRefGoogle Scholar
  11. 11.
    Areosa SA, Sherriff F, McShane R. Memantine for dementia. Cochrane Database Syst Rev 2005; (2): CD003154PubMedGoogle Scholar
  12. 12.
    Birks J, Harvey R. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev 2006; (1): CD001190PubMedGoogle Scholar
  13. 13.
    Loy C, Schneider L. Galantamine for Alzheimer’s disease. Cochrane Database Syst Rev 2004; (4): CD001747PubMedGoogle Scholar
  14. 14.
    Birks J, Grimley EJ, Iakovidou V, et al. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev 2000; (4): CD001191PubMedGoogle Scholar
  15. 15.
    Rockwood K. Size of the treatment effect on cognition of cholinesterase inhibition in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2004; 75(5): 677–85PubMedCrossRefGoogle Scholar
  16. 16.
    NICE. Press release 2006/048 Oct 18 [online]. Available from URL: [Accessed 2006 Sep 29]
  17. 17.
    Maelicke A, Samochocki M, Jostock R, et al. Allosteric sensitization of nicotinic receptors by galantamine, a new treatment strategy for Alzheimer’s disease. Biol Psychiatry 2001; 49(3): 279–88PubMedCrossRefGoogle Scholar
  18. 18.
    Greig NH, Utsuki T, Yu Q, et al. A new therapeutic target in Alzheimer’s disease treatment: attention to butyrylcholinesterase. Curr Med Res Opin 2001; 17(3): 159–65PubMedGoogle Scholar
  19. 19.
    Wilkinson DG, Francis PT, Schwam E, et al. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging 2004; 21(7): 453–78PubMedCrossRefGoogle Scholar
  20. 20.
    Bartorelli L, Giraldi C, Saccardo M, et al. Effects of switching from an AChE inhibitor to a dual AChE-BuChE inhibitor in patients with Alzheimer’s disease. Curr Med Res Opin 2005; 21(11): 1809–18PubMedCrossRefGoogle Scholar
  21. 21.
    Bullock R, Touchon J, Bergman H, et al. Rivastigmine and donepezil treatment in moderate to moderately-severe Alzheimer’s disease over a 2-year period. Curr Med Res Opin 2005; 21(8): 1317–27PubMedCrossRefGoogle Scholar
  22. 22.
    Pirttila T, Wilcock G, Truyen L, et al. Long-term efficacy and safety of galantamine in patients with mild-to-moderate Alzheimer’s disease: multicenter trial. Eur J Neurol 2004; 11(11): 734–41PubMedCrossRefGoogle Scholar
  23. 23.
    Rogers SL, Farlow MR, Doody RS, et al. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Donepezil Study Group. Neurology. 1998; 50(1): 136–45Google Scholar
  24. 24.
    Courtney C, Farrell D, Gray R, et al. Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): randomised double-blind trial. Lancet 2004; 363(9427): 2105–15PubMedCrossRefGoogle Scholar
  25. 25.
    National Library of Medicine. [online]. Available from URL: [Accessed 2006 Sep 29]
  26. 26.
    Szekely CA, Thorne JE, Zandi PP, et al. Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease: a systematic review. Neuroepidemiology 2004; 23(4): 159–69PubMedCrossRefGoogle Scholar
  27. 27.
    Hull M, Lieb K, Fiebich BL. Anti-inflammatory drugs: a hope for Alzheimer’s disease? Expert Opin Investig Drugs 2000; 9(4): 671–83PubMedCrossRefGoogle Scholar
  28. 28.
    Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000; 21(3): 383–421PubMedCrossRefGoogle Scholar
  29. 29.
    Tabet N, Feldman H. Indomethacin for the treatment of Alzheimer’s disease patients. Cochrane Database Syst Rev 2002; (2): CD003673PubMedGoogle Scholar
  30. 30.
    Dvir E, Friedman JE, Lee JY, et al. A novel phospholipid derivative of indomethacin, DP-155 [mixture of 1-steroyl and l-palmitoyl-2-{4-[1-(p-chlorobenzoyl)-5-methoxy-2-methyl-3-indolylacetamido]butanoyl}-sn-glycero-3-phosophatidylcho line], shows superior safety and similar efficacy in reducing brain amyloid beta in an Alzheimer’s disease model. J Pharmacol Exp Ther 2006; 318(3): 1248–56PubMedCrossRefGoogle Scholar
  31. 31.
    Imbimbo BP. The potential role of non-steroidal anti-inflammatory drugs in treating Alzheimer’s disease. Expert Opin Investig Drugs 2004; 13(11): 1469–81PubMedCrossRefGoogle Scholar
  32. 32.
    Aisen PS, Schafer KA, Grundman M, et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 2003; 289(21): 2819–26PubMedCrossRefGoogle Scholar
  33. 33.
    Zanetti O, Bonomini C, Pasqualetti P, et al. Effects of ibuprofen on Alzheimer’s disease cognitive progression: a randomized controlled trial [abstract]. Alzheimers Dementia 2006; 2 (3 Suppl. 1): S366CrossRefGoogle Scholar
  34. 34.
    Klegeris A, McGeer PL. Non-steroidal anti-inflammatory drugs (NSAIDs) and other anti-inflammatory agents in the treatment of neurodegenerative disease. Curr Alzheimer Res 2005; 2(3): 355–65PubMedCrossRefGoogle Scholar
  35. 35.
    Weggen S, Eriksen JL, Das P, et al. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 2001; 414(6860): 212–6PubMedCrossRefGoogle Scholar
  36. 36.
    Takahashi Y, Hayashi I, Tominari Y, et al. Sulindac sulfide is a noncompetitive gamma-secretase inhibitor that preferentially reduces Abeta 42 generation. J Biol Chem 2003; 278(20): 18664–70PubMedCrossRefGoogle Scholar
  37. 37.
    Zhou Y, Su Y, Li B, et al. Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho. Science 2003; 302(5648): 1215–7PubMedCrossRefGoogle Scholar
  38. 38.
    Shie FS, Montine KS, Breyer RM, et al. Microglial EP2 as a new target to increase amyloid beta phagocytosis and decrease amyloid beta-induced damage to neurons. Brain Pathol 2005; 15(2): 134–8PubMedCrossRefGoogle Scholar
  39. 39.
    Waschbisch A, Fiebich BL, Akundi RS, et al. Interleukin-1 beta-induced expression of the prostaglandin E-receptor subtype EP3 in U373 astrocytoma cells depends on protein kinase C and nuclear factor-kappaB. J Neurochem 2006; 96(3): 680–93PubMedCrossRefGoogle Scholar
  40. 40.
    Slawik H, Volk B, Fiebich B, et al. Microglial expression of prostaglandin EP3 receptor in excitotoxic lesions in the rat striatum. Neurochem Int 2004; 45(5): 653–60PubMedCrossRefGoogle Scholar
  41. 41.
    Kawano T, Anrather J, Zhou P, et al. Prostaglandin E(2) EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med 2006; 12(2): 225–9PubMedCrossRefGoogle Scholar
  42. 42.
    Gasparini L, Ongini E, Wilcock D, et al. Activity of flurbiprofen and chemically related anti-inflammatory drugs in models of Alzheimer’s disease. Brain Res Brain Res Rev 2005; 48(2): 400–8PubMedCrossRefGoogle Scholar
  43. 43.
    Eriksen JL, Sagi SA, Smith TE, et al. NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo. J Clin Invest 2003; 112(3): 440–9PubMedGoogle Scholar
  44. 44.
    Gordon ML, Mirza N, Bauer L, et al. Intravenous pulse cyclophosphamide in Alzheimer’s disease: results of a pilot dose finding study [abstract]. Alzheimers Dementia 2006; 2 (3 Suppl. 1): S360CrossRefGoogle Scholar
  45. 45.
    Henderson VW. Estrogen-containing hormone therapy and Alzheimer’s disease risk: understanding discrepant inferences from observational and experimental research. Neuroscience 2006; 138(3): 1031–9PubMedCrossRefGoogle Scholar
  46. 46.
    Shumaker SA, Legault C, Rapp SR, et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA 2003; 289(20): 2651–62PubMedCrossRefGoogle Scholar
  47. 47.
    Mulnard RA, Cotman CW, Kawas C, et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial. Alzheimer’s Disease Cooperative Study. JAMA 2000; 283(8): 1007–15PubMedCrossRefGoogle Scholar
  48. 48.
    Yaffe K, Vittinghoff E, Ensrud KE, et al. Effects of ultra low-dose transdermal estradiol on cognitive function: results of a randomized clinical trial [abstract]. Alzheimer’s Dementia 2006; 2 (3 Suppl. 1): S360CrossRefGoogle Scholar
  49. 49.
    National Institute on Aging. Alzheimer’s disease: therapeutic potential of estrogen [online]. Available from URL: [Accessed 2006 Aug 21]
  50. 50.
    Maki PM. Hormone therapy and risk for dementia: where do we go from here? Gynecol Endocrinol 2004; 19(6): 354–9PubMedCrossRefGoogle Scholar
  51. 51.
    Brinton RD. Impact of estrogen therapy on Alzheimer’s disease: a fork in the road? CNS Drugs 2004; 18(7): 405–22PubMedCrossRefGoogle Scholar
  52. 52.
    Behl C. Oxidative stress in Alzheimer’s disease: implications for prevention and therapy. Subcell Biochem 2005; 38: 65–78PubMedCrossRefGoogle Scholar
  53. 53.
    Weill-Engerer S, David JP, Sazdovitch V, et al. Neurosteroid quantification in human brain regions: comparison between Alzheimer’s and nondemented patients. J Clin Endocrinol Metab 2002; 87(11): 5138–43PubMedCrossRefGoogle Scholar
  54. 54.
    Hunter-Fleming Ltd. European study of HF0220 in mild to moderate Alzheimer’s disease patients [online]. Available from URL: [Accessed 2006 Aug 17]
  55. 55.
    Gregory CW, Atwood CS, Smith MA, et al. Antigonadotropins: a novel strategy to halt Alzheimer’s disease progression. Curr Pharm Des 2006; 12(6): 685–90PubMedCrossRefGoogle Scholar
  56. 56.
    LaPlante BJ, Powers CF, Gault JL, et al. Stabilization of cognitive decline in Alzheimer’s disease following treatment with leuprolide acetate. Alzheimer’s Dementia 2006; 2 (3 Suppl. 1): S620–1CrossRefGoogle Scholar
  57. 57.
    Voyager Pharmaceuticals. ALADDIN Study phase III: Antigonadotropin-Leuprolide in Alzheimer’s Disease Drug INvestigation (VP-AD-301) [online]. Available from URL: [Accessed 2006 Aug 20]
  58. 58.
    National Institute on Aging. SMART: Somatotrophins, Memory, and Aging Research Trial [online]. Available from URL: [Accessed 2006 Aug 17]
  59. 59.
    Ryan JM, Ma GJ, Peng Y, et al. A randomized double-blind, placebo-controlled trial to evaluate the safety and efficacy of MK-0677 in slowing the progression of Alzheimer’s disease [online]. Available from URL:[Accessed 2006 Aug 21]
  60. 60.
    Zandi PP, Sparks DL, Khachaturian AS, et al. Do statins reduce risk of incident dementia and Alzheimer disease? The Cache County Study. Arch Gen Psychiatry 2005; 62(2): 217–24PubMedCrossRefGoogle Scholar
  61. 61.
    Simons M, Schwarzler F, Lutjohann D, et al. Treatment with simvastatin in normocholesterolemic patients with Alzheimer’s disease: a 26-week randomized, placebo-controlled, double-blind trial. Ann Neurol 2002; 52(3): 346–50PubMedCrossRefGoogle Scholar
  62. 62.
    Sparks DL, Sabbagh MN, Connor DJ, et al. Atorvastatin for the treatment of mild to moderate Alzheimer disease: preliminary results. Arch Neurol 2005; 62(5): 753–7PubMedCrossRefGoogle Scholar
  63. 63.
    National Institute on Aging. Cholesterol Lowering Agent to Slow Progression (CLASP) of Alzheimer’s disease study [online]. Available from URL: [Accessed 2006 Aug 17]
  64. 64.
    Institute for the Study of Aging. Lipitor as a treatment for Alzheimer’s disease [online]. Available from URL: [Accessed 2006 Aug 17]
  65. 65.
    Wolozin B. Cholesterol, statins and dementia. Curr Opin Lipidol 2004; 15(6): 667–72PubMedCrossRefGoogle Scholar
  66. 66.
    Yrjanheikki J, Koistinaho J, Kettunen M, et al. Long-term protective effect of atorvastatin in permanent focal cerebral ischemia. Brain Res 2005; 1052(2): 174–9PubMedCrossRefGoogle Scholar
  67. 67.
    Sparks DL, Sabbagh M, Connor D, et al. Statin therapy in Alzheimer’s disease. Acta Neurol Scand Suppl 2006; 185: 78–86PubMedCrossRefGoogle Scholar
  68. 68.
    Butterfield DA, Howard BJ, LaFontaine MA. Brain oxidative stress in animal models of accelerated aging and the age-related neurodegenerative disorders, Alzheimer’s disease and Huntington’s disease. Curr Med Chem 2001; 8(7): 815–28PubMedCrossRefGoogle Scholar
  69. 69.
    Luchsinger JA, Tang MX, Shea S, et al. Antioxidant vitamin intake and risk of Alzheimer disease. Arch Neurol 2003; 60(2): 203–8PubMedCrossRefGoogle Scholar
  70. 70.
    Boothby LA, Doering PL. Vitamin C and vitamin E for Alzheimer’s disease. Ann Pharmacother 2005; 39(12): 2073–80PubMedCrossRefGoogle Scholar
  71. 71.
    Salerno-Kennedy R, Cashman KD. Relationship between dementia and nutrition-related factors and disorders: an overview. Int J Vitam Nutr Res 2005; 75(2): 83–95PubMedCrossRefGoogle Scholar
  72. 72.
    Tabet N, Birks J, Grimley EJ. Vitamin E for Alzheimer’s disease. Cochrane Database Syst Rev 2000; (4): CD002854PubMedGoogle Scholar
  73. 73.
    Petersen RC, Thomas RG, Grundman M, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 2005; 352(23): 2379–88PubMedCrossRefGoogle Scholar
  74. 74.
    Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. N Engl J Med 1997 Apr 24; 336(17): 1216–22PubMedCrossRefGoogle Scholar
  75. 75.
    National Institute on Aging. Prevention of Alzheimer’s Disease by Vitamin E and SElenium (PREADVISE) [online]. Available from URL: [Accessed 2006 Aug 17]
  76. 76.
    Tucker JM, Townsend DM. Alpha-tocopherol: roles in prevention and therapy of human disease. Biomed Pharmacother 2005; 59(7): 380–7PubMedCrossRefGoogle Scholar
  77. 77.
    National Institute on Aging. Anti-oxidant treatment of Alzheimer’s disease [online]. Available from URL: [Accessed 2006 Aug 17]
  78. 78.
    Birks J, Flicker L. Selegiline for Alzheimer’s disease. Cochrane Database Syst Rev 2003; (1): CD000442PubMedGoogle Scholar
  79. 79.
    Youdim MB, Fridkin M, Zheng H. Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. Mech Ageing Dev 2005; 126(2): 317–26PubMedCrossRefGoogle Scholar
  80. 80.
    Youdim MB, Weinstock M. Molecular basis of neuroprotective activities of rasagiline and the anti-Alzheimer drug TV3326 [(N-propargyl-(3R)aminoindan-5-YL)-ethyl methyl carbamate]. Cell Mol Neurobiol 2001; 21(6): 555–73PubMedCrossRefGoogle Scholar
  81. 81.
    Metzger E, Wissmann M, Yin N, et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 2005; 437(7057): 436–9PubMedGoogle Scholar
  82. 82.
    Stocchi F, Olanow CW. Neuroprotection in Parkinson’s disease: clinical trials. Ann Neurol 2003; 53 Suppl. 3: S87–97PubMedCrossRefGoogle Scholar
  83. 83.
    Esai Medical Research Inc. Rasagiline 1mg and 2mg added to Arizept 10mg daily in patients with mild to moderate Alzheimer’s disease (AD) [online]. Available from URL: [Accessed 2006 Aug 17]
  84. 84.
    Hynd MR, Scott HL, Dodd PR. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 2004; 45(5): 583–95PubMedCrossRefGoogle Scholar
  85. 85.
    Lipton SA. The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Curr Alzheimer Res 2005; 2(2): 155–65PubMedCrossRefGoogle Scholar
  86. 86.
    McShane R, Areosa SA, Minakaran N. Memantine for dementia. Cochrane Database Syst Rev 2006; 19; (2): CD003154Google Scholar
  87. 87.
    Laake K, Oeksengaard AR. D-cycloserine for Alzheimer’s disease. Cochrane Database Syst Rev 2002; (2): CD003153Google Scholar
  88. 88.
    Memory Pharmaceuticals. Safety and efficacy of MEM 1003 versus placebo in patients with mild to moderate Alzheimer’s disease [online]. Available from URL: [Accessed 2006 Aug 17]
  89. 89.
    Lopez-Arrieta JM, Birks J. Nimodipine for primary degenerative, mixed and vascular dementia. Cochrane Database Syst Rev 2002; (3): CD000147PubMedGoogle Scholar
  90. 90.
    Tariot PN, Loy R, Ryan JM, et al. Mood stabilizers in Alzheimer’s disease: symptomatic and neuroprotective rationales. Adv Drug Deliv Rev 2002; 54(12): 1567–77PubMedCrossRefGoogle Scholar
  91. 91.
    ONO Pharma. Effects of ONO-2506PO in patients with Alzheimer’s disease [online]. Available from URL: [Accessed 2006 Aug 17]
  92. 92.
    Fumagalli F, Racagni G, Riva MA. The expanding role of BDNF: a therapeutic target for Alzheimer’s disease? Pharmacogenomics J 2006; 6(1): 8–15PubMedCrossRefGoogle Scholar
  93. 93.
    Tuszynski MH, Blesch A. Nerve growth factor: from animal models of cholinergic neuronal degeneration to gene therapy in Alzheimer’s disease. Prog Brain Res 2004; 146: 441–9PubMedGoogle Scholar
  94. 94.
    Ramirez JJ, Parakh T, George MN, et al. The effects of neotrofin on septodentate sprouting after unilateral entorhinal cortex lesions in rats. Rester Neurol Neurosci 2002; 20(1-2): 51–9Google Scholar
  95. 95.
    Apfel SC. Neurotrophic factor therapy: prospects and problems. Clin Chem Lab Med 2001; 39(4): 351–5PubMedCrossRefGoogle Scholar
  96. 96.
    Grundman M, Capparelli E, Kim HT, et al. A multicenter, randomized, placebo controlled, multiple-dose, safety and pharmacokinetic study of AIT-082 (neotrofin) in mild Alzheimer’s disease patients. Life Sci 2003; 73(5): 539–53PubMedCrossRefGoogle Scholar
  97. 97.
    Sanofi-Aventis. Long-term safety extension with SR57667B in patients with Alzheimer’s disease [online]. Available from URL: [Accessed 2006 Aug 17]
  98. 98.
    Sanofi-Aventis. Study of xaliproden (SR57746A) in patients with mild to moderate dementia of the Alzheimer’s type [online]. Available from URL: [Accessed 2006 Aug 17]
  99. 99.
    Tuszynski MH, Thal L, Pay M, et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 2005; 11(5): 551–5PubMedCrossRefGoogle Scholar
  100. 100.
    Salehi A, Delcroix JD, Swaab DF. Alzheimer’s disease and NGF signaling. J Neural Transm 2004; 111(3): 323–45PubMedCrossRefGoogle Scholar
  101. 101.
    Walter J, Kaether C, Steiner H, et al. The cell biology of Alzheimer’s disease: uncovering the secrets of secretases. Curr Opin Neurobiol 2001; 11(5): 585–90PubMedCrossRefGoogle Scholar
  102. 102.
    Ohyagi Y, Asahara H, Chui DH, et al. Intracellular Abeta42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer’s disease. FASEB J 2005; 19(2): 255–7PubMedGoogle Scholar
  103. 103.
    Hardy J. Toward Alzheimer therapies based on genetic knowledge. Annu Rev Med 2004; 55: 15–25PubMedCrossRefGoogle Scholar
  104. 104.
    Kohler C, Ebert U, Baumann K, et al. Alzheimer’s disease-like neuropathology of gene-targeted APP-SLxPS1mut mice expressing the amyloid precursor protein at endogenous levels. Neurobiol Dis 2005; 20(2): 528–40PubMedCrossRefGoogle Scholar
  105. 105.
    Gold G, Kovari E, Corte G, et al. Clinical validity of A beta-protein deposition staging in brain aging and Alzheimer disease. J Neuropathol Exp Neurol 2001; 60(10): 946–52PubMedGoogle Scholar
  106. 106.
    Vassar R, Bennett BD, Babu-Khan S, et al. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999; 286(5440): 735–41PubMedCrossRefGoogle Scholar
  107. 107.
    Roberds SL, Anderson J, Basi G, et al. BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: implications for Alzheimer’s disease therapeutics. Hum Mol Genet 2001; 10(12): 1317–24PubMedCrossRefGoogle Scholar
  108. 108.
    Dewachter I, Van Leuven F. Secretases as targets for the treatment of Alzheimer’s disease: the prospects. Lancet Neurol 2002; 1(7): 409–16PubMedCrossRefGoogle Scholar
  109. 109.
    Garino C, Tomita T, Pietrancosta N, et al. Naphthyl and coumarinyl biarylpiperazine derivatives as highly potent human beta-secretase inhibitors: design, synthesis, and enzymatic BACE-1 and cell assays. J Med Chem 2006; 49(14): 4275–85PubMedCrossRefGoogle Scholar
  110. 110.
    Citron M. Strategies for disease modification in Alzheimer’s disease. Nat Rev Neurosci 2004; 5(9): 677–85PubMedCrossRefGoogle Scholar
  111. 111.
    Koo EH. The beta-amyloid precursor protein (APP) and Alzheimer’s disease: does the tail wag the dog? Traffic 2002; 3(11): 763–70PubMedCrossRefGoogle Scholar
  112. 112.
    Cao X, Sudhof TC. Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation. J Biol Chem 2004; 279(23): 24601–11PubMedCrossRefGoogle Scholar
  113. 113.
    De Strooper B, Annaert W, Cupers P, et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 1999; 398(6727): 518–22PubMedCrossRefGoogle Scholar
  114. 114.
    Washburn T, Schweighoffer E, Gridley T, et al. Notch activity influences the alphabeta versus gammadelta T cell lineage decision. Cell 1997; 88(6): 833–43PubMedCrossRefGoogle Scholar
  115. 115.
    Pollack SJ, Lewis H. Secretase inhibitors for Alzheimer’s disease: challenges of a promiscuous protease. Curr Opin Investig Drugs 2005; 6(1): 35–47PubMedGoogle Scholar
  116. 116.
    Dovey HF, John V, Anderson JP, et al. Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 2001; 76(1): 173–81PubMedCrossRefGoogle Scholar
  117. 117.
    Anderson JJ, Holtz G, Baskin PP, et al. Reductions in beta-amyloid concentrations in vivo by the gamma-secretase inhibitors BMS-289948 and BMS-299897. Biochem Pharmacol 2005; 69(4): 689–98PubMedCrossRefGoogle Scholar
  118. 118.
    Micchelli CA, Esler WP, Kimberly WT, et al. Gamma-secretase/presenilin inhibitors for Alzheimer’s disease phenocopy notch mutations in drosophila. FASEB J 2003; 17(1): 79–81PubMedGoogle Scholar
  119. 119.
    Hartmann D, Tournoy J, Saftig P, et al. Implication of APP secretases in notch signaling. J Mol Neurosci 2001; 17(2): 171–81PubMedCrossRefGoogle Scholar
  120. 120.
    Lammich S, Okochi M, Takeda M, et al. Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an Abeta-like peptide. J Biol Chem 2002; 277(47): 44754–9PubMedCrossRefGoogle Scholar
  121. 121.
    Kim DY, Ingano LA, Kovacs DM. Nectin-1alpha, an immunoglobulin-like receptor involved in the formation of synapses, is a substrate for presenilin/gamma-secretase-like cleavage. J Biol Chem 2002; 277(51): 49976–81PubMedCrossRefGoogle Scholar
  122. 122.
    Marambaud P, Wen PH, Dutt A, et al. A CBP binding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell 2003; 114(5): 635–45PubMedCrossRefGoogle Scholar
  123. 123.
    May P, Reddy YK, Herz J. Proteolytic processing of low density lipoprotein receptor-related protein mediates regulated release of its intracellular domain. J Biol Chem 2002; 277(21): 18736–43PubMedCrossRefGoogle Scholar
  124. 124.
    May P, Bock HH, Nimpf J, et al. Differential glycosylation regulates processing of lipoprotein receptors by gamma-secretase. J Biol Chem 2003; 278(39): 37386–92PubMedCrossRefGoogle Scholar
  125. 125.
    Zou Z, Chung B, Nguyen T, et al. Linking receptor-mediated endocytosis and cell signaling: evidence for regulated intramembrane proteolysis of megalin in proximal tubule. J Biol Chem 2004; 279(33): 34302–10PubMedCrossRefGoogle Scholar
  126. 126.
    Taniguchi Y, Kim SH, Sisodia SS. Presenilin-dependent ‘gamma-secretase’ processing of deleted in colorectal cancer (DCC). J Biol Chem 2003; 278(33): 30425–8PubMedCrossRefGoogle Scholar
  127. 127.
    Saura CA, Choi SY, Beglopoulos V, et al. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 2004; 42(1): 23–36PubMedCrossRefGoogle Scholar
  128. 128.
    Tournoy J, Bossuyt X, Snellinx A, et al. Partial loss of presenilins causes seborrheic keratosis and autoimmune disease in mice. Hum Mol Genet 2004; 13(13): 1321–31PubMedCrossRefGoogle Scholar
  129. 129.
    Rosen LB, Stone JA, Plump A, et al. The gamma secretase inhibitor MK-0752 acutely and significantly reduces CSF Abeta40 concentrations in humans. Alzheimers Dementia 2006; 2 (3 Suppl. 1): S79CrossRefGoogle Scholar
  130. 130.
    Siemers ER, Quinn JF, Kaye J, et al. Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology 2006; 66(4): 602–4PubMedCrossRefGoogle Scholar
  131. 131.
    Effects of LY450139 dihydrate on subjects with mild to moderate Alzheimer’s disease [online]. Available from URL: [Accessed 2006 Aug 17]
  132. 132.
    Mintzer JE, Wilcock GK, Black SE, et al. MPC-7869 (R-furbiprofen), a selective Abeta42-lowering agent, delays time to clinically significant psychiatric events in Alzheimer’s disease: analysis from a 12-month phase 2 trial. Alzheimers Dementia 2006; 2 (3 Suppl. 1): S368CrossRefGoogle Scholar
  133. 133.
    Wilcock GK, Black SE, Haworth J, et al. Efficacy and safety of MPC-7869 (R-flurbipofen), a selective Abeta42-lowering agent, in Alzheimer’s disease: results of a 12 month phase 2 trial and a 1-year follow-on study. Alzheimers Dementia 2006; 2 (3 Suppl. 1): S81–2CrossRefGoogle Scholar
  134. 134.
    Myriad Pharmaceuticals. Global efficcy study of MPC-7869 to treat patients with Alzheimer’s [online]. Available from URL: [Accessed 2006 Aug 17]
  135. 135.
    Kojro E, Fahrenholz F. The non-amyloidogenic pathway: structure and function of alpha-secretases. Subcell Biochem 2005; 38: 105–27PubMedCrossRefGoogle Scholar
  136. 136.
    Lichtenthaler SF, Haass C. Amyloid at the cutting edge: activation of alpha-secretase prevents amyloidogenesis in an Alzheimer disease mouse model. J Clin Invest 2004; 113(10): 1384–7PubMedGoogle Scholar
  137. 137.
    Postina R, Schroeder A, Dewachter I, et al. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 2004; 113(10): 1456–64PubMedGoogle Scholar
  138. 138.
    Iwata N, Tsubuki S, Takaki Y, et al. Metabolic regulation of brain Abeta by neprilysin. Science 2001; 292(5521): 1550–2PubMedCrossRefGoogle Scholar
  139. 139.
    Yasojima K, McGeer EG, McGeer PL. Relationship between beta amyloid peptide generating molecules and neprilysin in Alzheimer disease and normal brain. Brain Res 2001; 919(1): 115–21PubMedCrossRefGoogle Scholar
  140. 140.
    Higuchi M, Iwata N, Saido TC. Understanding molecular mechanisms of proteolysis in Alzheimer’s disease: progress toward therapeutic interventions. Biochim Biophys Acta 2005; 1751(1): 60–7PubMedCrossRefGoogle Scholar
  141. 141.
    Saito T, Iwata N, Tsubuki S, et al. Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat Med 2005; 11(4): 434–9PubMedCrossRefGoogle Scholar
  142. 142.
    Marr RA, Guan H, Rockenstein E, et al. Neprilysin regulates amyloid Beta peptide levels. J Mol Neurosci 2004; 22(1-2): 5–11PubMedCrossRefGoogle Scholar
  143. 143.
    Eckman EA, Watson M, Marlow L, et al. Alzheimer’s disease beta-amyloid peptide is increased in mice deficient in endothelin-converting enzyme. J Biol Chem 2003; 278(4): 2081–4PubMedCrossRefGoogle Scholar
  144. 144.
    Farris W, Mansourian S, Chang Y, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A 2003; 100(7): 4162–7PubMedCrossRefGoogle Scholar
  145. 145.
    Yan P, Hu X, Song H, et al. Matrix metalloproteinase-9 degrades amyloid-beta fibrils in vitro and compact plaques in situ. J Biol Chem 2006; 281(34): 24566–74PubMedCrossRefGoogle Scholar
  146. 146.
    Seubert P, Vigo-Pelfrey C, Esch F, et al. Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 1992; 359(6393): 325–7PubMedCrossRefGoogle Scholar
  147. 147.
    Shoji M, Golde TE, Ghiso J, et al. Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 1992; 258(5079): 126–9PubMedCrossRefGoogle Scholar
  148. 148.
    Caughey B, Lansbury PT. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 2003; 26: 267–98PubMedCrossRefGoogle Scholar
  149. 149.
    Lorenzo A, Yankner BA. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci U S A 1994; 91(25): 12243–7PubMedCrossRefGoogle Scholar
  150. 150.
    Pappolla M, Bozner P, Soto C, et al. Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J Biol Chem 1998; 273(13): 7185–8PubMedCrossRefGoogle Scholar
  151. 151.
    Gestwicki JE, Crabtree GR, Graef IA. Harnessing chaperones to generate small-molecule inhibitors of amyloid beta aggregation. Science 2004; 306(5697): 865–9PubMedCrossRefGoogle Scholar
  152. 152.
    Gordon DJ, Sciarretta KL, Meredith SC. Inhibition of beta-amyloid(40) fibrillogenesis and disassembly of beta-amyloid(40) fibrils by short beta-amyloid congeners containing N-methyl amino acids at alternate residues. Biochemistry 2001; 40(28): 8237–45PubMedCrossRefGoogle Scholar
  153. 153.
    Sadowski M, Pankiewicz J, Scholtzova H, et al. A synthetic peptide blocking the apolipoprotein E/beta-amyloid binding mitigates beta-amyloid toxicity and fibril formation in vitro and reduces beta-amyloid plaques in transgenic mice. Am J Pathol 2004; 165(3): 937–48PubMedCrossRefGoogle Scholar
  154. 154.
    Adessi C, Frossard MJ, Boissard C, et al. Pharmacological profiles of peptide drug candidates for the treatment of Alzheimer’s disease. J Biol Chem 2003; 278(16): 13905–11PubMedCrossRefGoogle Scholar
  155. 155.
    Aisen PS. The development of anti-amyloid therapy for Alzheimer’s disease: from secretase modulators to polymerisation inhibitors. CNS Drugs 2005; 19(12): 989–96PubMedCrossRefGoogle Scholar
  156. 156.
    Wright TM. Tramiprosate. Drugs Today (Barc) 2006; 42(5): 291–8CrossRefGoogle Scholar
  157. 157.
    Neurochem Inc. European study of 3APS in mild to moderate Alzheimer’s disease patients [online]. Available from URL: [Accessed 2006 Aug 17]
  158. 158.
    Rogers JT, Lahiri DK. Metal and inflammatory targets for Alzheimer’s disease. Curr Drug Targets 2004; 5(6): 535–51PubMedCrossRefGoogle Scholar
  159. 159.
    Cuajungco MP, Frederickson CJ, Bush AI. Amyloid-beta metal interaction and metal chelation. Subcell Biochem 2005; 38: 235–54PubMedCrossRefGoogle Scholar
  160. 160.
    Raman B, Ban T, Yamaguchi K, et al. Metal ion-dependent effects of clioquinol on the fibril growth of an amyloid ta peptide. J Biol Chem 2005; 280(16): 16157–62PubMedCrossRefGoogle Scholar
  161. 161.
    Cole GM. Ironic fate: can a banned drug control metal heavies in neurodegenerative diseases? Neuron 2003; 37(6): 889–90PubMedCrossRefGoogle Scholar
  162. 162.
    Regland B, Lehmann W, Abedini I, et al. Treatment of Alzheimer’s disease with clioquinol. Dement Geriatr Cogn Disord 2001; 12(6): 408–14PubMedCrossRefGoogle Scholar
  163. 163.
    Moret V, Laras Y, Pietrancosta N, et al. 1,1′-Xylyl bis-1,4,8,11-tetraaza cyclotetradecane: a new potential copper chelator agent for neuroprotection in Alzheimer’s disease. Its comparative effects with clioquinol on rat brain copper distribution. Bioorg Med Chem Lett 2006; 16(12): 3298–301PubMedCrossRefGoogle Scholar
  164. 164.
    Treiber C, Simons A, Strauss M, et al. Clioquinol mediates copper uptake and counteracts copper efflux activities of the amyloid precursor protein of Alzheimer’s disease. J Biol Chem 2004; 279(50): 51958–64PubMedCrossRefGoogle Scholar
  165. 165.
    Bayer TA, Schafer S, Simons A, et al. Dietary Cu stabilizes brain Superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc Natl Acad Sci U S A 2003; 100(24): 14187–92PubMedCrossRefGoogle Scholar
  166. 166.
    in’t Veld BA, Ruitenberg A, Hofman A, et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 2001; 345(21): 1515–21CrossRefGoogle Scholar
  167. 167.
    Lehmann JM, Lenhard JM, Oliver BB, et al. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 1997; 272(6): 3406–10PubMedCrossRefGoogle Scholar
  168. 168.
    Tugwood JD, Issemann I, Anderson RG, et al. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5′ flanking sequence of the rat acyl CoA oxidase gene. EMBO J 1992; 11(2): 433–9PubMedGoogle Scholar
  169. 169.
    Vamecq J, Latruffe N. Medical significance of peroxisome proliferator-activated receptors. Lancet 1999; 354(9173): 141–8PubMedCrossRefGoogle Scholar
  170. 170.
    Li M, Pascual G, Glass CK. Peroxisome proliferator-activated receptor gamma-dependent repression of the inducible nitric oxide synthase gene. Mol Cell Biol 2000; 20(13): 4699–707PubMedCrossRefGoogle Scholar
  171. 171.
    Landreth GE, Heneka MT. Anti-inflammatory actions of peroxisome proliferator-activated receptor gamma agonists in Alzheimer’s disease. Neurobiol Aging 2001; 22(6): 937–44PubMedCrossRefGoogle Scholar
  172. 172.
    Heneka MT, Feinstein DL, Galea E, et al. Peroxisome proliferator-activated receptor gamma agonists protect cerebellar granule cells from cytokine-induced apoptotic cell death by inhibition of inducible nitric oxide synthase. J Neuroimmunol 1999; 100(1-2): 156–68PubMedCrossRefGoogle Scholar
  173. 173.
    Combs CK, Johnson DE, Karlo JC, et al. Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPAR-gamma agonists. J Neurosci 2000; 20(2): 558–67PubMedGoogle Scholar
  174. 174.
    Heneka MT, Klockgether T, Feinstein DL. Peroxisome proliferator-activated receptor-gamma ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo. J Neurosci 2000; 20(18): 6862–7PubMedGoogle Scholar
  175. 175.
    Sastre M, Dewachter I, Landreth GE, et al. Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci 2003; 23(30): 9796–804PubMedGoogle Scholar
  176. 176.
    Sastre M, Klockgether T, Heneka MT. Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int J Dev Neurosci 2006; 24(2-3): 167–76PubMedCrossRefGoogle Scholar
  177. 177.
    Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abetal-42 levels in APPV717I transgenic mice. Brain 2005; 128 (Pt 6): 1442–53PubMedCrossRefGoogle Scholar
  178. 178.
    Geldmacher DS, Fritsch T, McClendon MJ, et al. A double blind placebo-controlled, 18 month pilot study of the ppargamma agonist pioglitazone in Alzheimer’s disease [abstract]. Alzheimers Dementia 2006; 2 (3 Suppl. 1): S366CrossRefGoogle Scholar
  179. 179.
    Peers P, Semple J, Lay RY, et al. A pilot study investigating the effects of rosiglitazone on performance in neuropsychological tests in patients with mild-to-moderate Alzheimer’s disease. Alzheimers Dementia 2006; 2 (3 Suppl. 1): S366–7CrossRefGoogle Scholar
  180. 180.
    Risner ME, Saunders AM, Altman JF, et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J 2006; 6(4): 246–54PubMedGoogle Scholar
  181. 181.
    Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999; 400(6740): 173–7PubMedCrossRefGoogle Scholar
  182. 182.
    Bard F, Cannon C, Barbour R, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000; 6(8): 916–9PubMedCrossRefGoogle Scholar
  183. 183.
    Bacskai BJ, Kajdasz ST, McLellan ME, et al. Non-Fc-mediated mechanisms are involved in clearance of amyloid-beta in vivo by immunotherapy. J Neurosci 2002; 22(18): 7873–8PubMedGoogle Scholar
  184. 184.
    Fukuchi K, Accavitti-Loper MA, Kim HD, et al. Amelioration of amyloid load by anti-Abeta single-chain antibody in Alzheimer mouse model. Biochem Biophys Res Commun 2006; 344(1): 79–86PubMedCrossRefGoogle Scholar
  185. 185.
    Demattos RB, Bales KR, Cummins DJ, et al. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2001; 98(15): 8850–5PubMedCrossRefGoogle Scholar
  186. 186.
    Janus C, Pearson J, McLaurin J, et al. A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 2000; 408(6815): 979–82PubMedCrossRefGoogle Scholar
  187. 187.
    Morgan D, Diamond DM, Gottschall PE, et al. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 2000; 408(6815): 982–5PubMedCrossRefGoogle Scholar
  188. 188.
    Hock C, Konietzko U, Streffer JR, et al. Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 2003; 38(4): 547–54PubMedCrossRefGoogle Scholar
  189. 189.
    Gilman S, Koller M, Black RS, et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 2005; 64(9): 1553–62PubMedCrossRefGoogle Scholar
  190. 190.
    Nicoll JA, Wilkinson D, Holmes C, et al. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 2003; 9(4): 448–52PubMedCrossRefGoogle Scholar
  191. 191.
    Ferrer I, Boada RM, Sanchez Guerra ML, et al. Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer’s disease. Brain Pathol 2004; 14(1): 11–20PubMedCrossRefGoogle Scholar
  192. 192.
    Masliah E, Hansen L, Adame A, et al. Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 2005; 64(1): 129–31PubMedCrossRefGoogle Scholar
  193. 193.
    Cribbs DH, Ghochikyan A, Vasilevko V, et al. Adjuvant-dependent modulation of Th1 and Th2 responses to immunization with beta-amyloid. Int Immunol 2003; 15(4): 505–14PubMedCrossRefGoogle Scholar
  194. 194.
    Bard F, Barbour R, Cannon C, et al. Epitope and isotype specificities of antibodies to beta-amyloid peptide for protection against Alzheimer’s disease-like neuropathology. Proc Natl Acad Sci U SA 2003; 100(4): 2023–8CrossRefGoogle Scholar
  195. 195.
    Maier M, Seabrook TJ, Lazo ND, et al. Short amyloid-beta (Abeta) immunogens reduce cerebral Abeta load and learning deficits in an Alzheimer’s disease mouse model in the absence of an Abeta-specific cellular immune response. J Neurosci 2006; 26(18): 4717–28PubMedCrossRefGoogle Scholar
  196. 196.
    Sigurdsson EM, Knudsen E, Asuni A, et al. An attenuated immune response is sufficient to enhance cognition in an Alzheimer’s disease mouse model immunized with amyloid-beta derivatives. J Neurosci 2004; 24(28): 6277–82PubMedCrossRefGoogle Scholar
  197. 197.
    Matsuoka Y, Saito M, LaFrancois J, et al. Novel therapeutic approach for the treatment of Alzheimer’s disease by peripheral administration of agents with an affinity to beta-amyloid. J Neurosci 2003; 23(1): 29–33PubMedGoogle Scholar
  198. 198.
    Vogelgesang S, Warzok RW, Cascorbi I, et al. The role of P-glycoprotein in cerebral amyloid angiopathy; implications for the early pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 2004; 1(2): 121–5PubMedCrossRefGoogle Scholar
  199. 199.
    Weiner HL, Lemere CA, Maron R, et al. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann Neurol 2000; 48(4): 567–79PubMedCrossRefGoogle Scholar
  200. 200.
    Qu B, Rosenberg RN, Li L, et al. Gene vaccination to bias the immune response to amyloid-beta peptide as therapy for Alzheimer disease. Arch Neurol 2004; 61(12): 1859–64PubMedCrossRefGoogle Scholar
  201. 201.
    Schiltz JG, Salzer U, Mohajeri MH, et al. Antibodies from a DNA peptide vaccination decrease the brain amyloid burden in a mouse model of Alzheimer’s disease. J Mol Med 2004; 82(10): 706–14PubMedCrossRefGoogle Scholar
  202. 202.
    Okura Y, Miyakoshi A, Kohyama K, et al. Nonviral Abeta DNA vaccine therapy against Alzheimer’s disease: long-term effects and safety. Proc Natl Acad Sci U S A 2006; 103(25): 9619–24PubMedCrossRefGoogle Scholar
  203. 203.
    Gandy S, Demattos RB, Lemere CA, et al. Alzheimer’s Abeta vaccination of rhesus monkeys (Macaca mulatta). Mech Ageing Dev 2004; 125(2): 149–51PubMedCrossRefGoogle Scholar
  204. 204.
    Stalder M, Delier T, Staufenbiel M, et al. 3D-Reconstruction of microglia and amyloid in APP23 transgenic mice: no evidence of intracellular amyloid. Neurobiol Aging 2001; 22(3): 427–34PubMedCrossRefGoogle Scholar
  205. 205.
    D’Andrea MR, Cole GM, Ard MD. The microglial phagocytic role with specific plaque types in the Alzheimer disease brain. Neurobiol Aging 2004; 25(5): 675–83PubMedCrossRefGoogle Scholar
  206. 206.
    Wilcock DM, Munireddy SK, Rosenthal A, et al. Microglial activation facilitates Abeta plaque removal following intracranial anti-Abeta antibody administration. Neurobiol Dis 2004; 15(1): 11–20PubMedCrossRefGoogle Scholar
  207. 207.
    Simard AR, Soulet D, Gowing G, et al. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 2006; 49(4): 489–502PubMedCrossRefGoogle Scholar
  208. 208.
    Stalder AK, Ermini F, Bondolfi L, et al. Invasion of hematopoietic cells into the brain of amyloid precursor protein transgenic mice. J Neurosci 2005; 25(48): 11125–32PubMedCrossRefGoogle Scholar
  209. 209.
    Dodel R, Hampel H, Depboylu C, et al. Human antibodies against amyloid beta peptide: a potential treatment for Alzheimer’s disease. Ann Neurol 2002; 52(2): 253–6PubMedCrossRefGoogle Scholar
  210. 210.
    Dodel RC, Du Y, Depboylu C, et al. Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2004; 75(10): 1472–4PubMedCrossRefGoogle Scholar
  211. 211.
    Adamiak B, Monthe C, Bender H, et al. Intravenous immunoglobulin (IVIG) maintains cognition over 18 months in patients with Alzheimer’s disease. Alzheimers Dementia 2006; 2 (3 Suppl. 1): S62–3CrossRefGoogle Scholar
  212. 212.
    Relkin NR, Younkin L, Younkin S, et al. Decreased plasma beta amyloid levels in Alzheimer patients treated chronically with intravenous immunoglobulins [abstract]. Alzheimers Dementia 2006; 2 (3 Suppl. 1): S590CrossRefGoogle Scholar
  213. 213.
    Kuo YM, Kokjohn TA, Kalback W, et al. Amyloid-beta peptides interact with plasma proteins and erythrocytes: implications for their quantitation in plasma. Biochem Biophys Res Commun 2000; 268(3): 750–6PubMedCrossRefGoogle Scholar
  214. 214.
    Vanderstichele H, Van Kerschaver E, Hesse C, et al. Standardization of measurement of beta-amyloid(1–42) in cerebrospinal fluid and plasma. Amyloid 2000; 7(4): 245–58CrossRefGoogle Scholar
  215. 215.
    Weill Medical College of Cornell University. Phase II study of intravenous immunoglobulin (IVIg) for lzheimer’s disease [online]. Available from URL: [Accessed 2006 Aug 21]
  216. 216.
    Elan Pharmaceuticals. AAB-001 in patients with mild to moderate Alzheimer’s disease [online]. Available from URL: [Accessed 2006 Aug 20]
  217. 217.
    Brod SA. Unregulated inflammation shortens human functional longevity. Inflamm Res 2000; 49(11): 561–70PubMedCrossRefGoogle Scholar
  218. 218.
    ational Center for Research Resources. Prevention of cognitive decline in Alzheimer’s disease by ingested interferon alpha [online]. Available from URL: [Accessed 2006 Aug 17]
  219. 219.
    Viel JJ, McManus DQ, Smith SS, et al. Age- and concentration-dependent neuroprotection and toxicity by TNF in cortical neurons from beta-amyloid. J Neurosci Res 2001; 64(5): 454–65PubMedCrossRefGoogle Scholar
  220. 220.
    Culbert AA, Skaper SD, Howlett DR, et al. MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity: relevance to neuroinflammation in a transgenic mouse model of Alzheimer’s disease. J Biol Chem 2006; 281(33): 23658–67PubMedCrossRefGoogle Scholar
  221. 221.
    Tobinick EL. TNF-alpha inhibition for the treatment of Alzheimer’s disease [online]. Available from URL: [Accessed 2006 Aug 17]
  222. 222.
    Rockenstein E, Torrance M, Mante M, et al. Cerebrolysin decreases amyloid-beta production by regulating amyloid protein precursor maturation in a transgenic model of Alzheimer’s disease. J Neurosci Res 2006; 83(7): 1252–61PubMedCrossRefGoogle Scholar
  223. 223.
    Rockenstein E, Adame A, Mante M, et al. The neuroprotective effects of Cerebrolysin in a transgenic model of Alzheimer’s disease are associated with improved behavioral performance. J Neural Transm 2003; 110(11): 1313–27PubMedCrossRefGoogle Scholar
  224. 224.
    Panisset M, Gauthier S, Moessler H, et al. Cerebrolysin in Alzheimer’s disease: a randomized, double-blind, placebo-controlled trial with a neurotrophic agent. J Neural Transm 2002; 109(7-8): 1089–104PubMedCrossRefGoogle Scholar
  225. 225.
    Ruether E, Alvarez XA, Rainer M, et al. Sustained improvement of cognition and global function in patients with moderately severe Alzheimer’s disease: a double-blind, placebo-controlled study with the neurotrophic agent Cerebrolysin. J Neural Transm Suppl 2002; (62): 265–75PubMedGoogle Scholar
  226. 226.
    Alvarez A, Laredo M, Varela M, et al. Double-blind, placebo-controlled study of three different dosages of cerebrolysin in patients with mild to moderate Alzheimer’s disease [abstract]. Alzheimers Dementia 2006; 2 (3 Suppl. 1): S364CrossRefGoogle Scholar
  227. 227.
    Rattray M. Technology evaluation: colostrinin, ReGen. Curr Opin Mol Ther 2005; 7(1): 78–84PubMedGoogle Scholar
  228. 228.
    Iqbal I, Grundke-Iqbal I. Pharmacological approaches of neurofibrillary degeneration. Curr Alzheimer Res 2005; 2(3): 335–41PubMedCrossRefGoogle Scholar
  229. 229.
    Lau LF, Seymour PA, Sanner MA, et al. Cdk5 as a drug target for the treatment of Alzheimer’s disease. J Mol Neurosci 2002; 19(3): 267–73PubMedCrossRefGoogle Scholar
  230. 230.
    Bhat RV, Budd Haeberlein SL, Avila J. Glycogen synthase kinase 3: a drug target for CNS therapies. J Neurochem 2004; 89(6): 1313–7PubMedCrossRefGoogle Scholar
  231. 231.
    Dunn N, Holmes C, Mullee M. Does lithium therapy protect against the onset of dementia? Alzheimer Dis Assoc Disord 2005; 19(1): 20–2PubMedCrossRefGoogle Scholar
  232. 232.
    Pickhardt M, Gazova Z, von Bergen M, et al. Anthraquinones inhibit tau aggregation and dissolve Alzheimer’s paired helical filaments in vitro and in cells. J Biol Chem 2005; 280(5): 3628–35PubMedCrossRefGoogle Scholar
  233. 233.
    Higgins GA, Jacobsen H. Transgenic mouse models of Alzheimer’s disease: phenotype and application. Behav Pharmacol 2003; 14(5-6): 419–38PubMedGoogle Scholar
  234. 234.
    Hampel H, Mitchell A, Blennow K, et al. Core biological marker candidates of Alzheimer’s disease: perspectives for diagnosis, prediction of outcome and reflection of biological activity. J Neural Transm 2004; 111(3): 247–72PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2006

Authors and Affiliations

  • Michael Hüll
    • 1
    • 2
  • Mathias Berger
    • 1
  • Michael Heneka
    • 3
  1. 1.Department of Psychiatry and PsychotherapyUniversity of FreiburgFreiburgGermany
  2. 2.Center of Geriatrics and GerontologyUniversity of FreiburgFreiburgGermany
  3. 3.Department of Molecular NeurologyUniversity of MünsterMünsterGermany

Personalised recommendations