, Volume 65, Issue 18, pp 2593–2611 | Cite as

Gout in Solid Organ Transplantation

A Challenging Clinical Problem
  • Lisa Stamp
  • Martin Searle
  • John O’Donnell
  • Peter Chapman
Review Article


Hyperuricaemia occurs in 5–84% and gout in 1.7–28% of recipients of solid organ transplants. Gout may be severe and crippling, and may hinder the improved quality of life gained through organ transplantation. Risk factors for gout in the general population include hyperuricaemia, obesity, weight gain, hypertension and diuretic use. In transplant recipients, therapy with ciclosporin (cyclosporin) is an additional risk factor.

Hyperuricaemia is recognised as an independent risk factor for cardiovascular disease; however, whether anti-hyperuricaemic therapy reduces cardiovascular events remains to be determined.

Dietary advice is important in the management of gout and patients should be educated to partake in a low-calorie diet with moderate carbohydrate restriction and increased proportional intake of protein and unsaturated fat. While gout is curable, its pharmacological management in transplant recipients is complicated by the risk of adverse effects and potentially severe interactions between immunosuppressive and hypouricaemic drugs. NSAIDs, colchicine and corticosteroids may be used to treat acute gouty attacks. NSAIDs have effects on renal haemodynamics, and must be used with caution and with close monitoring of renal function. Colchicine myotoxicty is of particular concern in transplant recipients with renal impairment or when used in combination with ciclosporin. Long-term urate-lowering therapy is required to promote dissolution of uric acid crystals, thereby preventing recurrent attacks of gout. Allopurinol should be used with caution because of its interaction with azathioprine, which results in bone marrow suppression. Substitution of mycophenylate mofetil for azathioprine avoids this interaction. Uricosuric agents, such as probenecid, are ineffective in patients with renal impairment. The exception is benzbromarone, which is effective in those with a creatinine clearance >25 mL/min. Benzbromarone is indicated in allopurinol-intolerant patients with renal failure, solid organ transplant or tophaceous/ polyarticular gout. Monitoring for hepatotoxicty is essential for patients taking benzbromarone.

Physicians should carefully consider therapeutic options for the management of hypertension and hyperlipidaemia, which are common in transplant recipients. While loop and thiazide diuretics increase serum urate, amlodipine and losartan have the same antihypertensive effect with the additional benefit of lowering serum urate. Atorvastatin, but not simvastatin, may lower uric acid, and while fenofibrate may reduce serum urate it has been associated with a decline in renal function.

Gout in solid organ transplantation is an increasing and challenging clinical problem; it impacts adversely on patients’ quality of life. Recognition and, if possible, alleviation of risk factors, prompt treatment of acute attacks and early introduction of hypouricaemic therapy with careful monitoring are the keys to successful management.


Uric Acid Transplant Recipient Gout Serum Uric Acid Renal Transplant Recipient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest to declare.


  1. 1.
    Schlesinger N. Management of acute and chronic gouty arthritis: present state-of-the-art. Drugs 2004; 64(21): 2399–416PubMedCrossRefGoogle Scholar
  2. 2.
    Delaney N, Summrani N, Daskalakis P, et al. Hyperuricaemia and gout in renal allograft recipients. Transplant Proc 1992; 24(5): 1773–4PubMedGoogle Scholar
  3. 3.
    Schlesinger N, Schumacher HR. Gout: can management be improved? Curr Opin Rheumatol 2001; 13: 240–4PubMedCrossRefGoogle Scholar
  4. 4.
    Roubenoff R, Klag M, Mead L, et al. Incidence and risk factors for gout in white men. JAMA 1991; 266(21): 3004–7PubMedCrossRefGoogle Scholar
  5. 5.
    Choi H, Atkinson K, Karlson E, et al. Obesity, weight change, hypertension, diuretic use and risk of gout in men. Arch Intern Med 2005; 165(7): 742–8PubMedCrossRefGoogle Scholar
  6. 6.
    Lin K-C, Lin H–Y, Chou P. The interaction between uric acid level and other risk factors on the development of gout among asymptomatic hyperuricaemic men in a prospective study. J Rheumatol 2000; 27(6): 1501–5PubMedGoogle Scholar
  7. 7.
    Fam A. Gout, diet and the insulin resistance syndrome. J Rheumatol 2002; 29(7): 1350–5PubMedGoogle Scholar
  8. 8.
    Vazquez-Mellado J, Garcia C, Vazquez S, et al. Metabolic syndrome and ischaemic heart disease in gout. J Clin Rheumatol 2004; 10(3): 105–9PubMedCrossRefGoogle Scholar
  9. 9.
    Reyes A. Cardiovascular drugs and serum uric acid. Cardiovasc Drug Ther 2003; 17(5/6): 397–414CrossRefGoogle Scholar
  10. 10.
    Gurwitz J, Kalish S, Bohn R, et al. Thiazide diuretics and the initiation of anti-gout therapy. J Clin Epidemiol 1997; 50(8): 953–9PubMedCrossRefGoogle Scholar
  11. 11.
    York M, Hunter D, Chaisson C, et al. Recent thiazide use and the risk of acute gout: the online case-crossover gout study. Arthritis Rheum 2004; 50 (9 Suppl.): S341CrossRefGoogle Scholar
  12. 12.
    Lin H–Y, Rocher L, McQuillan M, et al. Cyclosporine induced hyperuricaemia and gout. N Engl J Med 1989; 321(5): 287–92PubMedCrossRefGoogle Scholar
  13. 13.
    Ahn K, Kim Y-G, Lee H, et al. Cyclosporin-induced hyperuricaemia after renal transplant: clinical characteristics and mechanisms. Transplant Proc 1992; 24(4): 1391–2PubMedGoogle Scholar
  14. 14.
    Noordzij T, Leunisssen K, Van Hooff J. Renal handling of urate and the incidence of gouty arthritis during cyclosporin and diuretic use. Transplantation 1991; 52(1): 64–7PubMedCrossRefGoogle Scholar
  15. 15.
    West C, Carpenter B, Hakala T. The incidence of gout in renal transplant recipients. Am J Kidney Dis 1987; 10(5): 369–71PubMedGoogle Scholar
  16. 16.
    Gores P, Fryd D, Sutherland D, et al. Hyperuricaemia after renal transplantation. Am J Surg 1988; 156: 397–400PubMedCrossRefGoogle Scholar
  17. 17.
    Puig J, Michan A, Jimenez M, et al. Female gout clinical spectrum and uric acid metabolism. Arch Intern Med 1991; 141(4): 726–32CrossRefGoogle Scholar
  18. 18.
    Marcen R, Gallego N, Orofino L, et al. Impairment of tubular secretion of urate in renal transplant patients on cyclosporine. Nephron 1995; 70: 307–13PubMedCrossRefGoogle Scholar
  19. 19.
    Ifudu O, Tan C, Dulin A, et al. Gouty arthritis in end-stage renal disease: clinical course and rarity of new cases. Am J Kidney Dis 1994; 23(3): 347–51PubMedGoogle Scholar
  20. 20.
    Fernando O, Sweny P, Varghese Z. Elective conversion of patients from cyclosporin to tacrolimus for hypertrichosis. Transplant Proc 1998; 30: 1243–4PubMedCrossRefGoogle Scholar
  21. 21.
    Urbizu J, Zarraga S, Gomez-Ullate P, et al. Safety and efficacy of tacrolimus rescue therapy in 55 kidney transplant recipients treated with cyclosporin. Transplant Proc 2003; 35: 1704–5PubMedCrossRefGoogle Scholar
  22. 22.
    Pilmore H, Faire B, Dittmer I. Tacrolimus for the treatment of gout in renal transplantation. Transplantation 2001; 72(10): 1703–5PubMedCrossRefGoogle Scholar
  23. 23.
    Van Thiel D, Iqbal M, Jain A, et al. Gastrointestinal and metabolic problems associated with immunosuppression with either CyA or FK 506 in liver transplantation. Transplant Proc 1990; 22 (1 Suppl. 1): 37–40Google Scholar
  24. 24.
    Najarian J, Fryd D, Strand M, et al. A single institution, randomized, prospective trial of cyclosporin versus azathioprine-antilymphocyte globulin for immunosuppression in renal allograft recipients. Ann Surg 1985; 201(2): 142–57PubMedCrossRefGoogle Scholar
  25. 25.
    Tiller D, Hall B, Horvarth J, et al. Gout and hyperuricaemia in patients on cyclosporin and diuretics [letter]. Lancet 1985; I(8246): 453CrossRefGoogle Scholar
  26. 26.
    Kahan B, Flechner S, Lorber M, et al. Complications of cyclosporine-prednisone immunosuppression in 402 renal allograft recipients exclusively followed at a single center from one to five years. Transplantation 1987; 43(2): 197–204PubMedCrossRefGoogle Scholar
  27. 27.
    Marcen R, Gallego N, Gamez C, et al. Hyperuricaemia after kidney transplantation in patients treated with cyclosporin. Am J Med 1992; 93: 354–5PubMedCrossRefGoogle Scholar
  28. 28.
    Ben Hmida M, Hachicha J, Bahloul Z, et al. Cyclosporin induced hyperuricaemia and gout in renal transplants. Transplant Proc 1995; 27(5): 2722–4PubMedGoogle Scholar
  29. 29.
    Braun W, Richmond B, Prouva D, et al. The incidence and management of osteoporosis, gout, and avascular necrosis in recipients of renal allografts functioning more than 20 years (level 5A) treated with prednisone and azathioprine. Am J Kidney Dis 1999; 31: 1366–9Google Scholar
  30. 30.
    Farge D, Liote F, Guillemain R, et al. Hyperuricaemia and gouty arthritis in heart transplant recipients [letter]. Am J Med 1990; 88: 553PubMedCrossRefGoogle Scholar
  31. 31.
    Burack D, Griffith B, Thompson M. Hyperuricaemia and gout among heart transplant recipients receiving cyclosporin. Am J Med 1992; 92: 141–6PubMedCrossRefGoogle Scholar
  32. 32.
    Wluka A, Ryan P, Miller A, et al. Post-cardiac transplantation gout: incidence and therapeutic complications. J Heart Lung Transplant 2000; 19: 951–6PubMedCrossRefGoogle Scholar
  33. 33.
    Robinson L, Switala J, Tarter R, et al. Functional outcome after liver transplantation: a preliminary report. Arch Phys Med Rehabil 1990; 71: 426–7PubMedGoogle Scholar
  34. 34.
    Taillandier J, Alemanni M, Liote F, et al. Serum uric acid and liver transplantation. Transplant Proc 1995; 27(3): 2189–90PubMedGoogle Scholar
  35. 35.
    Chapman J, Harding N, Griffiths D, et al. Reversibility of cyclosporin nephrotoxicity after three months treatment. Lancet 1985; I: 128–9CrossRefGoogle Scholar
  36. 36.
    Hansen J, Fogh-Anderson N, Leyssac P, et al. Glomerular and tubular function in renal transplant patients treated with and without cyclosporin A. Nephron 1998; 80: 450–7PubMedCrossRefGoogle Scholar
  37. 37.
    Cohen S, Boner G, Rosenfeld J, et al. The mechanism of hyperuricaemia in cyclosporin-treated renal transplant recipients. Transplant Proc 1987; 29(1): 1829–30Google Scholar
  38. 38.
    Zurcher R, Bock H, Thiel G. Hyperuricaemia in cyclosporin treated patients: GFR-related effect. Nephrol Dial Transplant 1996; 11(1): 153–8PubMedCrossRefGoogle Scholar
  39. 39.
    Laine L, Holmberg C. Mechanisms of hyperuricaemia in cyclosporin treated renal transplanted children. Nephron 1996; 74: 318–23PubMedCrossRefGoogle Scholar
  40. 40.
    Palestine A, Austin H, Nussenblatt R. Renal tubular function in cyclosporine treated patients. Am J Med 1986; 81: 419–24PubMedCrossRefGoogle Scholar
  41. 41.
    Deray G, Assogba U, Le Hoang P, et al. Cyclosporin induced hyperuricaemia and gout [letter]. Clin Nephrol 1990; 33(3): 154PubMedGoogle Scholar
  42. 42.
    Terkeltaub R. Pathogenesis and treatment of crystal-induced inflammation. In: Koopman WJ, editor. Arthritis and allied conditions. Philadelphia (PA): Lippincott Williams & Wilkins, 2001: 2329–47Google Scholar
  43. 43.
    Pascual E. Persistence of monosodium urate crystals and lowgrade inflammation in the synovial fluid of patients with untreated gout. Arthritis Rheum 1991; 34(2): 141–5PubMedCrossRefGoogle Scholar
  44. 44.
    Pascual E, Batlle-Gualda E, Martinez A, et al. Synovial fluid analysis for diagnosis of intercritical gout. Ann Intern Med 1999; 131: 756–9PubMedGoogle Scholar
  45. 45.
    Chapman P, Yarwood H, Harrison A, et al. Endothelial activation in monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum 1997; 40(5): 955–65PubMedCrossRefGoogle Scholar
  46. 46.
    Guerne P, Terkeltaub R, Zuraw B, et al. Inflammatory microcrystals stimulate interleukin-6 production and secretion by human monocytes and synoviocytes. Arthritis Rheum 1989; 32(11): 1443–52PubMedCrossRefGoogle Scholar
  47. 47.
    Terkeltaub R, Zachariae C, Santoro D, et al. Monocyte-derived neutrophil chemotactic factor/interleukin-8 is a potential mediator of crystal induced inflammation. Arthritis Rheum 1991; 34(7): 894–903PubMedCrossRefGoogle Scholar
  48. 48.
    Ryckman C, McColl S, Vandal K, et al. Role of S100A8 and S100A9 in neutrophil recruitment in response to monosodium urate monohydrate crystals in the air-pouch model of acute gouty arthritis. Arthritis Rheum 2003; 48(8): 2310–20PubMedCrossRefGoogle Scholar
  49. 49.
    Tramontini N, Huber C, Liu-Bryan R, et al. Central role of complement membrane attack complex in monosodium urate crystal-induced neutrophilic rabbit knee synovitis. Arthritis Rheum 2004; 50(8): 2633–9PubMedCrossRefGoogle Scholar
  50. 50.
    Terkeltaub R, Curtiss L, Tenner A, et al. Lipoproteins containing apoprotein B are a major regulator of neutrophil responses to monosodium urate crystals. J Clin Invest 1984; 73: 1719–30PubMedCrossRefGoogle Scholar
  51. 51.
    Ortiz-Bravo E, Sieck M, Schumacher HR. Changes in the proteins coating monosodium urate crystals during active and subsiding inflammation. Arthritis Rheum 1993; 36(9): 1274–85PubMedCrossRefGoogle Scholar
  52. 52.
    Landis RC, Yagnik D, Florey O, et al. Safe disposal of inflammatory monosodium urate monohydrate crystals by differentiated macrophages. Arthritis Rheum 2002; 46(11): 3026–33PubMedCrossRefGoogle Scholar
  53. 53.
    Akahoshi T, Namai R, Murakami Y, et al. Rapid induction of peroxisome proliferator-activated receptor γ expression in human monocytes by monosodium urate monohydrate crystals. Arthritis Rheum 2003; 48(1): 231–9PubMedCrossRefGoogle Scholar
  54. 54.
    Yagnik D, Evans B, Florey O, et al. Macrophage release of transforming growth factor betal during resolution of monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum 2004; 50: 2273–80PubMedCrossRefGoogle Scholar
  55. 55.
    Palmer D, Highton J, Hessian P. Development of the gout tophus. Am J Clin Pathol 1989; 91(2): 190–5PubMedGoogle Scholar
  56. 56.
    Taskiran D, Stefanovic-Racic M, Georgescu H, et al. Nitric oxide mediates suppression of cartilage proteoglycan synthesis by interleukin-1. Biochem Biophys Res Commun 1994; 200(1): 142–8PubMedCrossRefGoogle Scholar
  57. 57.
    Murrell G, Jang D, Williams RJ. Nitric oxide activates metalloproteinase enzymes in articular cartilage. Biochem Biophys Res Commun 1995; 206(1): 15–21PubMedCrossRefGoogle Scholar
  58. 58.
    Cao M, Westerhausen-Larson A, Niyibizi C, et al. Nitric oxide inhibits the synthesis of type-II collagen without altering CoI2A1 mRNA abundance: prolyl hydroxylase as a possible target. Biochem J 1997; 324: 305–10PubMedGoogle Scholar
  59. 59.
    Clancy RM, Abramson SB. Nitric oxide: a novel mediator of inflammation. Proc Soc Exp Biol Med 1995; 210(2): 93–101PubMedGoogle Scholar
  60. 60.
    Hsieh M–S, Ho H-C, Chou D–T, et al. Expression of matrix metalloproteinase-9 (gelatinase B) in gouty arthritis and stimulation of MMP-9 by urate crystals in macrophages. J Cell Biochem 2003; 89: 791–9PubMedCrossRefGoogle Scholar
  61. 61.
    Liu R, Liote F, Rose D, et al. Proline-rich tyrosine kinase 2 and Src kinase signaling transduce monosodium urate crystal-induced nitric oxide production and matrix metalloproteinase 3 expression in chondrocytes. Arthritis Rheum 2004; 50(1): 247–58PubMedCrossRefGoogle Scholar
  62. 62.
    Jaramillo M, Naccache P, Olivier M. Monosodium urate crystals synergize with IFN-gamma to generate macrophage nitric oxide: involvement of extra-cellular signal-related kinase 1/2 and NF-kappa B. J Immunol 2004; 172: 5734–42PubMedGoogle Scholar
  63. 63.
    De Lannoy I, Mandin R, Silverman M. Renal secretion of vinblastin, vincristine and colchicine in vivo. J Pharmacol Exp Ther 1994; 268(1): 388–95PubMedGoogle Scholar
  64. 64.
    Campion E, Glynn R, DeLabry L. Asymptomatic hyperuricaemia: risks and consequence in the normative aging study. Am J Med 1987; 82: 421–6PubMedCrossRefGoogle Scholar
  65. 65.
    Mikuls T, MacLean C, Oliveri J, et al. Quality of care indicators for gout management. Arthritis Rheum 2004; 50(3): 937–43PubMedCrossRefGoogle Scholar
  66. 66.
    Hande K, Noone R, Stone W. Severe allopurinol toxicity. Description and guidelines for prevention in patients with renal insufficiency. Am J Med 1984; 76: 47–56Google Scholar
  67. 67.
    Johnson R, Kang D–H, Feig D, et al. Is there a pathogenic role for uric acid in hypertension and cardiovascular renal disease? Hypertension 2003; 41: 1183–90PubMedCrossRefGoogle Scholar
  68. 68.
    Baker J, Krishnan E, Chen L, et al. Serum uric acid and cardiovascular disease: recent developments, and where do they leave us? Am J Med 2005; 118: 816–26PubMedCrossRefGoogle Scholar
  69. 69.
    Struthers A, Donnan P, Lindasy P, et al. Effect of allopurinol on mortality and hospitalisations in chronic heart failure: a retrospective cohort study. Heart 2002; 87(3): 229–34PubMedCrossRefGoogle Scholar
  70. 70.
    Dimeny E. Cardiovascular disease after renal transplantation. Kidney Int 2002; 61 Suppl. 80: S78–84CrossRefGoogle Scholar
  71. 71.
    Fellstrom B. Risk factors for and management of post-transplantation cardiovascular disease. Biodrugs 2001; 15(4): 261–78PubMedCrossRefGoogle Scholar
  72. 72.
    Briggs J. Causes of death after renal transplantation. Nephrol Dial Transplant 2001; 16: 1545–9PubMedCrossRefGoogle Scholar
  73. 73.
    Valantine H. Caridac allograft vasculopathy after heart transplantation: risk factors and management. J Heart Lung Transplant 2004; 23: S187–93PubMedCrossRefGoogle Scholar
  74. 74.
    Mazuelos F, Abril J, Zaragoza C, et al. Cardiovascular morbidity and obesity in adult liver transplant recipients. Transplant Proc 2003; 35(5): 1909–10PubMedCrossRefGoogle Scholar
  75. 75.
    Gerhardt U, Grosse H, Hohage H. Influence of hyperglycaemia and hyperuricaemia on long-term transplant survival in kidney transplant recipients. Clin Transplant 1999; 13(5): 375–9PubMedCrossRefGoogle Scholar
  76. 76.
    Rosenfeld J. Effect of longterm allopurinol administration on serial GFR in normotensive and hypertensive hyperuricaemic subjects. Adv Exp Med Biol 1974; 41: 581–96PubMedGoogle Scholar
  77. 77.
    Neal D, Tom B, Gimson A, et al. Hyperuricaemia, gout and renal function after liver transplantation. Transplantation 2001; 72(10): 1689–91PubMedCrossRefGoogle Scholar
  78. 78.
    Perez-Ruiz F, Gomez-Ullate P, Amenabar J, et al. Long-term efficacy of hyperuricaemia treatment in renal transplant recipients. Nephrol Dial Transplant 2003; 18: 603–6PubMedCrossRefGoogle Scholar
  79. 79.
    Vazquez-Mellado J, Hernandez E, Burgos-Vargas R. Primary prevention in rheumatology: the importance of hyperuricaemia. Best Pract Res Clin Rheumatol 2004; 18(2): 111–24PubMedCrossRefGoogle Scholar
  80. 80.
    Mikuls T, Farrar J, Bilker W, et al. Gout epidemiology: results from the UK general practice research database, 1990–1999. Ann Rheum Dis 2005; 64: 267–72PubMedCrossRefGoogle Scholar
  81. 81.
    Klemp P, Stansfield S, Castle B, et al. Gout is on the increase in New Zealand. Ann Rheum Dis 1997; 56: 22–6PubMedCrossRefGoogle Scholar
  82. 82.
    Chang H–Y, Pan W-H, Yeh W-T. Hyperuricaemia and gout in Taiwan: results from the nutritional and health survey in Taiwan. J Rheumatol 2001; 28: 1640–6PubMedGoogle Scholar
  83. 83.
    Buchanan W, Klinenberg J, Seegmiller J. The inflammatory response to injected microcrystalline monosodium urate in normal, hyperuricaemic, gouty and uraemic subjects. Arthritis Rheum 1965; 8: 361–7PubMedCrossRefGoogle Scholar
  84. 84.
    Schreiner O, Wandel E, Himmelsbach F, et al. Reduced secretion of proinflammatory cytokines of monosodium urate crystal-stimulated monocytes in chronic renal failure: an explanation for infrequent gout episode in chronic renal failure patients? Nephrol Dial Transplant 2000; 15: 644–9PubMedCrossRefGoogle Scholar
  85. 85.
    Lin J, Yu C, Lin-Tan D, et al. Lead chelation therapy and urate excretion in patients with chronic renal diseases and gout. Kidney Int 2001; 60(1): 266–71PubMedCrossRefGoogle Scholar
  86. 86.
    Cohen M. Proximal gout following renal transplantation. Arthritis Rheum 1994; 37(11): 1709–10PubMedCrossRefGoogle Scholar
  87. 87.
    Cohen M, Cohen E. Enthesopathy and atypical gouty arthritis following renal transplantation: a case controlled study. Rev Rhum Engl Ed 1995; 62(2): 86–90PubMedGoogle Scholar
  88. 88.
    Gutman A. The past four decades of progress in the knowledge of gout with an assessment of the present state. Arthritis Rheum 1973; 16: 434–45CrossRefGoogle Scholar
  89. 89.
    Becker M, Schumacher HR, Wortmann R, et al. Febuxostat, a novel nonpurine selective inhibitor of xanthine oxidase. Arthritis Rheum 2005; 52(3): 916–23PubMedCrossRefGoogle Scholar
  90. 90.
    Baethge B, Work J, Landreneau M, et al. Tophaceous gout in patients with renal transplants treated with cyclosporin A. J Rheumatol 1993; 20(4): 718–20PubMedGoogle Scholar
  91. 91.
    Peeters P, Sennesael J. Low-back pain caused by spinal tophus: a complication of gout in a kidney transplant recipient. Nephrol Dial Transplant 1998; 13: 3245–7PubMedCrossRefGoogle Scholar
  92. 92.
    Thornton F, Torreggiani W, Brennan P. Tophaceous gout of the lumbar spine in a renal transplant patient: a case report and review of the literature. Eur J Radiol 2000; 36(3): 123–5PubMedCrossRefGoogle Scholar
  93. 93.
    Riedel A, Nelson M, Joseph-Ridge N, et al. Compliance with allopurinol therapy among managed care enrollees with gout: a retrospective analysis of administrative claims. J Rheumatol 2004; 31(8): 1575–81PubMedGoogle Scholar
  94. 94.
    Stamp L, Sharpies K, Raill B, et al. The optimal use of allopurinol: an audit or allopurinol use in South Auckland. Aust N Z J Med 2000; 30: 567–72PubMedCrossRefGoogle Scholar
  95. 95.
    Murphy B, Schumacher HR. How does patient education affect gout? Clin Rheumatol Pract 1984 Mar/Apr: 77–80Google Scholar
  96. 96.
    Gibson T, Rodgers A, Simmonds H, et al. Beer drinking and its effect on uric acid. Br J Rheumatol 1984; 23: 203–9PubMedCrossRefGoogle Scholar
  97. 97.
    Choi H, Atkinson K, Karlson E, et al. Alcohol intake and risk of gout in men: a prospective study. Lancet 2004; 363: 1277–81PubMedCrossRefGoogle Scholar
  98. 98.
    Choi H, Liu S, Curhan G. Intake of purine-rich foods, protein and diary products and relationship to serum levels of uric acid. Arthritis Rheum 2005; 52(1): 283–9PubMedCrossRefGoogle Scholar
  99. 99.
    Choi H, Atkinson K, Karlson E, et al. Purine-rich foods, dairy and protein intake and the risk of gout in men. N Engl J Med 2004; 350(11): 1093–103PubMedCrossRefGoogle Scholar
  100. 100.
    Fam A. Gout: excess calories, purines, and alcohol intake and beyond: response to a urate-lowering diet. J Rheumatol 2005; 32(5): 773–7PubMedGoogle Scholar
  101. 101.
    Dessein P, Shipton E, Stanwix A, et al. Beneficial effects of weight loss associated with moderate calorie/carbohydrate restriction, and increased proportional intake of protein and unsaturated fat on serum urate and lipoprotein levels in gout: a pilot study. Ann Rheum Dis 2000; 59: 539–43PubMedCrossRefGoogle Scholar
  102. 102.
    Mistry C, Lote C, Gokal R, et al. Effects of sulindac on renal function and prostaglandin synthesis in patients with moderate chronic renal insufficiency. Clin Sci 1986; 70: 501–5PubMedGoogle Scholar
  103. 103.
    Gambaro G, Perazella M. Adverse renal effects of anti-inflammatory agents: evaluation of selective and nonselective cyclooxygenase inhibitors. J Intern Med 2003; 253(6): 643–52PubMedCrossRefGoogle Scholar
  104. 104.
    Stichtenoth D, Frolich J. The second generation of COX-2 inhibitors: what advantages do the newest offer? Drugs 2003; 63(1): 33–45PubMedCrossRefGoogle Scholar
  105. 105.
    Schumacher HR, Boicee J, Daikh D, et al. Randomised double blind trial of etoricoxib and indomethacin in treatment of acute gouty arthritis. BMJ 2002; 324: 1488–92PubMedCrossRefGoogle Scholar
  106. 106.
    Rubin B, Burton R, Navarra S, et al. Efficacy and safety profile of treatment with etoricoxib 120mg once daily compared with indomethacin 50mg three times daily in acute gout. Arthritis Rheum 2004; 50(2): 598–606PubMedCrossRefGoogle Scholar
  107. 107.
    Cheng T, Lai H, Chiu C, et al. A single-blind, randomized, controlled trial to assess the efficacy and tolerability of rofecoxib, diclofenac sodium, and meloxicam in patients with acute gouty arthritis. Clin Ther 2004; 26(3): 399–406PubMedCrossRefGoogle Scholar
  108. 108.
    Bresalier R, Snadler R, Quan H, et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med 2005; 352: 1092–102PubMedCrossRefGoogle Scholar
  109. 109.
    Solomon S, McMurray J, Pfeffer M, et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 2005; 352: 1071–80PubMedCrossRefGoogle Scholar
  110. 110.
    Cleland L, James M, Stamp L, et al. COX-2 inhibition and thrombotic tendency: a need for surveillance. Med J Aust 2001; 175: 214–7PubMedGoogle Scholar
  111. 111.
    Crofford L, Oates J, McCune J, et al. Thrombosis in patients with connective tissue diseases treated with specific cyclooxygenase 2 inhibitors: a report of four cases. Arthritis Rheum 2000; 43(8): 1891–6PubMedCrossRefGoogle Scholar
  112. 112.
    Bombardier C, Laine L, Reicin A, et al. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. N Engl J Med 2000; 343: 1520–8PubMedCrossRefGoogle Scholar
  113. 113.
    Harris K, Jenkins D, Walls J. Nonsteroidal antiinflammatory drugs and cyclosporine. Transplantation 1988; 46(4): 598–9PubMedCrossRefGoogle Scholar
  114. 114.
    Murray B, Palier M, Ferris T. Effect of cyclosporin administration on renal hemodynamics in conscious rats. Kidney Int 1985; 28: 767–74PubMedCrossRefGoogle Scholar
  115. 115.
    Ahern M, McCredie M, Reid C, et al. Does colchicine work? The results of the first controlled study in acute gout. Aust N Z J Med 1987; 17: 301–4PubMedCrossRefGoogle Scholar
  116. 116.
    Ben-Chetrit E, Scherrmann J, Zylber-Katz E, et al. Colchicine disposition in patients with Familial Mediterranean Fever with renal impairment. J Rheumatol 1994; 21(4): 710–3PubMedGoogle Scholar
  117. 117.
    Achten G, Scherrmann J, Christen M. Pharmacokinetics/ bioavailability of colchicine in healthy male volunteers. Eur J Drug Metab Pharmacokinet 1989; 14(4): 317–22CrossRefGoogle Scholar
  118. 118.
    Ben-Chetrit E, Levy M. Colchicine: 1998 update. Semin Arthritis Rheum 1998; 28(1): 48–59PubMedCrossRefGoogle Scholar
  119. 119.
    Kuncl R, Duncan G, Watson D, et al. Colchicine myopathy and neuropathy. N Engl J Med 1987; 316(25): 1562–8PubMedCrossRefGoogle Scholar
  120. 120.
    Van der Naalt J, Haaxma-Reiche H, Van Den Berg A, et al. Acute neuromyopathy after colchicine treatment. Ann Rheum Dis 1992; 51(11): 1267–8PubMedCrossRefGoogle Scholar
  121. 121.
    Wallace S, Singer J, Duncan G, et al. Renal function predicts colchicine toxicity: guidelines for the prophylactic use of colchicine in gout. J Rheumatol 1991; 18(2): 264–9PubMedGoogle Scholar
  122. 122.
    Cook M, Ramos E, Peterson J, et al. Colchicine neuromyopathy in a renal transplant patient with normal muscle enzyme levels. Clin Nephrol 1994; 42(1): 67–8PubMedGoogle Scholar
  123. 123.
    Rieger E, Halasz N, Wahlstrom H. Colchicine neuromyopathy after renal transplantation. Transplantation 1990; 49(6): 1196–8PubMedCrossRefGoogle Scholar
  124. 124.
    Tapal M. Colchicine myopathy. Scand J Rheumatol 1996; 25: 105–6PubMedCrossRefGoogle Scholar
  125. 125.
    Rana S, Giuliani M, Oddis C, et al. Acute onset of colchicine myoneuropathy in cardiac transplant recipients: case studies of three patients. Clin Neurol Neurosurg 1997; 99: 266–70PubMedCrossRefGoogle Scholar
  126. 126.
    Grezard O, Lebranchu Y, Birmele B, et al. Cyclosporin induced muscular toxicity [letter]. Lancet 1990; 335(8682): 177PubMedCrossRefGoogle Scholar
  127. 127.
    Breil M, Chariot P. Muscle disorders associated with cyclosporin treatment. Muscle Nerve 1999; 22: 1631–6PubMedCrossRefGoogle Scholar
  128. 128.
    Simkin P, Gardner G. Colchicine use in cyclosporine treated renal transplant recipients: how little is too much? J Rheumatol 2000; 27(6): 1334–7PubMedGoogle Scholar
  129. 129.
    Ducloux D, Schuller V, Bresson-Vautrin C, et al. Colchicine myopathy in renal transplant recipients on cyclosporin. Nephrol Dial Transplant 1997; 12: 2389–92PubMedCrossRefGoogle Scholar
  130. 130.
    Speeg K, Maldonado A, Liaci J, et al. Effect of cyclosporin on colchicine secretion by a liver canalicular transporter studied in vivo. Hepatology 1992; 15: 899–903PubMedCrossRefGoogle Scholar
  131. 131.
    Speeg K, Maldonado A, Liaci J, et al. Effect of cyclosporin on colchicine secretion by the kidney multidrug transporter studied in vivo. J Pharmacol Exp Ther 1992; 261(1): 50–5PubMedGoogle Scholar
  132. 132.
    Menta R, Rossi E, Guariglia A, et al. Reversible acute cyclosporin nephrotoxicity induced by colchicine administration. Nephrol Dial Transplant 1987; 2: 380–1PubMedGoogle Scholar
  133. 133.
    Braun W. Modification of the treatment of gout in renal transplant recipients. Transplant Proc 2000; 32(1): 199PubMedCrossRefGoogle Scholar
  134. 134.
    Groff G, Franck W, Raddatz D. Systemic steroid therapy for acute gout: a clinical trial and review of the literature. Semin Arthritis Rheum 1990; 19(6): 329–36PubMedCrossRefGoogle Scholar
  135. 135.
    Vazquez-Mellado J, Cuan A, Magana M, et al. Intradermal tophi in gout: a case controlled study. J Rheumatol 1999; 26(1): 136–40PubMedGoogle Scholar
  136. 136.
    Gray R, Tenenbaum J, Gottlieb N. Local steroid injection treatment in rheumatic disorders. Semin Arthritis Rheum 1981; 10(4): 231–54PubMedCrossRefGoogle Scholar
  137. 137.
    Alloway J, Moriarty M, Hoogland Y, et al. Comparison of triamcinolone acetonide with indomethacin in the treatment of acute gouty arthritis. J Rheumatol 1993; 20(1): 111–3PubMedGoogle Scholar
  138. 138.
    Ritter J, Kerr L, Valeriano-Marcet J, et al. ACTH revisited: effective treatment for acute crystal induced synovitis in patients with multiple medical problems. J Rheumatol 1994; 21: 696–9PubMedGoogle Scholar
  139. 139.
    Taylor C, Brooks N, Kelley K. Corticotropin for acute management of gout. Ann Pharmacother 2001; 35(3): 365–8PubMedCrossRefGoogle Scholar
  140. 140.
    Axelrod D, Preston S. Comparison of parenteral adrenocorticotropic hormone with oral indomethacin in the treatment of acute gout. Arthritis Rheum 1988; 31(6): 803–5PubMedCrossRefGoogle Scholar
  141. 141.
    Getting S, Christian H, Flower R, et al. Activation of melanocortin type 3 receptor as a molecular mechanism for adrenocorticotropic hormone efficacy in gouty arthritis. Arthritis Rheum 2002; 46(10): 2765–75PubMedCrossRefGoogle Scholar
  142. 142.
    McCarthy G, Barthelemy C, Veum J, et al. Influence of antihyperuricaemic therapy on the clinical and radiographic progression of gout. Arthritis Rheum 1991; 34(12): 1489–94PubMedCrossRefGoogle Scholar
  143. 143.
    Li-Yu J, Clayburne G, Sieck M, et al. Treatment of chronic gout: can we determine when urate stores are depleted enough to prevent attacks of gout? J Rheumatol 2001; 28: 577–80PubMedGoogle Scholar
  144. 144.
    Perez-Ruiz F, Calabozo M, Pijoan J, et al. Effect of uratelowering therapy on the velocity of size reduction of tophi in chronic gout. Arthritis Rheum 2002; 47(4): 356–60PubMedCrossRefGoogle Scholar
  145. 145.
    Shoji A, Yamanaka H, Kamatani N. A retrospective study of the relationship between serum urate level and recurrent attacks of gouty arthritis: evidence for reduction of recurrent gouty arthritis with antihyperuricaemic therapy. Arthritis Rheum 2004; 51(3): 321–5PubMedCrossRefGoogle Scholar
  146. 146.
    Venkat Raman G, Sharman V, Lee H. Azathioprine and allopurinol: a potentially dangerous combination. J Intern Med 1990; 228: 69–71PubMedCrossRefGoogle Scholar
  147. 147.
    Cummins D, Sekar M, Halil O, et al. Myelosuppression associated with azathioprine-allopurinol interaction after heart and lung transplantation. Transplantation 1996; 61(11): 1661–2PubMedCrossRefGoogle Scholar
  148. 148.
    Byrne P, Fraser A, Pritchard M. Treatment of gout following cardiac transplantation [letter]. Rheumatology 1996; 35(12): 1329Google Scholar
  149. 149.
    Sinclair D, Fox I. The pharmacology of hypouricaemic effect of benzbromarone. J Rheumatol 1974; 2: 437–45Google Scholar
  150. 150.
    Perez-Ruiz F, Alonso-Ruiz A, Calabozo M, et al. Efficacy of allopurinol and benzbromarone for the control of hyperuricaemia: a pathogenic approach to the treatment of primary chronic gout. Ann Rheum Dis 1998; 57: 545–9PubMedCrossRefGoogle Scholar
  151. 151.
    Heel R, Brogden R, Speight T, et al. Benzbromarone: a review of its pharmacological properties and therapeutic uses in gout and hyperuricaemia. Drugs 1977; 14(5): 349–66PubMedCrossRefGoogle Scholar
  152. 152.
    Zurcher R, Bock H, Thiel G. Excellent uricosuric efficacy of benzbromarone in cyclosporin-A treated renal transplant patients: a prospective study. Nephrol Dial Transplant 1994; 9: 548–51PubMedGoogle Scholar
  153. 153.
    World Health Organization. Benzbromarone, benziodarone: measures following safety review. In: Pharmaceuticals Newsletter No. 2; 2004 [online]. Available from URL: [Accessed 2005 Sep 1]
  154. 154.
    Hautekeete M, Henrion J, Naegels S, et al. Severe hepatotoxicity related to benzarone: a report of three cases with two fatalities. Liver 1995; 15: 25–9PubMedGoogle Scholar
  155. 155.
    Wagayama H, Shiraki K, Sugimoto K, et al. Fatal fulminant hepatic failure associated with benzbromarone [letter]. J Hepatol 2000; 32(5): 874PubMedCrossRefGoogle Scholar
  156. 156.
    Arai M, Yokosuka O, Fujiwara K, et al. Fulminant hepatic failure associated with benzbromarone treatment: a case report. J Gastroenterol Hepatol 2002; 17(5): 625–6PubMedCrossRefGoogle Scholar
  157. 157.
    Van Der Klauw M, Houtmann M, Strieker B, et al. Hepatic injury caused by benzbromarone. J Hepatol 1994; 20(3): 376–9PubMedCrossRefGoogle Scholar
  158. 158.
    Masbernard A, Giudicelli C. Ten years experience with benzbromarone in then management of gout and hyperuricaemia. Sth Afr Med J 1981; 59: 701–6Google Scholar
  159. 159.
    Pui C–H. Urate oxidase in the prophylaxis or treatment of hyperuricaemia. Semin Hematol 2001; 38 (4 Suppl. 10): 13–21PubMedCrossRefGoogle Scholar
  160. 160.
    Rozenberg S, Koeger A, Bourgeois P. Urate-oxydase for gouty arthritis in cardiac transplant recipients [letter]. J Rheumatol 1993; 20(12): 2171PubMedGoogle Scholar
  161. 161.
    Ippoliti G, Negri M, Campana C, et al. Urate oxidase in hyperuricaemic heart transplant recipients treated with azathioprine. Transplantation 1997; 63(9): 1370–1PubMedCrossRefGoogle Scholar
  162. 162.
    Pui C–H, Relling M, Lascombes F, et al. Urate oxidase in prevention and treatment of hyperuricaemia associated with lymphoid malignancies. Leukemia 1997; 11(11): 1813–6PubMedCrossRefGoogle Scholar
  163. 163.
    Bomalaski J, Holtsberg F, Ensor C, et al. Uricase formulated with polyethylene glycol (Uricase-PEG20): biochemical rationale and preclinical studies. J Rheumatol 2002; 29(9): 1942–9PubMedGoogle Scholar
  164. 164.
    Sundy J, Ganson N, Kelly S, et al. A phase I study of pegylated uricase (Puricase) in subjects with gout. Arthritis Rheum 2004; 50 (9 Suppl.): S337–8CrossRefGoogle Scholar
  165. 165.
    Ganson N, Kelly S, Scarlett E, et al. Antibodies to polyethylene glycol (PEG) during phase I investigation of PEG-urate oxidase (PEG-uricase, Puricase) for refractory gout [abstract]. Arthritis Rheum 2004; 50 (9 Suppl.): S338Google Scholar
  166. 166.
    Hoshide S, Takahashi Y, Ishikawa T, et al. PK/PD and safety of a single dose of TMX-67 (febuxostat) in subjects with mild and moderate renal impairment. Nucleosides Nucleotides Nucleic Acids 2004; 23(8–9): 1117–8PubMedCrossRefGoogle Scholar
  167. 167.
    Groth C, Backman L, Morales J, et al. Sirolimus (rapamycin)-based therapy in human renal transplantation: similar efficacy and different toxicity compared with cyclosporin. Transplantation 1999; 67(7): 1036–42PubMedCrossRefGoogle Scholar
  168. 168.
    Kreis H, Cisterne J, Land W, et al. Sirolimus in association with mycophenylate induction for the prevention of acute graft rejection in renal allograft recipients. Transplantation 2000; 69(7): 1252–60PubMedCrossRefGoogle Scholar
  169. 169.
    Morales J, Wramner L, Kreis H, et al. Sirolimus does not exhibit nephrotoxicity compared to cyclosporine in renal transplant recipients. Am J Transplant 2002; 2: 436–42PubMedCrossRefGoogle Scholar
  170. 170.
    Jacobs F, Mamzer-Bruneel M, Skhiri H, et al. Safety of mycophenylate mofetil-allopurinol combination in kidney transplant recipients with gout. Transplantation 1997; 64(7): 1087–8PubMedCrossRefGoogle Scholar
  171. 171.
    Burnier M, Rutschmann B, Nussberger J, et al. Salt-dependent renal effects of an angiotension II antagonist in healthy subjects. Hypertension 1993; 22: 339–47PubMedCrossRefGoogle Scholar
  172. 172.
    Soffer B, Wright J, Pratt J, et al. Effects of losartan on a background of hydrochlorothiazide in patients with hypertension. Hypertension 1995; 26(1): 112–7PubMedCrossRefGoogle Scholar
  173. 173.
    Minghelli G, Seydoux C, Goy J, et al. Uricosuric effect of the angiotensin II receptor antagonist losartan in heart transplant recipients. Transplantation 1998; 66(2): 268–71PubMedCrossRefGoogle Scholar
  174. 174.
    Del Castillo D, Campistol J, Guirado L, et al. Efficacy and safety of losartan in the treatment of hypertension in renal transplant recipients. Kidney Int 1998; 54 Suppl. 68: S135–S9CrossRefGoogle Scholar
  175. 175.
    Schmidt A, Gruber U, Bohmig G, et al. The effect of ACE inhibitor and angiotension II receptor antagonist therapy on serum uric acid levels and potassium homeostasis in hypertensive renal transplant recipients treated with CsA. Nephrol Dial Transplant 2001; 16: 1034–7PubMedCrossRefGoogle Scholar
  176. 176.
    Yamamoto T, Moriwaki Y, Takahashi S, et al. Effect of losartan potassium, an angiotensin II receptor antagonist, on renal excretion of oxypurinol and purine bases. J Rheumatol 2000; 27: 2232–6PubMedGoogle Scholar
  177. 177.
    Toupance O, Lavaud S, Canivet E, et al. Antihypertensive effect of amlodipine and lack of interference with cyclosporin metabolism in renal transplant recipients. Hypertension 1994; 24(3): 297–300PubMedCrossRefGoogle Scholar
  178. 178.
    van der Schaaf M, Hene R, Floor M, et al. Hypertension after renal transplantation calcium channel or converting enzyme blockade? Hypertension 1995; 25(1): 77–81PubMedCrossRefGoogle Scholar
  179. 179.
    Chanard J, Toupance O, Lavaud S, et al. Amlodipine reduces cyclosporin-induced hyperuricaemia in hypertensive renal transplant recipients. Nephrol Dial Transplant 2003; 18: 2147–53PubMedCrossRefGoogle Scholar
  180. 180.
    Sennesael J, Lamote J, Violet I, et al. Divergent effects of calcium channel and angiotensin converting enzyme blockade on glomerulotubular function in cyclosporin-treated renal allograft recipients. Am J Kidney Dis 1996; 27(5): 701–8PubMedCrossRefGoogle Scholar
  181. 181.
    Rodicio R. Calcium channel antagonists and renal protection from cyclosporin nephrotoxicity: long term trial in renal transplantation patients. J Cardiovasc Pharmacol 2000; 35 (3 Suppl. 1): S7–11PubMedCrossRefGoogle Scholar
  182. 182.
    Raman G, Feehally J, Coated R, et al. Renal effects of amlodipine in normotensive renal transplant recipients. Nephrol Dial Transplant 1999; 14: 384–8CrossRefGoogle Scholar
  183. 183.
    Milionis H, Kakafika A, Tsouli S, et al. Effects of statin treatment on uric acid homeostasis in patients with primary hyperlipidaemia. Am Heart J 2004; 148: 635–40PubMedCrossRefGoogle Scholar
  184. 184.
    Melenovsky V, Malik J, Wichterle D, et al. Comparison of the effects of atorvastatin or fenofibrate on nonlipid biochemical risk factors and the LDL particle size in subjects with combined hyperlipidaemia. Am Heart J 2002; 144(4): e6PubMedCrossRefGoogle Scholar
  185. 185.
    Sieb J, Gillessen T. Iatrogenic and toxic mypopathies. Muscle Nerve 2003; 27(2): 142–56PubMedCrossRefGoogle Scholar
  186. 186.
    Jardine A, Holdaas H. Fluvastatin in combination with cyclosporin in renal transplant recipients: a review of clinical and safety experience. J Clin Pharm Ther 1999; 24(6): 397–408PubMedCrossRefGoogle Scholar
  187. 187.
    Ballantyne C, Corsini A, Davidson M, et al. Risk for myopathy with statin therapy in high-risk patients. Arch Intern Med 2003; 163(5): 553–64PubMedCrossRefGoogle Scholar
  188. 188.
    Desager J, Hulhoven R, Harvengt C. Uricosuric effect of fenofibrate in healthy volunteers. J Clin Pharmacol 1980; 20: 560–4PubMedGoogle Scholar
  189. 189.
    Yamamoto T, Moriwaki Y, Takahashi S, et al. Effect of fenofibrate on plasma concentration and urinary excretion of purine bases and oxypurinol. J Rheumatol 2001; 28: 2294–7PubMedGoogle Scholar
  190. 190.
    Bastow M, Durrington P, Ishola M. Hypertriglyceridaemia and hyperuricaemia: effects of two fibric acid derivatives (Bezafibrate and fenofibrate) in a double-blind, placebo-controlled trial. Metabolism 1988; 37(3): 217–20PubMedCrossRefGoogle Scholar
  191. 191.
    Hepburn A, Kaye S, Feher M. Fenofibrate: a new treatment for hyperuricaemia and gout? Ann Rheum Dis 2001; 60: 984–6PubMedCrossRefGoogle Scholar
  192. 192.
    Feher M, Hepburn A, Hogarth M, et al. Fenofibrate enhances urate reduction in men treated with allopurinol for hyperuricaemia and gout. Rheumatology 2003; 42(2): 321–5PubMedCrossRefGoogle Scholar
  193. 193.
    Takahashi S, Moriwaki Y, Yamamoto T, et al. Effects of combination treatment using anti-hyperuricaemic agents with fenofibrate and/or losartan on uric acid metabolism. Ann Rheum Dis 2003; 62: 572–5PubMedCrossRefGoogle Scholar
  194. 194.
    Lipscombe J, Lewis G, Cattran D, et al. Deterioration in renal function associated with fibrate therapy. Clin Nephrol 2001; 55(1): 39–44PubMedGoogle Scholar
  195. 195.
    Tsimihodimos V, Kakafika A, Elisaf M. Fibrate treatment can increase serum creatinine levels [letter]. Nephrol Dial Transplant 2001; 16: 1301PubMedCrossRefGoogle Scholar
  196. 196.
    Broeders N, Knoop C, Antoine M, et al. Fibrate-induced increase in blood urea and creatinine: is gemfibrozil the only innocuous agent? Nephrol Dial Transplant 2000; 15: 1993–9PubMedCrossRefGoogle Scholar
  197. 197.
    Boissonnat P, Salen P, Guidollet J, et al. The long-term effects of the lipid-lowering agent fenofibrate in hyperlipidaemic heart transplant patients. Transplantation 1994; 58(2): 245–7PubMedGoogle Scholar

Copyright information

© Adis Data Information BV 2005

Authors and Affiliations

  • Lisa Stamp
    • 1
    • 2
  • Martin Searle
    • 3
  • John O’Donnell
    • 2
  • Peter Chapman
    • 1
    • 2
  1. 1.Department of Medicine, Christchurch School of Medicine and Health SciencesUniversity of OtagoChristchurchNew Zealand
  2. 2.Department of Rheumatology, Immunology and AllergyChristchurch Public HospitalChristchurchNew Zealand
  3. 3.Department of NephrologyChristchurch Public HospitalChristchurchNew Zealand

Personalised recommendations