, Volume 66, Issue 4, pp 415–427 | Cite as

Dexamethasone in Adults with Community-Acquired Bacterial Meningitis

Current Opinion


Bacterial meningitis in adults is a severe disease with high fatality and morbidity rates. Experimental studies have shown that the inflammatory response in the subarachnoid space is associated with an unfavourable outcome. In these experiments, corticosteroids, and in particular dexamethasone, were able to reduce the inflammatory cascades in the subarachnoid space. The use of corticosteroids as adjunctive therapy in adults with bacterial meningitis has been evaluated in six studies, performed over a time period of 40 years. Most studies on adjunctive dexamethasone therapy in adults with bacterial meningitis were limited by methodological flaws. In 2002, a study with sufficient statistical power to show significant differences was published. This European Dexamethasone Study showed that adjunctive dexamethasone therapy reduced the rate of unfavourable outcomes in adults with bacterial meningitis from 25% to 15%. In this study, adjunctive treatment with dexamethasone was given before or with the first dose of antibacterials, without serious adverse effects. A quantitative review showed a consistent beneficial effect of dexamethasone on mortality and a borderline statistical beneficial effect on neurological sequelae. On the basis of the available evidence, adjunctive dexamethasone therapy should be initiated before or with the first dose of antibacterials and continued for 4 days in all adults with suspected or proven bacterial meningitis, regardless of bacterial aetiology. In patients with both meningitis and septic shock, dexamethasone therapy cannot be unequivocally recommended, but the use of lower doses seems reasonable at present. Since prompt use of dexamethasone and appropriate antibacterials improves the prognosis of adults with bacterial meningitis, hospitals will require protocols to include dexamethasone with the initial antibacterial therapy.


Dexamethasone Meningitis Bacterial Meningitis Antibacterial Therapy Pneumococcal Meningitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are indebted to Dr Arie van der Ende of The Netherlands Reference Laboratory for Bacterial Meningitis for providing figure 1. Dr van de Beek received a research grant from the Meningitis Research Foundation UK. The authors have no potential conflicts of interest that that are relevant to the contents of the manuscript.


  1. 1.
    Swartz MN. Bacterial meningitis: a view of the past 90 years. N Engl J Med 2004; 351: 1826–8PubMedCrossRefGoogle Scholar
  2. 2.
    van de Beek D, de Gans J, Spanjaard L, et al. Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med 2004; 351: 1849–59PubMedCrossRefGoogle Scholar
  3. 3.
    Koedel U, Scheid WM, Pfister HW. Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infect Dis 2002; 2: 721–36PubMedCrossRefGoogle Scholar
  4. 4.
    Scheld WM, Dacey RG, Winn HR, et al. Cerebrospinal fluid outflow resistance in rabbits with experimental meningitis: alterations with penicillin and methylprednisolone. J Clin Invest 1980; 66: 243–53PubMedCrossRefGoogle Scholar
  5. 5.
    Tauber MG, Khayam-Bashi H, Sande MA. Effects of ampicillin and corticosteroids on brain water content, cerebrospinal fluid pressure, and cerebrospinal fluid lactate levels in experimental pneumococcal meningitis. J Infect Dis 1985; 151: 528–34PubMedCrossRefGoogle Scholar
  6. 6.
    van de Beek D, de Gans J, McIntyre P, et al. Corticosteroids in acute bacterial meningitis. The Cochrane Library, issue 3. Chichester, UK: John Wiley & Sons Ltd, 2003Google Scholar
  7. 7.
    de Gans J, van de Beek D. Dexamethasone in adults with bacterial meningitis. N Engl J Med 2002; 347: 1549–56PubMedCrossRefGoogle Scholar
  8. 8.
    Tunkel AR, Hartman BJ, Kaplan SL, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis 2004; 39: 1267–84PubMedCrossRefGoogle Scholar
  9. 9.
    van de Beek D, de Gans J, Tunkel AR, et al. Community-acquired bacterial meningitis. N Engl J Med 2006; 354: 46–55Google Scholar
  10. 10.
    Schuchat A, Robinson K, Wenger JD, et al. Bacterial meningitis in the United States in 1995. Active Surveillance Team. N Engl J Med 1997; 337: 970–6PubMedCrossRefGoogle Scholar
  11. 11.
    Durand ML, Calderwood SB, Weber DJ, et al. Acute bacterial meningitis in adults: a review of 493 episodes. N Engl J Med 1993; 328: 21–8PubMedCrossRefGoogle Scholar
  12. 12.
    Peltola H. Worldwide Haemophilus influenzae type b disease at the beginning of the 21st century: global analysis of the disease burden 25 years after the use of the polysaccharide vaccine and a decade after the advent of conjugates. Clin Microbiol Rev 2000; 13: 302–17PubMedCrossRefGoogle Scholar
  13. 13.
    Whitney CG, Farley MM, Hadler J, et al. Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. N Engl J Med 2003; 348: 1737–46PubMedCrossRefGoogle Scholar
  14. 14.
    Swiatlo E, Ware D. Novel vaccine strategies with protein antigens of Streptococcus pneumoniae. FEMS Immunol Med Microbiol 2003; 38: 1–7PubMedCrossRefGoogle Scholar
  15. 15.
    Trotter CL, Ramsay ME, Kaczmarski EB. Meningococcal serogroup C vaccination in England and Wales: coverage and initial impact of the campaign. Commun Dis Public Health 2002; 5: 220–5PubMedGoogle Scholar
  16. 16.
    Weite R, van den Dobbelsteen G, Bos JM, et al. Economic evaluation of meningococcal serogroup C conjugate vaccination programmes in The Netherlands and its impact on decision-making. Vaccine 2004; 23: 470–9CrossRefGoogle Scholar
  17. 17.
    Snape MD, Pollard AJ. Meningococcal polysaccharide-protein conjugate vaccines. Lancet Infect Dis 2005; 5: 21–30PubMedCrossRefGoogle Scholar
  18. 18.
    Weisfelt M, van de Beek D, Spanjaard L, et al. Clinical features, complications, and outcome in adults with pneumococcal meningitis: a prospective case series. Lancet Neurol 2006; 5(2): 123–9PubMedCrossRefGoogle Scholar
  19. 19.
    Kastenbauer S, Pfister HW. Pneumococcal meningitis in adults: spectrum of complications and prognostic factors in a series of 87 cases. Brain 2003; 126: 1015–25PubMedCrossRefGoogle Scholar
  20. 20.
    Tunkel AR. Bacterial meningitis. Philadelphia (PA): Lippincott Williams & Wilkins, 2001Google Scholar
  21. 21.
    van de Beek D, de Gans J. Adjunctive corticosteroids in adults with bacterial meningitis. Curr Infect Dis Rep 2005; 7: 285–91PubMedCrossRefGoogle Scholar
  22. 22.
    Appelbaum PC. Antimicrobial resistance in Streptococcus pneumoniae: an overview. Clin Infect Dis 1992; 15: 77–83PubMedCrossRefGoogle Scholar
  23. 23.
    Whitney CG, Farley MM, Hadler J, et al. Increasing prevalence of multidrug-resistant Streptococcus pneumoniae in the United States. N Engl J Med 2000; 343: 1917–24PubMedCrossRefGoogle Scholar
  24. 24.
    Saez-Llorens X, McCracken GH. Antimicrobial and anti-inflammatory treatment of bacterial meningitis. Infect Dis Clin North America 2000; 13: 619–36CrossRefGoogle Scholar
  25. 25.
    Aronin SI, Peduzzi P, Quagliarello VJ. Community-acquired bacterial meningitis: risk stratification for adverse clinical outcome and effect of antibiotic timing. Ann Intern Med 1998; 129: 862–9PubMedGoogle Scholar
  26. 26.
    Proulx N, Frechette D, Toye B, et al. Delays in the administration of antibiotics are associated with mortality from adult acute bacterial meningitis. QJM 2005; 98: 291–8PubMedCrossRefGoogle Scholar
  27. 27.
    Attia J, Hatala R, Cook DJ, et al. The rational clinical examination: does this adult patient have acute meningitis? JAMA 1999; 282: 175–81PubMedCrossRefGoogle Scholar
  28. 28.
    van de Beek D, Schmand B, de Gans J, et al. Cognitive impairment in adults with good recovery after bacterial meningitis. J Infect Dis 2002; 186: 1047–52PubMedCrossRefGoogle Scholar
  29. 29.
    Weisfelt M, van de Beek D, Hoogman M, et al. Cognitive outcome in adults with moderate disability after pneumococcal meningitis. J Infect. Epub 2005 Oct 6Google Scholar
  30. 30.
    Schmidt H, Heimann B, Djukic M, et al. Neuropsychological sequelae of bacterial and viral meningitis. Brain 2005 Dec 19Google Scholar
  31. 31.
    Nau R, Brück W. Neuronal injury in bacterial meningitis: mechanisms and implications for therapy. Trends Neurosc 2002; 25: 38–45CrossRefGoogle Scholar
  32. 32.
    Mustafa MM, Ramilo O, Mertsola J, et al. Modulation of inflammation and cachectin activity in relation to treatment of experimental Haemophilus influenzae type b meningitis. J Infect Dis 1989; 160: 818–25PubMedCrossRefGoogle Scholar
  33. 33.
    Weisfelt M, de Gans J, van der Poll T, et al. Pneumococcal meningitis in adults: new approaches to management and prevention. Lancet Neurol. In pressGoogle Scholar
  34. 34.
    Czock D, Frieder Keller F, Rasche FM, et al. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokin 2005; 44: 61–98CrossRefGoogle Scholar
  35. 35.
    Balis FM, Lester CM, Chrousos GP, et al. Differences in cerebrospinal fluid penetration of corticosteroids: possible relationship to the prevention of meningeal leukemia. J Clin Oncol 1987; 5: 202–7PubMedGoogle Scholar
  36. 36.
    Lutsar I, Friedland IR, Jafri HS, et al. Factors influencing the anti-inflammatory effect of dexamethasone therapy in experimental pneumococcal meningitis. J Antimicrob Chemother 2003; 52: 651–5PubMedCrossRefGoogle Scholar
  37. 37.
    Nau R, Wellmer A, Soto A, et al. Rifampin reduces early mortality in experimental Streptococcus pneumoniae meningitis. J Infect Dis 1999; 179: 1557–60PubMedCrossRefGoogle Scholar
  38. 38.
    Mattie H, Stuertz K, Nau R, et al. Pharmacodynamics of antibiotics with respect to bacterial killing of and release of lipoteichoic acid by Streptococcus pneumoniae. J Antimicrob Chemother 2005; 56: 154–9PubMedCrossRefGoogle Scholar
  39. 39.
    McIntyre PB, Berkey CS, King SM, et al. Dexamethasone as adjunctive therapy in bacterial meningitis. A meta-analysis of randomized clinical trials since 1988. JAMA 1997; 278: 925–31PubMedCrossRefGoogle Scholar
  40. 40.
    Baraff LJ, Lee SI, Schriger DL. Outcomes of bacterial meningitis in children: a meta-analysis. Pediatr Infect Dis J 1993; 12: 389–94PubMedCrossRefGoogle Scholar
  41. 41.
    Molyneux EM, Walsh AL, Forsyth H, et al. Dexamethasone treatment in childhood bacterial meningitis in Malawi: a randomised controlled trial. Lancet 2002; 360: 211–8PubMedCrossRefGoogle Scholar
  42. 42.
    Bennett IL, Finland M, Hamburger M, et al. The effectiveness of hydrocortisone in the management of severe infections. JAMA 1963; 183: 462–5CrossRefGoogle Scholar
  43. 43.
    Girgis NI, Farid Z, Mikhail IA, et al. Dexamethasone treatment for bacterial meningitis in children and adults. Pediatr Infect Dis J 1989; 8: 848–51PubMedCrossRefGoogle Scholar
  44. 44.
    Gijwani D, Kumhar MR, Singh VB, et al. Dexamethasone therapy for bacterial meningitis in adults: a double blind placebo control study. Neurol India 2002; 50: 63–7PubMedGoogle Scholar
  45. 45.
    Bhaumik S, Behari M. Role of dexamethasone as adjunctive therapy in acute bacterial meningitis in adults. Neurol India 1998; 46: 225–8Google Scholar
  46. 46.
    Thomas R, Le Tulzo Y, Bouget J, et al. Trial of dexamethasone treatment for severe bacterial meningitis in adults. Adult Meningitis Steroid Group. Intensive Care Med 1999; 25: 475–80PubMedCrossRefGoogle Scholar
  47. 47.
    van de Beek D, de Gans J, McIntyre P, et al. Steroids in adults with bacterial meningitis: a systematic review. Lancet Infect Dis 2004; 4: 139–43PubMedCrossRefGoogle Scholar
  48. 48.
    van de Beek D, de Gans J. Dexamethasone and pneumococcal meningitis. Ann Intern Med 2004; 141: 327PubMedGoogle Scholar
  49. 49.
    Weisfelt M, van de Beek D, de Gans J. Dexamethasone treatment in adults with pneumococcal meningitis: risk factors for death. Eur J Clin Microb Infect Dis. Epub 2006 Feb 10Google Scholar
  50. 50.
    Weisfelt M, van de Beek D, de Haan RJ, de Gans J. Dexamethasone and prognostic factors in adults with bacterial meningitis. J Neurol. Epub 2005 Nov 24Google Scholar
  51. 51.
    Syrogiannopoulos GA, Lourida AN, Theodoridou MC, et al. Dexamethasone therapy for bacterial meningitis in children: 2-versus 4-day regimen. J Infect Dis 1994; 169: 853–8PubMedCrossRefGoogle Scholar
  52. 52.
    Spanos A, Harrell FE, Durack DT. Differential diagnosis of acute meningitis: an analysis of the predictive value of initial observations. JAMA 1989; 262: 2700–7PubMedCrossRefGoogle Scholar
  53. 53.
    Tunkel AR, Scheld WM. Corticosteroids for everyone with meningitis? N Engl J Med 2002; 347: 1613–5PubMedCrossRefGoogle Scholar
  54. 54.
    Davis LE, Greenlee JE. Pneumococcal meningitis: antibiotics essential but insufficient. Brain 2003; 126: 1013–4PubMedCrossRefGoogle Scholar
  55. 55.
    Cohen J. Management of bacterial meningitis in adults. BMJ 2003; 326: 996–7PubMedCrossRefGoogle Scholar
  56. 56.
    Annane D, Sebille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 2002; 288: 862–71PubMedCrossRefGoogle Scholar
  57. 57.
    Van de Beek D, De Gans J, Spanjaard L, et al. Antibiotic guidelines and antibiotic use in adult bacterial meningitis in The Netherlands. J Antimicrob Chemother 2002; 49: 661–6PubMedCrossRefGoogle Scholar
  58. 58.
    Cronin L, Cook DJ, Carlet J, et al. Corticosteroid treatment for sepsis: a critical appraisal and meta-analysis of the literature. Crit Care Med 1995; 23: 1430–9PubMedCrossRefGoogle Scholar
  59. 59.
    Annane D, Bellissant E, Bollaert P, et al. Corticosteroids for treating severe sepsis and septic shock. The Cochrane Library, issue 1. Chichester, UK: John Wiley & Sons Ltd, 2004Google Scholar
  60. 60.
    Cabellos C, Martinez-Lacasa J, Tubau F, et al. Evaluation of combined ceftriaxone and dexamethasone therapy in experimental cephalosporin-resistant pneumococcal meningitis. J Antimicrob Chemoth 2000; 45: 315–20CrossRefGoogle Scholar
  61. 61.
    Klugman KP, Friedland IR, Bradley JS. Bactericidal activity against cephalosporin-resistant Streptococcus pneumoniae in cerebrospinal fluid of children with acute bacterial meningitis. Antimicrob Agents Chemother 1995; 39: 1988–92PubMedCrossRefGoogle Scholar
  62. 62.
    Viladrich PF, Gudiol F, Linares J, et al. Evaluation of vancomycin for therapy of adult pneumococcal meningitis. Antimicrob Agents Chemother 1991; 35: 2467–72PubMedCrossRefGoogle Scholar
  63. 63.
    Leib SL, Heimgartner C, Bifrare YD, et al. Dexamethasone aggravates hippocampal apoptosis and learning deficiency in pneumococcal meningitis in infant rats. Pediatr Res 2003; 54: 353–7PubMedCrossRefGoogle Scholar
  64. 64.
    Sapolsky RM, Pulsinelli WA. Glucocorticoids potentiate ischemic injury to neurons: therapeutic implications. Science 1985; 229: 1397–400PubMedCrossRefGoogle Scholar
  65. 65.
    Jiang X, Mu D, Manabat C, et al. Differential vulnerability of immature murine neurons to oxygen-glucose deprivation. Exp Neurol 2004; 190: 224–32PubMedCrossRefGoogle Scholar
  66. 66.
    Kastenbauer S, Koedel U, Weih F, et al. Protective role of NF-kappaB1 (p50) in experimental pneumococcal meningitis. Eur J Pharmacol 2004; 498: 315–8PubMedCrossRefGoogle Scholar
  67. 67.
    Bifrare YD, Kummer J, Joss P, et al. Brain-derived neurotrophic factor protects against multiple forms of brain injury in bacterial meningitis. J Infect Dis 2005; 191: 40–5PubMedCrossRefGoogle Scholar
  68. 68.
    Lin MT, Albertson TE. Genomic polymorphisms in sepsis. Crit Care Med 2004; 32: 569–79PubMedCrossRefGoogle Scholar
  69. 69.
    Cariou A, Chiche JD, Carpentier J, et al. The era of genomics: impact on sepsis clinical trial design. Crit Care Med 2002: 30; S341–8PubMedCrossRefGoogle Scholar
  70. 70.
    Cohen J. The immunopathogenesis of sepsis. Nature 2002; 6917: 885–91CrossRefGoogle Scholar
  71. 71.
    Emonts M, Hazelzet JA, De Groot R, et al. Host genetic determinants of Neisseria meningitidis infections. Lancet Infect Dis 2003; 3: 565–77PubMedCrossRefGoogle Scholar
  72. 72.
    Holmes CL, Russell JA, Walley KR. Genetic polymorphisms in sepsis and septic shock. Chest 2003; 124: 1103–15PubMedCrossRefGoogle Scholar
  73. 73.
    Schroder NW, Schumann RR. Single nucleotide polymorphisms of toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis 2005; 5: 156–64PubMedGoogle Scholar
  74. 74.
    Nieters A, Brems S, Becker N. Cross-sectional study on cytokine polymorphisms, cytokine production after T-cell stimulation and clinical parameters in a random sample of a German population. Hum Genetics 2001; 108: 241–8CrossRefGoogle Scholar
  75. 75.
    Kwiatkowski D. Science, medicine and the future: susceptibility to infection. BMJ 2000; 321: 1061–5PubMedCrossRefGoogle Scholar
  76. 76.
    Levi M, van der Poll T, Buller HR. Bidirectional relation between inflammation and coagulation. Circulation 2004; 109: 2698–704PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2006

Authors and Affiliations

  1. 1.Department of Neurology, Centre of Infection and Immunity Amsterdam (CINIMA), Academic Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations