, Volume 65, Issue 6, pp 745–759 | Cite as

Anaesthetic Agents for Advanced Regional Anaesthesia

A North American Perspective
  • Chester C. BuckenmaierIII
  • Lisa L. Bleckner
Therapy in Practice


Interest in the use of regional anaesthesia, particularly peripheral nerve blocks (PNBs) and continuous PNBs, has increased in recent years. Accompanying this resurgence in interest has been the development of new local anaesthetics and additives designed to enhance block duration and quality. This manuscript provides a literature-based review on accepted uses of local anaesthetics and adjuncts for a variety of regional anaesthesia techniques. A brief review of local anaesthetic pharmacodynamics describes the action of these drugs in preventing nerve depolarisation, thus blocking nerve impulses. Toxic adverse effects of local anaesthetics, specifically CNS and cardiac manifestations of excessive local anaesthetic blood concentrations and the direct neurotoxic properties of local anaesthetics, are discussed generally and specifically for many commonly used local anaesthetics. Clinically useful ester and amide local anaesthetics are evaluated individually in terms of their physical properties and toxic potential. How these properties impact on the clinical uses of each local anaesthetic is explored. Particular emphasis is placed on the long-acting local anaesthetic toxic potential of racemic bupivacaine compared with levobupivacaine and ropivacaine, which are both levorotatory stereoisomers. Guidelines for using ropivacaine and mepivacaine, based on the authors’ experience using advanced regional anaesthesia in a busy practice, is provided. Finally, epinephrine (adrenaline), clonidine and other local anaesthetic additives and their rationale for use is covered along with other future possibilities.


Lidocaine Bupivacaine Local Anaesthetic Spinal Anaesthesia Ropivacaine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This manuscript was supported by the Army Regional Anesthesia & Pain Management Initiative, Walter Reed Army Medical Center, Washington, DC, USA. The authors have no conflicts of interest directly relevant to the content of this review.


  1. 1.
    Greengrass RA. Regional anesthesia for ambulatory surgery. Anesthesiol Clin North America 2000; 18: 341–53PubMedCrossRefGoogle Scholar
  2. 2.
    Luber MJ, Greengrass R, Vail TP. Patient satisfaction and effectiveness of lumbar plexus and sciatic nerve block for total knee arthroplasty. J Arthroplasty 2001; 16: 17–21PubMedCrossRefGoogle Scholar
  3. 3.
    Atanassoff PG. Effects of regional anesthesia on perioperative outcome. J Clin Anesth 1996; 8: 446–55PubMedCrossRefGoogle Scholar
  4. 4.
    Buckenmaier III CC, Xenos JS, Nilsen SM. Lumbar plexus block with perineural catheter and sciatic nerve block for total hip arthroplasty. J Arthroplasty 2002; 17: 499–502PubMedCrossRefGoogle Scholar
  5. 5.
    McCartney CJ, Brull R, Chan VW, et al. Early but no long-term benefit of regional compared with general anesthesia for ambulatory hand surgery. Anesthesiology 2004; 101: 461–7PubMedCrossRefGoogle Scholar
  6. 6.
    Borgeat A, Ekatodramis G, Schenker CA. Postoperative nausea and vomiting in regional anesthesia: a review. Anesthesiology 2003; 98: 530–47PubMedCrossRefGoogle Scholar
  7. 7.
    Chan VW, Peng PW, Kaszas Z, et al. A comparative study of general anesthesia, intravenous regional anesthesia, and axillary block for outpatient hand surgery: clinical outcome and cost analysis. Anesth Analg 2001; 93: 1181–4PubMedCrossRefGoogle Scholar
  8. 8.
    Local anesthetics. In: Stoelting RK. Pharmacology & physiology in anesthetic practice. 3rd ed. Philadelphia (PA): Lippincott-Raven, 1999: 158–81Google Scholar
  9. 9.
    Organic chemistry of a local anesthetic molecule. In: Tetzlaff JE. Clinical pharmacology of local anesthetics. Boston (MA): Butterworth Heinemann, 2000: 9–13Google Scholar
  10. 10.
    Brau ME, Vogel W, Hempelmann G. Fundamental properties of local anesthetics: half-maximal blocking concentrations for tonic block of Na+ and K+ channels in peripheral nerve. Anesth Analg 1998; 87: 885–9PubMedGoogle Scholar
  11. 11.
    Disposition of local anesthetics after they are injected. In: Tetzlaff JE. Clinical pharmacology of local anesthetics. Boston (MA): Butterworth Heinemann, 2000: 25–30Google Scholar
  12. 12.
    Brown DL. Local anesthetic toxicity. In: Finucane BT, editor. Complications of regional anesthesia. New York: Churchill Livingstone, 1999: 94–104Google Scholar
  13. 13.
    Klein SM, Benveniste H. Anxiety, vocalization, and agitation following peripheral nerve block with ropivacaine. Reg Anesth Pain Med 1999; 24: 175–8PubMedGoogle Scholar
  14. 14.
    Marsch SC, Schaefer HG, Castelli I. Unusual psychological manifestation of systemic local anesthetic toxicity. Anesthesiology 1998; 88: 531–3PubMedCrossRefGoogle Scholar
  15. 15.
    Concepcion M. Acute complications and side effects of regional anesthesia. In: Brown DL, editor. Regional anesthesia and analgesia. Philadelphia (PA): WB Saunders Company, 1996: 446–61Google Scholar
  16. 16.
    Zink W, Graf BM. Local anesthetic myotoxicity. Reg Anesth Pain Med 2004; 29: 333–40PubMedGoogle Scholar
  17. 17.
    Kitagawa N, Oda M, Totoki T. Possible mechanism of irreversible nerve injury caused by local anesthetics: detergent properties of local anesthetics and membrane disruption. Anesthesiology 2004; 100: 962–7PubMedCrossRefGoogle Scholar
  18. 18.
    Radwan IA, Saito S, Goto F. The neurotoxicity of local anesthetics on growing neurons: a comparative study of lidocaine, bupivacaine, mepivacaine, and ropivacaine. Anesth Analg 2002; 94: 319–24PubMedGoogle Scholar
  19. 19.
    Rosenberg PH, Veering BT, Urmey WF. Maximum recommended doses of local anesthetics: a multifactorial concept. Reg Anesth Pain Med 2004; 29: 564–75PubMedGoogle Scholar
  20. 20.
    Brown DL, Ransom DM, Hall JA, et al. Regional anesthesia and local anesthetic-induced systemic toxicity: seizure frequency and accompanying cardiovascular changes. Anesth Analg 1995; 81: 321–8PubMedGoogle Scholar
  21. 21.
    Tanaka M, Nishikawa T. A comparative study of hemodynamic and T-wave criteria for detecting intravascular injection of the test dose (epinephrine) in sevoflurane-anesthetized adults. Anesth Analg 1999; 89: 32–6PubMedGoogle Scholar
  22. 22.
    Weinberg GL. Current concepts in resuscitation of patients with local anesthetic cardiac toxicity. Reg Anesth Pain Med 2002; 27: 568–75PubMedGoogle Scholar
  23. 23.
    Viscomi CM. Pharmacology of local anesthetics. In: Rathmell JP, Neal JM, Viscomi CM, editors. Regional anesthesia. Philadelphia (PA): Elsevier Mosby, 2004: 13–24Google Scholar
  24. 24.
    Gadalla MA, el Hak RY. Serum levels of procaine in human after peri-oral injections. Pharmazie 1985; 40: 118–20PubMedGoogle Scholar
  25. 25.
    Hodgson PS, Liu SS, Batra MS, et al. Procaine compared with lidocaine for incidence of transient neurologic symptoms. Reg Anesth Pain Med 2000; 25: 218–22PubMedGoogle Scholar
  26. 26.
    Le Truong HH, Girard M, Drolet P, et al. Spinal anesthesia: a comparison of procaine and lidocaine. Can J Anaesth 2001; 48: 470–3PubMedCrossRefGoogle Scholar
  27. 27.
    Ravindran RS, Bond VK, Tasch MD, et al. Prolonged neural blockade following regional analgesia with 2-chloroprocaine. Anesth Analg 1980; 59: 447–51PubMedGoogle Scholar
  28. 28.
    Smith KN, Kopacz DJ, McDonald SB. Spinal 2-chloroprocaine: a dose-ranging study and the effect of added epinephrine. Anesth Analg 2004; 98: 81–8PubMedCrossRefGoogle Scholar
  29. 29.
    Kouri ME, Kopacz DJ. Spinal 2-chloroprocaine: a comparison with lidocaine in volunteers. Anesth Analg 2004; 98: 75–80PubMedCrossRefGoogle Scholar
  30. 30.
    Taniguchi M, Bollen AW, Drasner K. Sodium bisulfite: scapegoat for chloroprocaine neurotoxicity? Anesthesiology 2004; 100: 85–91PubMedCrossRefGoogle Scholar
  31. 31.
    Marsch SC, Sluga M, Studer W, et al. 0.5% versus 1.0% 2-chloroprocaine for intravenous regional anesthesia: a prospective, randomized, double-blind trial. Anesth Analg 2004; 98: 1789–93PubMedCrossRefGoogle Scholar
  32. 32.
    Polley LS, Columb MO, Lyons G, et al. The effect of epidural fentanyl on the minimum local analgesic concentration of epidural chloroprocaine in labor. Anesth Analg 1996; 83: 987–90PubMedGoogle Scholar
  33. 33.
    Yoos JR, Kopacz DJ. Spinal 2-chloroprocaine for surgery: an initial 10-month experience. Anesth Analg 2005 Feb; 100(2): 553–8PubMedCrossRefGoogle Scholar
  34. 34.
    Galindo A, Witcher T. Mixtures of local anesthetics: bupivacaine-chloroprocaine. Anesth Analg 1980; 59: 683–5PubMedGoogle Scholar
  35. 35.
    Kim JM, Goto H, Arakawa K. Duration of bupivacaine intradermal anesthesia when the bupivacaine is mixed with chloroprocaine. Anesth Analg 1979; 58: 364–6PubMedCrossRefGoogle Scholar
  36. 36.
    Marica LS, O’Day T, Janosky JE, et al. Chloroprocaine is less painful than lidocaine for skin infiltration anesthesia. Anesth Analg 2002; 94: 351–4PubMedGoogle Scholar
  37. 37.
    Tetracaine. In: Tetzlaff JE. Clinical pharmacology of local anesthetics. Boston (MA): Butterworth Heinemann, 2000: 67–72Google Scholar
  38. 38.
    Nishiyama T, Komatsu K, Hanaoka K. Comparison of hemodynamic and anesthetic effects of hyperbaric bupivacaine and tetracaine in spinal anesthesia. J Anesth 2003; 17: 218–22PubMedCrossRefGoogle Scholar
  39. 39.
    Aronsson DD, Gemery JM, Abajian JC. Spinal anesthesia for spine and lower extremity surgery in infants. J Pediatr Orthop 1996; 16: 259–63PubMedCrossRefGoogle Scholar
  40. 40.
    Yamashita A, Matsumoto M, Matsumoto S, et al. A comparison of the neurotoxic effects on the spinal cord of tetracaine, lidocaine, bupivacaine, and ropivacaine administered intrathecally in rabbits. Anesth Analg 2003; 97: 512–9PubMedCrossRefGoogle Scholar
  41. 41.
    Vianna PT, Resende LA, Ganem EM, et al. Cauda equina syndrome after spinal tetracaine: electromyographic evaluation-20 years follow-up. Anesthesiology 2001; 95: 1290–1PubMedCrossRefGoogle Scholar
  42. 42.
    Chen BK, Cunningham BB. Topical anesthetics in children: agents and techniques that equally comfort patients, parents, and clinicians. Curr Opin Pediatr 2001; 13: 324–30PubMedCrossRefGoogle Scholar
  43. 43.
    Fichman RA. Use of topical anesthesia alone in cataract surgery. J Cataract Refract Surg 1996; 22: 612–4PubMedGoogle Scholar
  44. 44.
    Noorily AD, Noorily SH, Otto RA. Cocaine, lidocaine, tetracaine: which is best for topical nasal anesthesia? Anesth Analg 1995; 81: 724–7PubMedGoogle Scholar
  45. 45.
    Langham BT, Harrison DA. Local anaesthetic: does it really reduce the pain of insertion of all sizes of venous cannula? Anaesthesia 1992; 47: 890–1PubMedCrossRefGoogle Scholar
  46. 46.
    Schneider M, Ettlin T, Kaufmann M, et al. Transient neurologic toxicity after hyperbaric subarachnoid anesthesia with 5% lidocaine. Anesth Analg 1993; 76: 1154–7PubMedCrossRefGoogle Scholar
  47. 47.
    Zaric D, Christiansen C, Pace NL, et al. Transient neurologic symptoms (TNS) following spinal anaesthesia with lidocaine versus other local anaesthetics. Cochrane Database Syst Rev 2003, CD003006Google Scholar
  48. 48.
    Hampl KF, Schneider MC, Ummenhofer W, et al. Transient neurologic symptoms after spinal anesthesia. Anesth Analg 1995; 81: 1148–53PubMedGoogle Scholar
  49. 49.
    Pollock JE, Neal JM, Stephenson CA, et al. Prospective study of the incidence of transient radicular irritation in patients undergoing spinal anesthesia. Anesthesiology 1996; 84: 1361–7PubMedCrossRefGoogle Scholar
  50. 50.
    Buckenmaier III CC, Nielsen KC, Pietrobon R, et al. Small-dose intrathecal lidocaine versus ropivacaine for anorectal surgery in an ambulatory setting. Anesth Analg 2002; 95: 1253–7PubMedCrossRefGoogle Scholar
  51. 51.
    Gaiser RR. Should intrathecal lidocaine be used in the 21st century? J Clin Anesth 2000; 12: 476–81PubMedCrossRefGoogle Scholar
  52. 52.
    Hampl KF, Heinzmann-Wiedmer S, Luginbuehl I, et al. Transient neurologic symptoms after spinal anesthesia: a lower incidence with prilocaine and bupivacaine than with lidocaine. Anesthesiology 1998; 88: 629–33PubMedCrossRefGoogle Scholar
  53. 53.
    Liguori GA, Zayas VM, Chisholm MF. Transient neurologic symptoms after spinal anesthesia with mepivacaine and lidocaine. Anesthesiology 1998; 88: 619–23PubMedCrossRefGoogle Scholar
  54. 54.
    Henderson CL, Warriner CB, McEwen JA, et al. A North American survey of intravenous regional anesthesia. Anesth Analg 1997; 85: 858–63PubMedGoogle Scholar
  55. 55.
    Abboud TK, Sarkis F, Blikian A, et al. Lack of adverse neonatal neurobehavioral effects of lidocaine. Anesth Analg 1983; 62: 473–5PubMedGoogle Scholar
  56. 56.
    Vallejo MC, Ramanathan S. Plasma lidocaine concentrations are higher in twin compared to singleton newborns following epidural anesthesia for Cesarean delivery. Can J Anaesth 2002; 49: 701–5PubMedCrossRefGoogle Scholar
  57. 57.
    Kirihara Y, Saito Y, Sakura S, et al. Comparative neurotoxicity of intrathecal and epidural lidocaine in rats. Anesthesiology 2003; 99: 961–8PubMedCrossRefGoogle Scholar
  58. 58.
    McCoy EP, Wilson CM. A comparison of lignocaine with prilocaine in axillary brachial plexus anaesthesia. Anaesthesia 1991; 46: 309–11PubMedCrossRefGoogle Scholar
  59. 59.
    Mepivacaine. In: Tetzlaff JE. Clinical pharmacology of local anesthetics. Boston (MA): Butterworth Heinemann, 2000: 97–102Google Scholar
  60. 60.
    Bruelle P, LeFrant JY, de La Coussaye JE, et al. Comparative electrophysiologic and hemodynamic effects of several amide local anesthetic drugs in anesthetized dogs. Anesth Analg 1996; 82: 648–56PubMedGoogle Scholar
  61. 61.
    Pawlowski J, Sukhani R, Pappas AL, et al. The anesthetic and recovery profile of two doses (60 and 80 mg) of plain mepivacaine for ambulatory spinal anesthesia. Anesth Analg 2000; 91: 580–4PubMedCrossRefGoogle Scholar
  62. 62.
    Kasaba T, Onizuka S, Takasaki M. Procaine and mepivacaine have less toxicity in vitro than other clinically used local anesthetics. Anesth Analg 2003; 97: 85–90PubMedCrossRefGoogle Scholar
  63. 63.
    Lynch J, Zur NM, Kasper SM, et al. Transient radicular irritation after spinal anesthesia with hyperbaric 4% mepivacaine. Anesth Analg 1997; 85: 872–3PubMedGoogle Scholar
  64. 64.
    Meininger D, Byhahn C, Kessler P, et al. Intrathecal fentanyl, sufentanil, or placebo combined with hyperbaric mepivacaine 2% for parturients undergoing elective cesarean delivery. Anesth Analg 2003; 96: 852–8PubMedGoogle Scholar
  65. 65.
    Amaranath L, Esfandiari S, Lockrem J, et al. Epidural analgesia for total hip replacement in a patient with dilated cardiomyopathy. Can Anaesth Soc J 1986; 33: 84–8PubMedCrossRefGoogle Scholar
  66. 66.
    Terai T, Yukioka H, Fujimori M. A double-blind comparison of lidocaine and mepivacaine during epidural anaesthesia. Acta Anaesthesiol Scand 1993; 37: 607–10PubMedCrossRefGoogle Scholar
  67. 67.
    Brown WU, Bell GC, Lurie AO, et al. Newborn blood levels of lidocaine and mepivacaine in the first postnatal day following maternal epidural anesthesia. Anesthesiology 1975; 42: 698–707PubMedCrossRefGoogle Scholar
  68. 68.
    Tagariello V, Caporuscio A, De Tommaso O. Mepivacaine: update on an evergreen local anaesthetic. Minerva Anestesiol 2001; 67: 5–8PubMedGoogle Scholar
  69. 69.
    Tetzlaff JE, Yoon HJ, Brems J, et al. Alkalinization of mepivacaine improves the quality of motor block associated with interscalene brachial plexus anesthesia for shoulder surgery. Reg Anesth 1995; 20: 128–32PubMedGoogle Scholar
  70. 70.
    Gissen AJ, Covino BG, Gregus J. Differential sensitivity of fast and slow fibers in mammalian nerve. III: effect of etidocaine and bupivacaine on fast/slow fibers. Anesth Analg 1982; 61: 570–5Google Scholar
  71. 71.
    Bupivacaine. In: Tetzlaff JE. Clinical pharmacology of local anesthetics. Boston (MA): Butterworth Heinemann, 2000: 115–23Google Scholar
  72. 72.
    Albright GA. Cardiac arrest following regional anesthesia with etidocaine or bupivacaine. Anesthesiology 1979; 51: 285–7PubMedCrossRefGoogle Scholar
  73. 73.
    LeFrant JY, de La Coussaye JE, Ripart J, et al. The comparative electrophysiologic and hemodynamic effects of a large dose of ropivacaine and bupivacaine in anesthetized and ventilated piglets. Anesth Analg 2001; 93: 1598–605PubMedCrossRefGoogle Scholar
  74. 74.
    Sztark F, Malgat M, Dabadie P, et al. Comparison of the effects of bupivacaine and ropivacaine on heart cell mitochondrial bioenergetics. Anesthesiology 1998; 88: 1340–9PubMedCrossRefGoogle Scholar
  75. 75.
    Groban L, Deal DD, Vernon JC, et al. Cardiac resuscitation after incremental overdosage with lidocaine, bupivacaine, levobupivacaine, and ropivacaine in anesthetized dogs. Anesth Analg 2001; 92: 37–43PubMedCrossRefGoogle Scholar
  76. 76.
    Knudsen K, Beckman SM, Blomberg S, et al. Central nervous and cardiovascular effects of IV infusions of ropivacaine, bupivacaine and placebo in volunteers. Br J Anaesth 1997; 78: 507–14PubMedCrossRefGoogle Scholar
  77. 77.
    Scott DB, Lee A, Fagan D, et al. Acute toxicity of ropivacaine compared with that of bupivacaine. Anesth Analg 1989; 69: 563–9PubMedGoogle Scholar
  78. 78.
    Buckenmaier III CC. Anaesthesia for outpatient knee surgery. Best Pract Res Clin Anaesthesiol 2002; 16: 255–70PubMedCrossRefGoogle Scholar
  79. 79.
    Mather LE, Chang DH. Cardiotoxicity with modern local anaesthetics: is there a safer choice? Drugs 2001; 61(3): 333–42PubMedCrossRefGoogle Scholar
  80. 80.
    Panni M, Segal S. New local anesthetics. Are they worth the cost? Anesthesiol Clin North America 2003; 21: 19–38CrossRefGoogle Scholar
  81. 81.
    Morrison SG, Dominguez JJ, Frascarolo P, et al. A comparison of the electrocardiographic cardiotoxic effects of racemic bupivacaine, levobupivacaine, and ropivacaine in anesthetized swine. Anesth Analg 2000; 90: 1308–14PubMedCrossRefGoogle Scholar
  82. 82.
    Polley LS, Columb MO, Naughton NN, et al. Relative analgesic potencies of ropivacaine and bupivacaine for epidural analgesia in labor: implications for therapeutic indexes. Anesthesiology 1999; 90: 944–50PubMedCrossRefGoogle Scholar
  83. 83.
    D’Angelo R, James RL. Is ropivacaine less potent than bupivacaine? Anesthesiology 1999; 90: 941–3PubMedCrossRefGoogle Scholar
  84. 84.
    Muir HA, Writer D, Douglas J, et al. Double-blind comparison of epidural ropivacaine 0.25% and bupivacaine 0.25%, for the relief of childbirth pain. Can J Anaesth 1997; 44: 599–604PubMedCrossRefGoogle Scholar
  85. 85.
    Owen MD, D’Angelo R, Gerancher JC, et al. 0.125% ropivacaine is similar to 0.125% bupivacaine for labor analgesia using patient-controlled epidural infusion. Anesth Analg 1998; 86: 527–31PubMedGoogle Scholar
  86. 86.
    Senard M, Kaba A, Jacquemin MJ, et al. Epidural levobupivacaine 0.1% or ropivacaine 0.1% combined with morphine provides comparable analgesia after abdominal surgery. Anesth Analg 2004; 98: 389–94PubMedCrossRefGoogle Scholar
  87. 87.
    Danelli G, Fanelli G, Berti M, et al. Spinal ropivacaine or bupivacaine for cesarean delivery: a prospective, randomized, double-blind comparison. Reg Anesth Pain Med 2004; 29: 221–6PubMedGoogle Scholar
  88. 88.
    Scott DA, Emanuelsson BM, Mooney PH, et al. Pharmacokinetics and efficacy of long-term epidural ropivacaine infusion for postoperative analgesia. Anesth Analg 1997; 85: 1322–30PubMedGoogle Scholar
  89. 89.
    De Negri P, Ivani G, Tirri T, et al. A comparison of epidural bupivacaine, levobupivacaine, and ropivacaine on postoperative analgesia and motor blockade. Anesth Analg 2004; 99: 45–8PubMedCrossRefGoogle Scholar
  90. 90.
    Casati A, Fanelli G, Magistris L, et al. Minimum local anesthetic volume blocking the femoral nerve in 50% of cases: a double-blinded comparison between 0.5% ropivacaine and 0.5% bupivacaine. Anesth Analg 2001; 92: 205–8PubMedCrossRefGoogle Scholar
  91. 91.
    Marhofer P, Oismuller C, Faryniak B, et al. Three-in-one blocks with ropivacaine: evaluation of sensory onset time and quality of sensory block. Anesth Analg 2000; 90: 125–8PubMedCrossRefGoogle Scholar
  92. 92.
    Greengrass RA, Klein SM, D’Ercole FJ, et al. Lumbar plexus and sciatic nerve block for knee arthroplasty: comparison of ropivacaine and bupivacaine. Can J Anaesth 1998; 45: 1094–6PubMedCrossRefGoogle Scholar
  93. 93.
    Klein SM, Greengrass RA, Steele SM, et al. A comparison of 0.5% bupivacaine, 0.5% ropivacaine, and 0.75% ropivacaine for interscalene brachial plexus block. Anesth Analg 1998; 87: 1316–9PubMedGoogle Scholar
  94. 94.
    McGlade DP, Kalpokas MV, Mooney PH, et al. A comparison of 0.5% ropivacaine and 0.5% bupivacaine for axillary brachial plexus anaesthesia. Anaesth Intensive Care 1998; 26: 515–20PubMedGoogle Scholar
  95. 95.
    Rawal N, Allvin R, Axelsson K, et al. Patient-controlled regional analgesia (PCRA) at home: controlled comparison between bupivacaine and ropivacaine brachial plexus analgesia. Anesthesiology 2002; 96: 1290–6PubMedCrossRefGoogle Scholar
  96. 96.
    Casati A, Fanelli G, Cedrati V, et al. Pulmonary function changes after interscalene brachial plexus anesthesia with 0.5% and 0.75% ropivacaine: a double-blinded comparison with 2% mepivacaine. Anesth Analg 1999; 88: 587–92PubMedGoogle Scholar
  97. 97.
    Casati A, Fanelli G, Borghi B, et al. Ropivacaine or 2% mepivacaine for lower limb peripheral nerve blocks: Study Group on Orthopedic Anesthesia of the Italian Society of Anesthesia, Analgesia, and Intensive Care. Anesthesiology 1999; 90: 1047–52PubMedCrossRefGoogle Scholar
  98. 98.
    Taboada M, Cortes J, Rodriguez J, et al. Lateral approach to the sciatic nerve in the popliteal fossa: a comparison between 1.5% mepivacaine and 0.75% ropivacaine. Reg Anesth Pain Med 2003; 28: 516–20PubMedGoogle Scholar
  99. 99.
    Graf BM. The cardiotoxicity of local anesthetics: the place of ropivacaine. Curr Top Med Chem 2001; 1: 207–14PubMedCrossRefGoogle Scholar
  100. 100.
    Wang RD, Dangler LA, Greengrass RA. Update on ropivacaine. Expert Opin Pharmacother 2001; 2: 2051–63PubMedCrossRefGoogle Scholar
  101. 101.
    Graf BM, Martin E, Bosnjak ZJ, et al. Stereospecific effect of bupivacaine isomers on atrioventricular conduction in the isolated perfused guinea pig heart. Anesthesiology 1997; 86: 410–9PubMedCrossRefGoogle Scholar
  102. 102.
    Groban L. Central nervous system and cardiac effects from long-acting amide local anesthetic toxicity in the intact animal model. Reg Anesth Pain Med 2003; 28: 3–11PubMedGoogle Scholar
  103. 103.
    Ohmura S, Kawada M, Ohta T, et al. Systemic toxicity and resuscitation in bupivacaine-, levobupivacaine-, or ropivacaine-infused rats. Anesth Analg 2001; 93: 743–8PubMedCrossRefGoogle Scholar
  104. 104.
    Santos AC, DeArmas PI. Systemic toxicity of levobupivacaine, bupivacaine, and ropivacaine during continuous intravenous infusion to nonpregnant and pregnant ewes. Anesthesiology 2001; 95: 1256–64PubMedCrossRefGoogle Scholar
  105. 105.
    Benhamou D, Ghosh C, Mercier FJ. A randomized sequential allocation study to determine the minimum effective analgesic concentration of levobupivacaine and ropivacaine in patients receiving epidural analgesia for labor. Anesthesiology 2003; 99: 1383–6PubMedCrossRefGoogle Scholar
  106. 106.
    Casati A, Borghi B, Fanelli G, et al. Interscalene brachial plexus anesthesia and analgesia for open shoulder surgery: a randomized, double-blinded comparison between levobupivacaine and ropivacaine. Anesth Analg 2003; 96: 253–9PubMedGoogle Scholar
  107. 107.
    Sinnott CJ, Strichartz GR. Levobupivacaine versus ropivacaine for sciatic nerve block in the rat. Reg Anesth Pain Med 2003; 28: 294–303PubMedGoogle Scholar
  108. 108.
    Stewart J, Kellett N, Castro D. The central nervous system and cardiovascular effects of levobupivacaine and ropivacaine in healthy volunteers. Anesth Analg 2003; 97: 412–6PubMedCrossRefGoogle Scholar
  109. 109.
    Lim Y, Ocampo CE, Sia AT. A comparison of duration of analgesia of intrathecal 2.5mg of bupivacaine, ropivacaine, and levobupivacaine in combined spinal epidural analgesia for patients in labor. Anesth Analg 2004; 98: 235–9PubMedCrossRefGoogle Scholar
  110. 110.
    Atanassoff PG, Aouad R, Hartmannsgruber MW, et al. Levobupivacaine 0.125% and lidocaine 0.5% for intravenous regional anesthesia in volunteers. Anesthesiology 2002; 97: 325–8PubMedCrossRefGoogle Scholar
  111. 111.
    Casati A, Borghi B, Fanelli G, et al. A double-blinded, randomized comparison of either 0.5% levobupivacaine or 0.5% ropivacaine for sciatic nerve block. Anesth Analg 2002; 94: 987–90PubMedCrossRefGoogle Scholar
  112. 112.
    De Andres J, Valia JC, Gil A, et al. Predictors of patient satisfaction with regional anesthesia. Reg Anesth 1995; 20: 498–505PubMedGoogle Scholar
  113. 113.
    Moore JM, Liu SS, Neal JM. Premedication with fentanyl and midazolam decreases the reliability of intravenous lidocaine test dose. Anesth Analg 1998; 86: 1015–7PubMedGoogle Scholar
  114. 114.
    Frizelle HP, Duranteau J, Samii K. A comparison of propofol with a propofol-ketamine combination for sedation during spinal anesthesia. Anesth Analg 1997; 84: 1318–22PubMedGoogle Scholar
  115. 115.
    Lauwers MH, Vanlersberghe C, Camu F. Comparison of remifentanil and propofol infusions for sedation during regional anesthesia. Reg Anesth Pain Med 1998; 23: 64–70PubMedGoogle Scholar
  116. 116.
    Tanaka M, Sato M, Kimura T, et al. The efficacy of simulated intravascular test dose in sedated patients. Anesth Analg 2001; 93: 1612–7PubMedCrossRefGoogle Scholar
  117. 117.
    Mulroy MF, Norris MC, Liu SS. Safety steps for epidural injection of local anesthetics: review of the literature and recommendations. Anesth Analg 1997; 85: 1346–56PubMedGoogle Scholar
  118. 118.
    Owen MD, Gautier P, Hood DD. Can ropivacaine and levobupivacaine be used as test doses during regional anesthesia? Anesthesiology 2004; 100: 922–5PubMedCrossRefGoogle Scholar
  119. 119.
    Neal JM. Effects of epinephrine in local anesthetics on the central and peripheral nervous systems: neurotoxicity and neural blood flow. Reg Anesth Pain Med 2003; 28: 124–34PubMedGoogle Scholar
  120. 120.
    Ben David B, Solomon E, Levin H, et al. Intrathecal fentanyl with small-dose dilute bupivacaine: better anesthesia without prolonging recovery. Anesth Analg 1997; 85: 560–5PubMedGoogle Scholar
  121. 121.
    Liu S, Chiu AA, Carpenter RL, et al. Fentanyl prolongs lidocaine spinal anesthesia without prolonging recovery. Anesth Analg 1995; 80: 730–4PubMedGoogle Scholar
  122. 122.
    Vath JS, Kopacz DJ. Spinal 2-chloroprocaine: the effect of added fentanyl. Anesth Analg 2004; 98: 89–94PubMedCrossRefGoogle Scholar
  123. 123.
    Kampe S, Kiencke P, Krombach J, et al. Current practice in postoperative epidural analgesia: a german survey. Anesth Analg 2002; 95: 1767–9PubMedCrossRefGoogle Scholar
  124. 124.
    Stein C. The control of pain in peripheral tissue by opioids. N Engl J Med 1995; 332: 1685–90PubMedCrossRefGoogle Scholar
  125. 125.
    Bouaziz H, Kinirons BP, Macalou D, et al. Sufentanil does not prolong the duration of analgesia in a mepivacaine brachial plexus block: a dose response study. Anesth Analg 2000; 90: 383–7PubMedGoogle Scholar
  126. 126.
    Fanelli G, Casati A, Magistris L, et al. Fentanyl does not improve the nerve block characteristics of axillary brachial plexus anaesthesia performed with ropivacaine. Acta Anaesthesiol Scand 2001; 45: 590–4PubMedCrossRefGoogle Scholar
  127. 127.
    Landau R, Schiffer E, Morales M, et al. The dose-sparing effect of clonidine added to ropivacaine for labor epidural analgesia. Anesth Analg 2002; 95: 728–34PubMedGoogle Scholar
  128. 128.
    Rochette A, Raux O, Troncin R, et al. Clonidine prolongs spinal anesthesia in newborns: a prospective dose-ranging study. Anesth Analg 2004; 98: 56–9PubMedCrossRefGoogle Scholar
  129. 129.
    Davis BR, Kopacz DJ. Spinal 2-chloroprocaine: the effect of added clonidine. Anesth Analg 2005 Feb; 100(2): 559–65PubMedCrossRefGoogle Scholar
  130. 130.
    Bernard JM, Macaire P. Dose-range effects of clonidine added to lidocaine for brachial plexus block. Anesthesiology 1997; 87: 277–84PubMedCrossRefGoogle Scholar
  131. 131.
    Iskandar H, Guillaume E, Dixmerias F, et al. The enhancement of sensory blockade by clonidine selectively added to mepivacaine after midhumeral block. Anesth Analg 2001; 93: 771–5PubMedCrossRefGoogle Scholar
  132. 132.
    Erlacher W, Schuschnig C, Orlicek F, et al. The effects of clonidine on ropivacaine 0.75% in axillary perivascular brachial plexus block. Acta Anaesthesiol Scand 2000; 44: 53–7PubMedCrossRefGoogle Scholar
  133. 133.
    Ilfeld BM, Morey TE, Enneking FK. Continuous infraclavicular perineural infusion with clonidine and ropivacaine compared with ropivacaine alone: a randomized, double-blinded, controlled study. Anesth Analg 2003; 97: 706–12PubMedCrossRefGoogle Scholar
  134. 134.
    Memis D, Turan A, Karamanlioglu B, et al. Adding dexmedetomidine to lidocaine for intravenous regional anesthesia. Anesth Analg 2004; 98: 835–40PubMedGoogle Scholar
  135. 135.
    Lauretti GR, de Oliveira R, Reis MP, et al. Study of three different doses of epidural neostigmine coadministered with lidocaine for postoperative analgesia. Anesthesiology 1999; 90: 1534–8PubMedCrossRefGoogle Scholar
  136. 136.
    Hood DD, Eisenach JC, Tuttle R. Phase I safety assessment of intrathecal neostigmine methylsulfate in humans. Anesthesiology 1995; 82: 331–43PubMedCrossRefGoogle Scholar
  137. 137.
    Roelants F, Rizzo M, Lavand’homme P. The effect of epidural neostigmine combined with ropivacaine and sufentanil on neuraxial analgesia during labor. Anesth Analg 2003; 96: 1161–6PubMedCrossRefGoogle Scholar
  138. 138.
    Kaya FN, Sahin S, Owen MD, et al. Epidural neostigmine produces analgesia but also sedation in women after cesarean delivery. Anesthesiology 2004; 100: 381–5PubMedCrossRefGoogle Scholar
  139. 139.
    Bouaziz H, Paqueron X, Bur ML, et al. No enhancement of sensory and motor blockade by neostigmine added to mepivacaine axillary plexus block. Anesthesiology 1999; 91: 78–83PubMedCrossRefGoogle Scholar
  140. 140.
    Subramaniam K, Subramaniam B, Pawar DK, et al. Evaluation of the safety and efficacy of epidural ketamine combined with morphine for postoperative analgesia after major upper abdominal surgery. J Clin Anesth 2001; 13: 339–44PubMedCrossRefGoogle Scholar
  141. 141.
    Subramaniam K, Subramaniam B, Steinbrook RA. Ketamine as adjuvant analgesic to opioids: a quantitative and qualitative systematic review. Anesth Analg 2004; 99: 482–95PubMedCrossRefGoogle Scholar
  142. 142.
    Lee IO, Kim WK, Kong MH, et al. No enhancement of sensory and motor blockade by ketamine added to ropivacaine interscalene brachial plexus blockade. Acta Anaesthesiol Scand 2002; 46: 821–6PubMedCrossRefGoogle Scholar
  143. 143.
    Yaksh TL, Allen JW. The use of intrathecal midazolam in humans: a case study of process. Anesth Analg 2004; 98: 1536–45PubMedCrossRefGoogle Scholar
  144. 144.
    Robaux S, Blunt C, Viel E, et al. Tramadol added to 1.5% mepivacaine for axillary brachial plexus block improves postoperative analgesia dose-dependently. Anesth Analg 2004; 98: 1172–7PubMedCrossRefGoogle Scholar
  145. 145.
    Grant GJ, Barenholz Y, Bolotin EM, et al. A novel liposomal bupivacaine formulation to produce ultralong-acting analgesia. Anesthesiology 2004; 101: 133–7PubMedCrossRefGoogle Scholar
  146. 146.
    Holte K, Werner MU, Lacouture PG, et al. Dexamethasone prolongs local analgesia after subcutaneous infiltration of bupivacaine microcapsules in human volunteers. Anesthesiology 2002; 96: 1331–5PubMedCrossRefGoogle Scholar
  147. 147.
    Strumper D, Durieux ME. Antidepressants as long-acting local anesthetics. Reg Anesth Pain Med 2004; 29: 277–85PubMedGoogle Scholar
  148. 148.
    Weinberg G, Ripper R, Feinstein DL, et al. Lipid emulsion infusion rescues dogs from bupivacaine-induced cardiac toxicity. Reg Anesth Pain Med 2003; 28: 198–202PubMedGoogle Scholar

Copyright information

© Adis data information BV 2005

Authors and Affiliations

  • Chester C. BuckenmaierIII
    • 1
    • 2
  • Lisa L. Bleckner
    • 1
    • 2
  1. 1.Walter Reed Army Medical CenterWashington, DCUSA
  2. 2.Uniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations