, Volume 64, Supplement 2, pp 9–18 | Cite as

Peroxisome Proliferator-Activated Receptor α and Hypertensive Heart Disease

  • María J. Goikoetxea
  • Javier Beaumont
  • Javier Dr Díez
Review Article


Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily. It is expressed by cardiomyocytes and regulates gene expression of key proteins involved in myocardial lipid and energy metabolism. Accordingly, the activitity of PPARα is an important determinant of cardiomyocyte lipid homeostasis and ATP production. Currently, animal and human data suggest that deactivation of PPARα may contribute substantially to phenotypic changes that accompany cardiac growth in conditions of pressure overload, and the hypothesis emerges that a compromised PPARα activity may participate in the transition from compensated left ventricular hypertrophy to heart failure in hypertensive heart disease. The availability of PPARα activators (e.g. fibric acid derivates and statins) must stimulate investigation into the potential cardioprotective actions of these compounds beyond their hypolipidaemic effects and via restoration of PPARα activity in the hypertrophied and failing heart.


Left Ventricular Hypertrophy Pressure Overload Hypertensive Heart Disease Fibric Acid Derivative Myocardial Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Levy D, Larson MG, Vasan RS, et al. The progression from hypertension to congestive heart failure. JAMA 1996; 275: 1557–62PubMedCrossRefGoogle Scholar
  2. 2.
    Kannel WB, Belanger AJ. Epidemiology of heart failure. Am Heart J 1991; 121: 951–7PubMedCrossRefGoogle Scholar
  3. 3.
    Phillips RA, Diamomd JA. Left ventricular hypertrophy, congestive heart failure, and coronary flow reserve abnormalities in hypertension. In: Oparil S, Weber MA, editors. Hypertension. Philadelphia: WB Saunders Company, 2000: 244–77Google Scholar
  4. 4.
    Díez J, Fortuño MA, Ravassa S. Apoptosis in hypertensive heart disease. Curr Opin Cardiol 1998; 13: 317–25PubMedCrossRefGoogle Scholar
  5. 5.
    Wagoner LE, Walsh RA. The cellular pathophysiology of progression to heart failure. Curr Opin Cardiol 1996; 11: 237–44PubMedCrossRefGoogle Scholar
  6. 6.
    Weber KT. Extracellular matrix remodeling in heart failure. A role for de novo angiotensin II generation. Circulation 1997; 96: 4065–82Google Scholar
  7. 7.
    Stanley WC, Chandler MP. Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev 2002; 7: 115–30PubMedCrossRefGoogle Scholar
  8. 8.
    Michalik L, Wahli W. Peroxisome proliferators-activated receptors: three isotypes for a multitude of functions. Curr Opin Biotechnol 1999; 10: 564–70PubMedCrossRefGoogle Scholar
  9. 9.
    Plutzky J. Peroxisome proliferators-activated receptors in vascular biology and atherosclerosis: emerging insights for evolving paradigms. Curr Atheroscler Rep 2000; 2: 327–35PubMedCrossRefGoogle Scholar
  10. 10.
    Schiffrin EL, Amiri F, Benkirane K, et al. Peroxisome proliferator-activated receptors. Vascular and cardiac effects in hypertension. Hypertension 2003; 42: 664–8Google Scholar
  11. 11.
    Escher P, Braissant O, Basu-Modak S, et al. Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 2001; 142: 4195–202PubMedCrossRefGoogle Scholar
  12. 12.
    Ijpenberg A, Jeannin E, Wahli W, et al. Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA: a functional analysis of the malic enzyme gene PPAR response element. J Biol Chem 1997; 272: 20108–17PubMedCrossRefGoogle Scholar
  13. 13.
    Finck BN, Kelly DP. Peroxisome proliferator-activated receptor α signaling in the gene regulatory control of energy metabolism in the normal and diseased heart. J Mol Cell Cardiol 2002; 34: 1249–57PubMedCrossRefGoogle Scholar
  14. 14.
    Lehman JJ, Kelly DP. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin Exp Pharmacol Physiol 2002; 29: 339–44PubMedCrossRefGoogle Scholar
  15. 15.
    Vega RB, Huss JM, Kelly DP. The coactivator PGC-1α cooperates with peroxisome proliferators-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000; 20: 1868–76PubMedCrossRefGoogle Scholar
  16. 16.
    Palmer CNA, Hsu MH, Griffin KJ, et al. Peroxisome proliferator activated receptor-α expression in human liver. Mol Pharmacol 1998; 53: 14–22PubMedGoogle Scholar
  17. 17.
    Hanselmann JC, Vartanian MA, Koester BP, et al. Expression of the mRNA encoding truncated PPARα does not correlate with hepatic insensitivity to peroxisome proliferators. Mol Cell Biochem 2001; 217: 91–7CrossRefGoogle Scholar
  18. 18.
    Gervois P, Torra IP, Chinetti G, et al. A truncated human peroxisome proliferator-activated receptor α splice variant with dominant negative activity. Mol Endocrinol 1999; 13: 1535–49PubMedCrossRefGoogle Scholar
  19. 19.
    Djouadi F, Brandt J, Weinheimer CJ, et al. The role of the peroxisome proliferator-activated receptor α (PPARα) in the control of cardiac lipid metabolism. Prostaglandins Leukot Essent Fatty Acids 1999; 60: 339–43PubMedCrossRefGoogle Scholar
  20. 20.
    Barger PM, Kelly DP. PPAR signalling in the control of cardiac energy metabolism. Trends Cardiovasc Med 2001; 10: 238–45CrossRefGoogle Scholar
  21. 21.
    Mandard S, Müller M, Kersten S. Peroxisome proliferator-activated receptor α target genes. Cell Mol Life Sci 2004; 61: 393–416PubMedCrossRefGoogle Scholar
  22. 22.
    Young ME, Laws FA, Goodwin GW, et al. Reactivation of peroxisome proliferator-activated receptor α is associated with contractile dysfunction in hypertrophied rat heart. J Biol Chem 2001; 276: 44390–5PubMedCrossRefGoogle Scholar
  23. 23.
    Iemitsu M, Miyauchi T, Maeda S, et al. Aging-induced decrease in the PPAR-α level in heart is improved by exercise testing. Am J Physiol Heart Circ Physiol 2002; 283: H1750–60PubMedGoogle Scholar
  24. 24.
    Takano H, Nagai T, Asakawa M, et al. Peroxisome proliferator-activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor-alpha expression in neonatal rat cardiac myocytes. Circ Res 2000; 87: 596–602PubMedCrossRefGoogle Scholar
  25. 25.
    Maruyama S, Kato K, Kodama M, et al. Fenofibrate, a peroxisome proliferator-activated receptor alpha activator, supresses experimental autoimmmune myocarditis by stimulating the interleukin-10 pathway in rats. J Atheroscler Thromb 2002; 9: 87–92PubMedCrossRefGoogle Scholar
  26. 26.
    Ogata T, Miyauchi T, Sakai S, et al. Stimulation of peroxisome-proliferator-activated receptor α (PPARα) attenuates cardiac fibrosis and endothelin-1 production in pressure-overloaded rat hearts. Clin Sci 2002; 103: 284–8SGoogle Scholar
  27. 27.
    Irukayama-Tomobe Y, Miyauchi T, Sakai S, et al. Endothelin-1-induced cardiac hypertrophy is inhibited by activation of peroxisome proliferator-activated receptor-α partly via blockade of c-jun NH2 terminal kinase pathway. Circulation 2004; 109: 904–10PubMedCrossRefGoogle Scholar
  28. 28.
    Liang F, Wang F, Zhang S, et al. Peroxisome proliferator activated receptor (PPAR) alpha agonists inhibit hypertrophy of neonatal rat cardiac myocytes. Endocrinology 2003; 144: 4187–94PubMedCrossRefGoogle Scholar
  29. 29.
    Iglarz M, Touyz RM, Viel EC, et al. Peroxisome proliferator-activated receptor-alpha and receptor-gamma activators prevent cardiac fibrosis in mineralocorticoid-dependent hypertension. Hypertension 2003; 42: 737–43PubMedCrossRefGoogle Scholar
  30. 30.
    Gilde AJ, van der Lee KAJM, Willemsen PHM, et al. Peroxisome proliferators-activated receptor (PPAR) α and PPAR α/δ, but not PPARγ, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res 2003; 92: 518–24PubMedCrossRefGoogle Scholar
  31. 31.
    Asakawa M, Takano H, Nagai T, et al. Peroxisome proliferator-activated receptor gamma plays a critical role in inhibition of cardiac hypertrophy in vitro and in vivo. Circulation 2002; 105: 1152–4CrossRefGoogle Scholar
  32. 32.
    Yamamoto K, Ohki R, Lee RT, et al. Peroxisome proliferator-activated receptor gamma activators inhibit cardiac hypertrophy in cardiac myocytes. Circulation 2001; 104: 1670–5PubMedCrossRefGoogle Scholar
  33. 33.
    Shiomi T, Tsutsui H, Hayashidani S, et al. Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 2002; 106: 3126–32PubMedCrossRefGoogle Scholar
  34. 34.
    Sack MN, Disch DL, Rockman HA, et al. A role for Sp and nuclear receptor transcription factors in a cardiac hypertrophic growth program. Proc Natl Acad Sci USA 1997; 94: 6438–43PubMedCrossRefGoogle Scholar
  35. 35.
    Barger PM, Brandt JM, Leone TC, et al. Deactivation of peroxisome-activated receptor receptor α during cardiac hypertrophic growth. J Clin Invest 2000; 105: 1723–30PubMedCrossRefGoogle Scholar
  36. 36.
    Karbowska J, Kochan Z, Smolenski RT. Peroxisome proliferator-activated receptor α is downregulated in the failing human heart. Cell Mol Biol Lett 2003; 8: 49–53PubMedGoogle Scholar
  37. 37.
    Razhegi P, Young ME, Tonya CC, et al. Downregulation of myocardial myocyte enhancer factor 2C and myocyte enhancer 2C-regulated gene expression in diabetic patients with nonischemic heart failure. Circulation 2002; 106: 407–11CrossRefGoogle Scholar
  38. 38.
    Cook SA, Matsui T, Li L, et al. Transcriptional effects of chronic Akt activation in the heart. J Biol Chem 2002; 277: 22528–33PubMedCrossRefGoogle Scholar
  39. 39.
    Barger PM, Browning AC, Garner AN, et al. p38 mitogen protein kinase activated peroxisome proliferator-activated receptor α. A potential role in the cardiac metabolic stress response. J Biol Chem 2001; 44: 44495–501Google Scholar
  40. 40.
    Frohlich ED. Overview of hemodynamic and non-hemodynamic factors associated with left ventricular hypertrophy. J Mol Cell Cardiol 1989; 21: 3–10PubMedCrossRefGoogle Scholar
  41. 41.
    Tham DM, Martin-McNulty B, Wang Y, et al. Angiotensin II is associated with activation of NF-κB-mediated genes and downregulation of PPARs. Physiol Genomics 2002; 11: 21–30PubMedGoogle Scholar
  42. 42.
    Diep QN, Benkirane K, Amiri F, et al. PPARalpha activator fenofibrate inhibits myocardial inflammation and fibrosis in angiotensin II-infused rats. J Mol Cell Cardiol 2004; 36: 295–304PubMedCrossRefGoogle Scholar
  43. 43.
    Razeghi P, Young ME, Abbasi S, et al. Hypoxia in vivo decreases peroxisome proliferator-activated receptor α-regulated gene expression in rat heart. Biochem Biophys Res Commun 2001; 287: 5–10PubMedCrossRefGoogle Scholar
  44. 44.
    Huss JM, Levy FH, Kelly DP. Hypoxia inhibits the peroxisome proliferator-activated receptor α/retinoid X receptor gene regulatory pathway in cardiac myocytes. J Biol Chem 2001; 276: 27605–12PubMedCrossRefGoogle Scholar
  45. 45.
    Houghton JL, Carr AA, Prisant LM, et al. Morphologic, hemodynamic and coronary perfusion characteristics in severe left ventricular hypertrophy secondary to systemic hypertension and evidence for nonatherosclerotic myocardial ischemia. Am J Cardiol 1992; 69: 219–24PubMedCrossRefGoogle Scholar
  46. 46.
    Sher T, Yi HF, McBride OW, et al. cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry 1993; 32: 5598–604PubMedCrossRefGoogle Scholar
  47. 47.
    Flavell DM, Pineda Torra I, Jamshidi Y, et al. Variation in the PPAR alpha gene is associated with altered function in vitro and plasma lipid concentrations in type II diabetic subjects. Diabetologia 2000; 43: 673–80PubMedCrossRefGoogle Scholar
  48. 48.
    Sapone A, Peters JM, Sakai S, et al. The human peroxisome proliferator-activated receptor alpha gene: identification and functional characterization of two natural allelic variants. Pharmacogenetics 2000; 10: 321–33PubMedCrossRefGoogle Scholar
  49. 49.
    Jamshidi Y, Montgomery HE, Hense H-W, et al. Peroxisome proliferator-activated receptor α gene regulates left ventricular growth in response to exercise and hypertension. Circulation 2002; 105: 950–5PubMedCrossRefGoogle Scholar
  50. 50.
    Roe CR, Coates PM. Mitochondrial fatty acid oxidation disorders. In: Scriver CR, Beaudet AI, Sly WS, editors. The metabolic and molecular basis of inherited diseases. New York: McGraw-Hill, 1995: 1501–33Google Scholar
  51. 51.
    Kelly DP, Strauss AW. Inherited cardiomyopathies. N Engl J Med 1994; 330: 913–19PubMedCrossRefGoogle Scholar
  52. 52.
    Hajri T, Ibrahimi A, Coburn CT, et al. Defective fatty acid uptake in the spontaneously hypertensive rat is a primary determinant of altered glucose metabolism, hyperinsulinemia, and myocardial hypertrophy. J Biol Chem 2001; 276: 23661–6PubMedCrossRefGoogle Scholar
  53. 53.
    de las Fuentes L, Herrero P, Peterson LR, et al. Myocardial fatty acid metabolism: independent predictor of left ventricular mass in hypertensive heart disease. Hypertension 2003; 41: 83–7CrossRefGoogle Scholar
  54. 54.
    Rupp H, Jacob R. Metabolically-modulated growth and phenotype of the rat. Eur Heart J 1992; 13: 56–61PubMedCrossRefGoogle Scholar
  55. 55.
    Kelly DP. Peroxisome proliferator-activated receptor α as a genetic determinant of cardiac hypertrophic growth. Culprit or innocent bystander ? Circulation 2002; 105: 1025–7PubMedGoogle Scholar
  56. 56.
    Pineda Torra I, Gervois P, Staels B. Peroxisome proliferator-activated receptor alpha in metabolic disease, inflammation, atherosclerosis and aging. Curr Opin Lipidol 1999; 10: 151–9PubMedCrossRefGoogle Scholar
  57. 57.
    Davila-Roman VG, Vedala G, Herrero P, et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2002; 40: 271–7PubMedCrossRefGoogle Scholar
  58. 58.
    Beer M, Seyfarth T, Sandstede J, et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with 31P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol 2002; 40: 1267–4PubMedCrossRefGoogle Scholar
  59. 59.
    Razeghi P, Young ME, Alcorn JL, et al. Metabolic gene expression in fetal and failing human heart. Circulation 2001; 104: 2923–31PubMedCrossRefGoogle Scholar
  60. 60.
    Kim SK, Zhao ZS, Lee JK, et al. Left-ventricular diastolic dysfunction may be prevented by chronic treatment with PPAR-α or agonists in a type 2 diabetic animal model. Diabetes Metab Res Rev 2003; 19: 487–93PubMedCrossRefGoogle Scholar
  61. 61.
    Watanabe K, Fujii H, Takahashi T, et al. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem 2000; 275: 22293–9PubMedCrossRefGoogle Scholar
  62. 62.
    Corr PB, Creer MH, Yamada KA, et al. Prophylaxis of early ventricular fibrillation by inhibition of acylcarnitine accumulation. J Clin Invest 1989; 83: 927–36PubMedCrossRefGoogle Scholar
  63. 63.
    Stanley CA, Hale DE, Berry GT, et al. Brief report: a deficiency of carnitine-acylcarnitine translocase in the inner mitochondrial membrane. N Engl J Med 1992; 327: 19–23PubMedCrossRefGoogle Scholar
  64. 64.
    Bielawska AE, Shapiro JP, Jiang L, et al. Ceramide is involved in triggering of cardiomyocyte apoptosis induced by ischemia and reperfusion. Am J Pathol 1997; 151: 1257–63PubMedGoogle Scholar
  65. 65.
    Chiu H-C, Kovacs A, Ford DA, et al. A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest 2001; 107: 813–22PubMedCrossRefGoogle Scholar
  66. 66.
    Gebel T, Arand M, Oesch F. Induction of the peroxisome proliferator activated receptor by fenofibrate in rat liver. FEBS Lett 1992; 309: 37–40PubMedCrossRefGoogle Scholar
  67. 67.
    Inoue SG, Mizotani K, Awata T, et al. Lipophilic HMG-CoA reductase inhibitor has an anti-inflammatory effect. Reduction of mRNA levels of interleukin-1, interleukin-6, cyclooxygenase-2 and p22phox by regulation of peroxisome proliferator-activated receptor (PPAR) in primary endothelial cells. Life Sci 2000; 67: 863–76Google Scholar
  68. 68.
    Roglans N, Sanguino E, Peris C, et al. Atorvastatin treatment induced peroxisome proliferator-activated receptor alpha expression and decreased plasma nonesterified fatty acids and liver triglyceride in fructose-fed rats. J Pharmacol Exp Ther 2002; 302: 232–9PubMedCrossRefGoogle Scholar
  69. 69.
    Martin G, Duez H, Blanquart C, et al. Statin-induced inhibition of the Rho-signaling pathway activates PPAR-alpha and induces HDL apoA-I. J Clin Invest 2001; 107: 1423–32PubMedCrossRefGoogle Scholar
  70. 70.
    Lou JD, Zhang WW, Zhang GP, et al. Simvastatin inhibits cardiac hypertrophy and angiotensin-converting enzyme activity in rats with aortic stenosis. Clin Exp Pharmacol Physiol 1999; 26: 903–8CrossRefGoogle Scholar
  71. 71.
    Patel R, Nagueh SF, Tsybouleva N, et al. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation 2001; 104: 317–24PubMedCrossRefGoogle Scholar
  72. 72.
    Dechend R, Flebeler A, Parl JK, et al. Amelioration of angiotensin II-induced cardiac injury by a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. Circulation 2001; 104: 576–81PubMedCrossRefGoogle Scholar
  73. 73.
    Zhou MD, Sucov HM, Evans RM, et al. Retinoid-dependent pathways suppress myocardial cell hypertrophy. Proc Natl Acad Sci USA 1995; 92: 7391–5PubMedCrossRefGoogle Scholar
  74. 74.
    Finck B, Lehman JJ, Leone TC, et al. The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. J Clin Invest 2002; 109: 121–30PubMedGoogle Scholar

Copyright information

© Adis Data Information BV 2004

Authors and Affiliations

  • María J. Goikoetxea
    • 1
  • Javier Beaumont
    • 1
  • Javier Dr Díez
    • 1
    • 2
  1. 1.Area of Cardiovascular Pathophysiology, Centre for Applied Medical ResearchUniversity Clinic, School of Medicine, University of NavarraPamplonaSpain
  2. 2.Department of Cardiology and Cardiovascular SurgeryUniversity Clinic, School of Medicine, University of NavarraPamplonaSpain

Personalised recommendations