Skip to main content
Log in

Short-Course Therapy for Community-Acquired Pneumonia in Paediatric Patients

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Studies conducted over the past few years for the treatment of pneumonia have provided data on the basis of which therapeutic decisions concerning the duration of therapy can be taken.

Results from a majority of the studies conducted in hospitalised patients using the conventional methods for diagnosing pneumonia have methodological problems, which make it difficult to draw definite conclusions. Despite these limitations, the overall trend of these descriptive studies show a therapy of ≤5 days being as effective as the longer course of 7–14 days for children up to the age of 12 years. Data for duration of antibacterial therapy for infants <2 months of age hardly exists.

Evidence suggests that a shorter course of antibacterial therapy of 3 days is effective for treatment of community-acquired, non-severe ambulatory pneumonia in immunocompetent children aged 2–59 months old. Shorter duration of therapy offers several potential advantages that include prevention of the emergence of antimicrobial resistance, lower healthcare costs, improved adherence to therapy and fewer adverse effects. There is a need to improve the evidence base for the optimum duration of therapy for children hospitalised with severe pneumonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Williams BG, Gouws E, Boschi-Pinto C, et al. Estimates of world-wide distribution of child deaths from acute respiratory infections. Lancet Infect Dis 2002 Jan; 2(1): 25–32

    Article  PubMed  Google Scholar 

  2. World Health Organization. The world health report 2005. Make every mother and child count. Geneva: World Health Organization, 2005: 190 [online]. Available from URL: http://www.who.int/whr/2005/whr2005_en.pdf [Accessed 2005 Apr21]

    Google Scholar 

  3. Shann F, Barker J, Poore P. Clinical signs that predict death in children with severe pneumonia. Pediatr Infect Dis J 1989; 8: 852–5

    Article  PubMed  CAS  Google Scholar 

  4. Qazi SA, Rehman GN, Khan MA. Standard ARI case management on antibiotic use and case fatality on ARI patients at a Children’s Hospital in Pakistan. Bull World Health Organ 1996; 74: 501–7

    PubMed  CAS  Google Scholar 

  5. Duke T, Poka H, Dale F, et al. Chloramphenicol versus benzylpenicillin and gentamicin for the treatment of severe pneumonia in children in Papua New Guinea: a randomised trial. Lancet 2002 Feb 9; 359(9305): 474–80

    Article  PubMed  CAS  Google Scholar 

  6. Djelantik IGG, Gessner BD, Sutanto A, et al. Case fatality proportions and predictive factors for mortality among children hospitalized with severe pneumonia in a rural developing country setting. J Trop Pediatr 2003; 49: 327–32

    Article  PubMed  CAS  Google Scholar 

  7. McIntosh K. Community-acquired pneumonia in children. N Engl J Med 2002 Feb 7; 346(6): 429–37

    Article  PubMed  Google Scholar 

  8. Ruuskanen O, Mertsola J. Childhood community-acquired pneumonia. Semin Respir Infect 1999; 14: 163–72

    PubMed  CAS  Google Scholar 

  9. Korppi M. Community-acquired pneumonia in children: issues in optimizing antibacterialtreatment. Paediatr Drugs 2003; 5: 821–32

    Article  PubMed  Google Scholar 

  10. Korppi M, Heiskanen-Kosma T, Kleemola M. Incidence of community-acquired pneumonia in children caused by Mycoplasmapneumoniae: serological results of a prospective, population-based study in primary health care. Respirology 2004; 9: 109–14

    Article  PubMed  Google Scholar 

  11. Heiskanen-Kosma T, Korppi M, Laurila A, et al. Chlamydia pneumoniae is an important cause of community-acquired pneumonia in school-aged children: serological results of a prospective, population-based study. Scand J Infect Dis 1999; 31: 255–9

    Article  PubMed  CAS  Google Scholar 

  12. Principi N, Esposito S. Emerging role of Mycoplasma pneumoniae and Chlamydia pneumoniae in paediatric respiratory-tract infections. Lancet Infect Dis 2001; 1: 334–44

    Article  PubMed  CAS  Google Scholar 

  13. Ghafoor A, Nomani NK, Ishaq Z, et al. Diagnoses of acute lower respiratory tract infection in children in Rawalpindi and Islamabad, Pakistan. Rev Infect Dis 1990; 12 Suppl. 8: S907–14

    Article  PubMed  Google Scholar 

  14. Tupasi TE, Lucero MG, Magdangal DM, et al. Etiology of acute lower respiratory tract infection in children from Alabang, Metro Manila. Rev Infect Dis 1990; 12 Suppl. 8: S929–39

    Article  PubMed  Google Scholar 

  15. Mastro TD, Ghafoor A, Nomani NK, et al. Antimicrobial resistance of pneumococci in children with acute lower respiratory tract infection in Pakistan. Lancet 1991; 337(8734): 156–9

    Article  PubMed  CAS  Google Scholar 

  16. Weinberg GA, Spitzer ED, Murray PR, et al. Antimicrobial susceptibility patterns of Haemophilus isolates from children in eleven developing nations. Bull World Health Organ 1990; 68: 179–84

    PubMed  CAS  Google Scholar 

  17. Straus WL, Qazi SA, Kundi Z, et al. Antimicrobial resistance and clinical effectiveness of co-trimoxazole versus amoxicillin for pneumonia among children in pakistan: randomised controlled trial. Lancet 1998, 74

  18. Berkley JA, Maitland K, Mwangi I, et al. Use of clinical syndromes to target antibiotic prescribing in seriously ill children in malaria endemic area: observational study. BMJ. Epub 2005 Mar 29

  19. Baqui AH, Black RE, Arifeen SE, et al. Causes of childhood deaths in Bangladesh: results of a nationwide verbal autopsy study. Bull World Health Organ 1998; 76: 161–71

    PubMed  CAS  Google Scholar 

  20. Bulla A, Hitze KL. Acute respiratory infections: a review. Bull World Health Organ 1978; 56: 481–98

    PubMed  CAS  Google Scholar 

  21. World Health Organization (WHO). Technical bases for the WHO recommendations on the management of pneumonia in children at first-level health facilities. Programme for the Control of Acute Respiratory Infections. Geneva: WHO, 1991: WHO.ARI.91.20 [online]. Available from URL: http://www.who.int/child-adolescent-health/New_Publications/CHILD_HEALTHAVHO.ARI.91.20.pdf [Accessed 2005 Apr22]

    Google Scholar 

  22. Shann F. Etiology of severe pneumonia in children in developing countries. Pediatr Infect Dis 1986; 5: 247–52

    Article  PubMed  CAS  Google Scholar 

  23. Forgie IM, O’Neill KP, Lloyd-Evans N, et al. Etiology of acute lower respiratory tract infections in Gambian children. II: acute lower respiratory tract infection in children ages one to nine years presenting at the hospital. Pediatr Infect Dis J 1991; 10: 42–7

    Article  PubMed  CAS  Google Scholar 

  24. Falade AG, Mulholland EK, Adegbola RA, et al. Bacterial isolates from blood and lung aspirate cultures in Gambian children with lobar pneumonia. Ann Trop Paediatr 1997; 17: 315–9

    PubMed  CAS  Google Scholar 

  25. Vuori-Holopainen E, Salo E, Saxen H, et al. Etiological diagnosis of childhood pneumonia by use of transthoracic needle aspiration and modern microbiological methods. Clin Infect Dis 2002; 34: 583–90. Epub 2002 Jan 16

    Article  PubMed  Google Scholar 

  26. Jokinen C, Heiskanen L, Juvonen H, et al. Incidence of community acquired pneumonia in the population of four municipalities in eastern Finland. Am J Epidemiol 1993; 137: 977–88

    PubMed  CAS  Google Scholar 

  27. Murphy TF, Henderson FW, Clyde Jr WA, et al. Pneumonia: an eleven-year study in a pediatric practice. Am J Epidemiol 1981; 113: 12–21

    PubMed  CAS  Google Scholar 

  28. World Health Organization. Acute respiratory infections in children: case management in small hospitals in developing countries: a manual for doctors and other senior health workers. programme for the control of acute respiratory infections. WHO/ARI/90.5. Geneva: World Health Organization, 1990

    Google Scholar 

  29. Leventhal JM. Clinical predictors of pneumonia as a guide to ordering chest roentgenograms. Clin Pediatr 1982; 21: 730–4

    Article  CAS  Google Scholar 

  30. Shann F, Hart K, Thomas D. Acute lower respiratory tract infections in children: possible criteria for selection of patients for antibiotic therapy and hospital admission. Bull World Health Organ 1984; 62: 749–53

    PubMed  CAS  Google Scholar 

  31. Redd SC, Vreuls R, Metsing M, et al. Clinical signs of pneumonia in children attending a hospital outpatient department in Lesotho. Bull World Health Organ 1994; 72: 113–8

    PubMed  CAS  Google Scholar 

  32. Campbell H, Byass P, Greenwood BM. Simple signs for diagnosis of acute respiratory infections. Lancet 1988; II: 742–3

    Article  Google Scholar 

  33. Cherian T, John TJ, Simoes E, et al. Evaluation of simple clinical signs for the diagnosis of acute lower respiratory tract infection. Lancet 1988; II: 125–8

    Article  Google Scholar 

  34. Berman S, Simoes EA, Lanata C. Respiratory rate and pneumonia in infancy. Arch Dis Child 1991; 66: 81–4

    Article  PubMed  CAS  Google Scholar 

  35. Mulholland EK, Simoes EA, Costales MO, et al. Standardized diagnosis of pneumonia in developing countries. Pediatr Infect Dis J 1992; 11: 77–81

    Article  PubMed  CAS  Google Scholar 

  36. Bettenay FA, de Campo JF, McCrossin DB. Differentiating bacterial from viral pneumonias in children. Pediatr Radiol 1988; 18: 453–4

    Article  PubMed  CAS  Google Scholar 

  37. Courtoy I, Lande AE, Turner RB. Accuracy of radiographic differentiation of bacterial from nonbacterial pneumonia. Clin Pediatr 1989; 28: 261–4

    Article  CAS  Google Scholar 

  38. Juven T, Mertsola J, Waris M, et al. Etiology of community-acquired pneumonia in 254 hospitalized children. Pediatr Infect Dis J 2000 Apr; 19(4): 293–8

    Article  PubMed  CAS  Google Scholar 

  39. Korppi M, Leinonen M, Koskela M, et al. Bacterial coinfection in children hospitalized with respiratory syncytial virus infections. Pediatr Infect Dis J 1989 Oct; 8(10): 687–92

    Article  PubMed  CAS  Google Scholar 

  40. Hietala J, Uhari M, Tuokko H, et al. Mixed bacterial and viral infections are common in children. Pediatr Infect Dis J 1989; 8: 683–6

    Article  PubMed  CAS  Google Scholar 

  41. Korppi M. Mixed microbial aetiology of community-acquired pneumonia in children. APMIS 2002; 110: 515–22

    Article  PubMed  Google Scholar 

  42. Klein JO. Bacterial pneumonias. In: Feigin RD, Cherry JD, editors. Textbook of pediatric infectious diseases. 4th ed. Philadelphia (PA): WB Saunders, 1998: 83

    Google Scholar 

  43. Prober CG. Pneumonia. In: Behrman RE, Kliegman RM, Jenson HB, editors. Nelson textbook of pediatrics. 16th ed. Philadelphia (PA): WB Saunders, 2000: 761–5

    Google Scholar 

  44. American Academy of Pediatrics 2000 red book: report of the committee on infectious diseases. 25th ed. Elk Grove Village (IL): American Academy of Pediatrics, 2000: 262–65, 452–57

  45. Pichichero ME. Short course antibiotic therapy for respiratory infections: a review of the evidence. Pediatr Infect Dis J 2000 Sep; 19(9): 929–37

    Article  PubMed  CAS  Google Scholar 

  46. Jadavji T, Law B, Lebel MH, et al. A practical guide for the diagnosis and treatment of pediatric pneumonia. CMAJ 1997; 156: S703–11

    PubMed  CAS  Google Scholar 

  47. American Academy of Pediatrics. Therapy for children with invasive pneumococcal infections: American Academy of Pediatrics Committee on Infectious Diseases. Pediatrics 1997: 99: 289–99

    Article  Google Scholar 

  48. McCracken Jr GH. Diagnosis and management of pneumonia in children. Pediatr Infect Dis J 2000; 19: 924–8

    Article  PubMed  Google Scholar 

  49. British Thoracic Society. Guidelines for the management of community acquired pneumonia in children. Thorax 2002; 57: i1–i24

    Google Scholar 

  50. World Health Organization. The management of acute respiratory infections in children: practical guidelines for outpatient care. Geneva: World Health Organization, 1995

    Google Scholar 

  51. Sazawal S, Black RE. Effect of pneumonia case management on mortality in neonates, infants, and preschool children: a metaanalysis of community-based trials. Lancet Infect Dis 2003; 3: 547–56

    Article  PubMed  Google Scholar 

  52. Berman S. Epidemiology of acute respiratory infections. Rev Infect Dis 1991; 13 Suppl. 6: S454–62

    Article  PubMed  Google Scholar 

  53. Pechere JC. Parameters important in short antibiotic courses. J Int Med Res 2000; 28 Suppl. 1: 3A–12A

    PubMed  Google Scholar 

  54. Dagan R, Leibovitz E. Bacterial eradication in the treatment of otitis media. Lancet Infect Dis 2002; 2: 593–604

    Article  PubMed  Google Scholar 

  55. Wood MJ. Therapy: the clinician’s view. J Antimicrob Chemother 1990; 25 Suppl. C: 99–106

    Article  PubMed  Google Scholar 

  56. Gold HS, Moellering Jr RC. Antimicrobial-drug resistance. N Engl J Med 1996; 335: 1445–53

    Article  PubMed  CAS  Google Scholar 

  57. Guillemot D, Carbon C, Balkau B, et al. Low dosage and long treatment duration of beta-lactam: risk factors for carriage of penicillin-resistant Streptococcus pneumoniae. JAMA 1998; 279: 365–70

    Article  PubMed  CAS  Google Scholar 

  58. Seppala H, Klaukka T, Vuopio-Varkila J, et al. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland: Finnish Study Group for Antimicrobial Resistance. N Engl J Med 1997; 337: 441–6

    Article  PubMed  CAS  Google Scholar 

  59. World Health Organization. WHO global strategy for containment of antimicrobial resistance. WHO/CDS/CSR/DRS/2001.2. Geneva: WHO, 2001

    Google Scholar 

  60. Steinke D, Davey P. Association between antibiotic resistance and community prescribing: a critical review of bias and confounding in published studies. Clin Infect Dis 2001 Sep 15; 33 Suppl. 3: S193–205

    Article  PubMed  Google Scholar 

  61. Tenover FC. Development and spread of bacterial resistance to antimicrobial agents: an overview. Clin Infect Dis 2001 Sep 15; 33 Suppl. 3: S108–15

    Article  PubMed  CAS  Google Scholar 

  62. Schrag SJ, Pena C, Fernandez J, et al. Effect of short-course, high-dose amoxicillin therapy on resistant pneumococcal carriage: a randomized trial. JAMA 2001; 286: 49–56

    Article  PubMed  CAS  Google Scholar 

  63. Standing Medical Advisory Committee, Sub-Group on Antimicrobial Resistance. The path of least resistance. London: Department of Health, 1998

    Google Scholar 

  64. Kristinsson KG. Effect of antimicrobial use and other risk factors on antimicrobial resistance in pneumococci. Microb Drug Resist 1997; 3: 117–23

    Article  PubMed  CAS  Google Scholar 

  65. Campbell H. Acute respiratory infection: a global challenge. Arch Dis Child 1995; 73: 281–6

    Article  PubMed  CAS  Google Scholar 

  66. Adam D. Short-course antibiotic therapy for infections with a single causative pathogen. J Int Med Res 2000; 28 Suppl. 1: 13A–24A

    PubMed  CAS  Google Scholar 

  67. Tulloch J. Integrated approach to child health in developing countries. Lancet 1999 Sep; 354 Suppl. II: SII16–20

    Article  PubMed  Google Scholar 

  68. Harris CM, Lloyd DC. Consider short courses of antibiotics [letter]. BMJ 1994; 308: 919

    Article  PubMed  CAS  Google Scholar 

  69. Al-Eidan FA, McElnay JC, Scott MG, et al. Sequential antimicrobial therapy: treatment of severe lower respiratory tract infections in children. J Antimicrob Chemother 1999; 44: 709–15

    Article  PubMed  CAS  Google Scholar 

  70. Bergman AB, Werner RJ. Failure of children to receive penicillin by mouth. N Engl J Med 1963; 268: 1334–8

    Article  PubMed  CAS  Google Scholar 

  71. Pechere JC. Patients’ interviews and misuse of antibiotics. Clin Infect Dis 2001; 33 Suppl. 3: S170–3

    Article  PubMed  Google Scholar 

  72. Branthwaite A, Pechere JC. Pan-European survey of patients’ attitudes to antibiotics and antibiotic use. J Int Med Res 1996; 24: 229–38

    PubMed  CAS  Google Scholar 

  73. Roord JJ, Wolf BH, Gossens MM, et al. Prospective open randomized study comparing efficacies and safeties of a 3-day course of azithromycin and a 10-day course of erythromycin in children with community-acquired acute lower respiratory tract infections. Antimicrob Agents Chemother 1996; 40: 2765–8

    PubMed  CAS  Google Scholar 

  74. Schaad U. Multicentre evaluation of azithromycin in comparison with co-amoxyclav for the treatment of acute otitis media in children. J Antimicrob Chemother 1993; 31 Suppl. E: 81–8

    Article  PubMed  Google Scholar 

  75. Gehanno P, Taillebe M, Denis P, et al. Short-course cefotaxime compared with five-day co-amoxyclav in acute otitis media in children. J Antimicrob Chemother 1990; 26 Suppl. A: 29–36

    Article  PubMed  Google Scholar 

  76. Gooch WM, Blair E, Puopolo A, et al. Effectiveness of five days of therapy with cefuroxime axetil suspension for treatment of acute otitis media. Pediatr Infect Dis J 1996; 15: 157–64

    Article  PubMed  Google Scholar 

  77. Khurana CM. A multicenter, randomized, open label comparison of azithromycin and amoxicillin/clavulanate in acute otitis media among children attending day care or school. Pediatr Infect Dis J 1996; 15 (9 Suppl.): S24–9

    Article  PubMed  CAS  Google Scholar 

  78. Hoberman A, Paradise JL, Burch DJ, et al. Equivalent efficacy and reduced occurrence of diarrhea from a new formulation of amoxicillin/clavulanate potassium (Augmentin) for the treatment of otitis media in children. Pediatr Infect Dis J 1997; 16: 463–70

    Article  PubMed  CAS  Google Scholar 

  79. Cohen R, Navel M, Grunberg J, et al. One dose ceftiaxone vs ten days of amoxicillin/clavulanate therapy for acute otitis media. Pediatr Infect Dis J 1999; 18: 403–9

    Article  PubMed  CAS  Google Scholar 

  80. Roos K, Larsson P. Efficacy of ceftibuten in 5 vs 10 days treatment of recurrent otitis media in children. Int J Pediatr Otorhinolaryngol 2000; 55: 109–15

    Article  PubMed  CAS  Google Scholar 

  81. Paradise JL. Managing otitis media: a time for change. Pediatrics 1995; 96 (4 Pt 1): 712–5

    PubMed  CAS  Google Scholar 

  82. Dowell SF, Marcy SM, Phillips WR, et al. Principles of judicious use of antimicrobial agents for pediatric upper respiratory tract infections. Pediatrics 1998; 101: 163–5

    Google Scholar 

  83. Lambert HP. Don’t keep taking the tablets? Lancet 1999; 354: 943–5

    Article  PubMed  CAS  Google Scholar 

  84. Sutton DR, Wicks ACB, Davidson L. One-day treatment for lobar pneumonia. Thorax 1970; 25: 241–4

    Article  PubMed  CAS  Google Scholar 

  85. Sibellas M. Treatment of lobar pneumonia in out-patients. J Trop Med Hyg 1966; 69: 94–6

    PubMed  CAS  Google Scholar 

  86. Harris JA, Kolokathis A, Campbell M, et al. Safety and efficacy of azithromycin in the treatment of community-acquired pneumonia in children. Pediatr Infect Dis J 1998; 17: 865–71

    Article  PubMed  CAS  Google Scholar 

  87. Wubbel L, Muniz L, Ahmed A, et al. Etiology and treatment of community-acquired pneumonia in ambulatory children. Pediatr Infect Dis J 1999; 18: 98–104

    Article  PubMed  CAS  Google Scholar 

  88. Kogan R, Martinez MA, Rubilar L, et al. Comparative randomized trial of azithromycin versus erythromycin and amoxicillin for treatment of community-acquired pneumonia in children. Pediatr Pulmonol 2003; 35: 91–8

    Article  PubMed  Google Scholar 

  89. Ficnar B, Huzjak N, Oreskovic K, et al. Azithromycin: 3-day versus 5-day course in the treatment of respiratory tract infections in children. Croatian Azithromycin Study Group. J Chemother 1997; 9: 38–43

    PubMed  CAS  Google Scholar 

  90. Langtry HD, Balfour JA. Azithromycin: a review of its use in paediatric infectious diseases. Drugs 1998; 56(2): 273–97

    Article  PubMed  CAS  Google Scholar 

  91. Gordon EM, Blumer JL. Rationale for single and high dose treatment regimens with azithromycin. Pediatr Infect Dis J 2004; 23 (2 Suppl.): S102–7

    Article  PubMed  Google Scholar 

  92. Campbell H, Byass P, Forgie IM, et al. Trial of co-trimoxazole versus procaine penicillin with ampicillin in treatment of community-acquired pneumonia in young Gambian children. Lancet 1988; II: 1182–4

    Article  Google Scholar 

  93. Keeley DJ, Nkrumah FK, Kapuyanyika C. Randomized trial of sulfamethoxazole + trimethoprim versus procaine penicillin for the outpatient treatment of childhood pneumonia in Zimbabwe. Bull World Health Organ 1990; 68: 185–92

    PubMed  CAS  Google Scholar 

  94. Catchup Study Group. Clinical efficacy of co-trimoxazole versus amoxicillin twice daily for treatment of pneumonia: a randomised controlled clinical trial in Pakistan. Arch Dis Child 2002; 86: 113–8

    Article  Google Scholar 

  95. Rasmussen ZA, Bari A, Qazi S, et al., for the Pakistan COMET (Cotrimoxazole Multicentre Efficacy Trial) Study Group. Randomised controlled trial of standard and double dose cotrimoxazole for treatment of childhood pneumonia in Pakistan. Bull World Health Organ 2005; 83: 10–9

    PubMed  Google Scholar 

  96. Vuori-Holopainen E, Peltola H, Kallio MJ. Narrow-versus broad-spectrum parenteral anatimicrobials against common infections of childhood: a prospective and randomised comparison between penicillin and cefuroxime. SE-TU Study Group. Eur J Pediatr 2000; 159: 878–84

    Article  PubMed  CAS  Google Scholar 

  97. Peltola H, Vuori-Holopainen E, Kallio MJ. Successful shortening from seven to four days of parenteral beta-lactam treatment for common childhood infections: a prospective and randomized study. SE-TU Study Group. Int J Infect Dis 2001; 5: 3–8

    Article  PubMed  CAS  Google Scholar 

  98. Pakistan Multicentre Amoxicillin Short Course Therapy (MASCOT) Pneumonia Study Group. Clinical efficacy of 3 days versus 5 days of oral amoxicillin for treatment of childhood pneumonia: a multicentre double-blind trial. Lancet 2002; 360: 835–41

    Article  Google Scholar 

  99. Qazi S. Oral amoxicillin for childhood pneumonia. Lancet 2003; 361: 76–7

    Article  Google Scholar 

  100. ISCAP Study Group. 3-versus 5-day treatment with amoxicillin for non-severe pneumonia in young children: a multi-centre randomized trial. BMJ 2004; 328: 791–7. Epub 2004 Mar 16

    Article  Google Scholar 

  101. Kartasasmita C, Saha S, Short Course Cotrimoxazole Study Group. Three days vs five days oral cotrimoxazole therapy in non-severe pneumonia. In: Consultative Meeting to Review Evidence and Research Priorities in the Management of Acute Respiratory Infections (ARI). Geneva, World Health Organization, 2003 Sep 29–Oct 1: meeting report. Geneva: Department of Child and Adolescent Health and Development, World Health Organization, 2004: 3–4. Report no. WHO/FCH/CAH/04.2 [online]. Available from URL: http://www.who.int/child-adolescent-health/New.Publications/CHILD.HEALTH/WHO_FCH_CAH_04.2.pdf [Accessed 2005 Apr 22]

    Google Scholar 

  102. World Health Organization. Report of consultative meeting to review evidence and research priorities in the management of acute respiratory infections (ARI). Geneva: 2003 Sep 29–Oct 1. WHO/FCH/CAH/04.2 [online]. Available from URL: http://www.who.int/child-adolescent-health/New_Publications/CHILD_HEALTHAVHO_FCH_CAH_04.2.pdf [Accessed 2005 Apr 22]

Download references

Acknowledgements

© World Health Organization 2005. All rights reserved. The World Health Organization has granted the Publisher permission for the reproduction of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamim Qazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qazi, S. Short-Course Therapy for Community-Acquired Pneumonia in Paediatric Patients. Drugs 65, 1179–1192 (2005). https://doi.org/10.2165/00003495-200565090-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200565090-00001

Keywords

Navigation