, Volume 62, Issue 6, pp 891–907 | Cite as

Newer Immunosuppressive Drugs

Their Potential Role in Rheumatoid Arthritis Therapy
  • Alexandros A. Drosos
Leading Article


Rheumatoid arthritis (RA) is a chronic immune-mediated disease characterised by chronic synovitis, which leads to cartilage damage and joint destruction. It is generally a progressive disease with radiographic evidence of joint damage, functional status decline and premature mortality. Proinflammatory cytokines, such as interleukin 1 and tumour necrosis factor α, play an important role in maintaining the chronicity of RA and mediating tissue damage. New approaches in the therapy of RA with anticytokine biological agents, which neutralise or block cytokines or their receptors, are now the first generation antirheumatic drugs in clinical practice.

A better understanding of the signal transduction systems and gene regulation by transcription factors involved in cytokine production has opened the way for the discovery of novel therapeutic compounds useful in treating patients with RA. Overactivation of selective kinases or aberrant function of downstream transcription factors could help convert a normal immune response to a chronic disease state. This provides a unique opportunity for novel therapeutic interventions, since specific signal transduction or transcription factor targets might interrupt the perpetuation mechanisms in RA. The availability of potent and selective p38 mitogen activated protein kinase inhibitors provide a means in further dissecting the pathways implicated in cytokine production, which in turn maintain the chronicity of RA. Many studies conclude that these compounds are very useful in the treatment of chronic synovitis and therefore are very promising for RA treatment.


Rheumatoid Arthritis Infliximab Tacrolimus Etanercept Sirolimus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This paper is dedicated to my teacher, Prof. HM Moutsopoulos, for his effort in teaching me the beauty of pathophysiology and research of autoimmune rheumatic diseases.

I would also like to thank Mrs E. Horti and Mr S. Voulgaris for the artwork and the secretarial assistance for the manuscript preparation.


  1. 1.
    Haris Jr ED. Mechanisms of disease: rheumatoid arthritis pathophysiology and implications for therapy. N Engl J Med 1990; 322: 1277–89CrossRefGoogle Scholar
  2. 2.
    Firestein GS. The immunopathogenesis of rheumatoid arthritis. Curr Opin Rheumatol 1991; 3: 398–406PubMedCrossRefGoogle Scholar
  3. 3.
    Panayi GS. The immunopathogenesis of rheumatoid arthritis. Br J Rheumatol 1993; 32: 4–14PubMedCrossRefGoogle Scholar
  4. 4.
    Odeh M. New insights into the pathogenesis and treatment of rheumatoid arthritis. Clin Immunol Immunopathol 1997; 83: 106–16CrossRefGoogle Scholar
  5. 5.
    Choy EHS, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 2001; 344: 907–16PubMedCrossRefGoogle Scholar
  6. 6.
    Papavassiliou AG. Transcription factors. N Engl J Med 1995; 332: 45–7PubMedCrossRefGoogle Scholar
  7. 7.
    Barnes PJ, Karin M. Nuclear factor-kappa B: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336: 1066–71PubMedCrossRefGoogle Scholar
  8. 8.
    Firestein GS, Manning AM. Signal transduction and transcription factors in rheumatic disease. Arthritis Rheum 1999; 42: 609–21PubMedCrossRefGoogle Scholar
  9. 9.
    Maini R, St Clair EW, Breedveld F, et al. Infliximab (climatic anti-tumor necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomized phase II trial. ATTRACT Study group. Lancet 1999; 354: 1932–9PubMedCrossRefGoogle Scholar
  10. 10.
    Karin M, Hunter T. Transcription control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol 1995; 5: 747–57PubMedCrossRefGoogle Scholar
  11. 11.
    Su B, Karin M. Mitogen-activated protein kinase cascades and the regulation of gene expression. Curr Opin Immunol 1996; 8: 402–11PubMedCrossRefGoogle Scholar
  12. 12.
    Kerppola TK, Curran T. Transcription factor interactions: basics on zippers. Curr Opin Struct Biol 1991; 1: 71–9CrossRefGoogle Scholar
  13. 13.
    Lee JC, Laydon JT, McDonell PC, et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 1994; 372: 739–46PubMedCrossRefGoogle Scholar
  14. 14.
    Whitmarch AJ, Davis RJ. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 1996; 74: 589–607CrossRefGoogle Scholar
  15. 15.
    Gupta S, Campbell D, Derijard B, et al. Transcription factor ATF-2 regulation by JNK signal transduction pathway. Science 1995; 267: 389–93PubMedCrossRefGoogle Scholar
  16. 16.
    Manning AM, Anderson DC. Transcription factor NF-kB: an emerging regulator of inflammation. Ann Rep Med Chem 1994; 29: 235–44CrossRefGoogle Scholar
  17. 17.
    Angel P, Karin M. The role of Jun, Fos and AP-1 complex in cell proliferation and transformation. Biochim Biophys Acta 1991; 1072: 129–57PubMedGoogle Scholar
  18. 18.
    Derijard B, Raingeand J, Barrett T, et al. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 1995; 267: 682–5PubMedCrossRefGoogle Scholar
  19. 19.
    Doza YN, Cuenda A, Thomas GM, et al. Activation of the MAP kinase homologue RK requires the phosphorylation of Thr-180 and Thr-182 and both residues are phosphorylated in chemically stressed KB cells. FEBS Lett 1999; 364: 223–8CrossRefGoogle Scholar
  20. 20.
    Kumar S, Blake SM, Emery JG. Intracellular signaling pathways as a target for the treatment of rheumatoid arthritis. Curr Opin Pharmacol 2001; 1: 307–13PubMedCrossRefGoogle Scholar
  21. 21.
    Granelli-Piperno A, Nolon P, Inaba K, et al. The effect of immunosuppressive agents on the induction of nuclear factors that bind to sites on the interleukin-2 promoter. J Exp Med 1990; 90: 1869–72CrossRefGoogle Scholar
  22. 22.
    Cardenas ME, Zhu D, Heitman J. Molecular mechanisms of immunosuppression by cyclosporine, FK-506 and rapamycin. Curr Opin Nephrol Hypertens 1995; 4: 472–7PubMedCrossRefGoogle Scholar
  23. 23.
    Yocum DE, Torley H. Cyclosporine A in rheumatoid arthritis. Rheum Dis Clin North Am 1995; 21: 835–94PubMedGoogle Scholar
  24. 24.
    Panayi GS, Tugwell P. The use of cyclosporine A microemulsion in rheumatoid arthritis: conclusion of an international review. Br J Rheumatol 1997; 36: 808–11PubMedCrossRefGoogle Scholar
  25. 25.
    Pasero G, Priolo F, Marubini E, et al. Slow progression of joint damage in early rheumatoid arthritis treated with cyclosporine A. Arthritis Rheum 1996; 39: 1006–15PubMedCrossRefGoogle Scholar
  26. 26.
    Forre Ø, Norwegian Arthritis Study Group. Radiological evidence of disease modification in rheumatoid arthritis patients treated with cyclosporine. Arthritis Rheum 1994;37: 1906–12Google Scholar
  27. 27.
    Landewé RBM, Goei The HS, van Rijthoven AWAM, et al. A randomized double blind 24-week controlled study of low-dose cyclosporine versus chloroquine for early rheumatoid arthritis. Arthritis Rheum 1994; 37: 637–43PubMedCrossRefGoogle Scholar
  28. 28.
    Zeidler HK, Kvien TK, Hannonen P, et al. Progression of joint damage in early active severe rheumatoid arthritis during 18 months of treatment: Comparison of low-dose cyclosporine and parenteral gold. Br J Rheumatol 1998; 37: 874–82PubMedCrossRefGoogle Scholar
  29. 29.
    Drosos AA, Voulgari PV, Papadopoulos IA, et al. Cyclosporine-A in the treatment of early rheumatoid arthritis. A prospective randomized 24-month study. Clin Exp Rheumatol 1998; 16: 695–701PubMedGoogle Scholar
  30. 30.
    Drosos AA, Voulgari PV, Katsaraki A, et al. Influence of cyclosporine A on radiological progression in early rheumatoid arthritis patients: a 42-month prospective study. Rheumatol Int 2000; 19: 113–8PubMedCrossRefGoogle Scholar
  31. 31.
    Papadopoulos NG, Alamanos Y, Papadopoulos IA, et al. Disease modifying anti-rheumatic drugs in early rheumatoid arthritis: a long-term observational study. J Rheumatol 2002; 29: 261–6PubMedGoogle Scholar
  32. 32.
    Hooks MA. Tacrolimus, a new immunosuppressant — a review of the literature. Pharmacotherapy 1994; 28: 501–11Google Scholar
  33. 33.
    Inamura N, Hashimoto M, Nakahara K, et al. Immunosuppressive effect of FK-506 on collagen-induced arthritis in rats. Clin Immunol Immunopathol 1988; 46: 82–90PubMedCrossRefGoogle Scholar
  34. 34.
    Takaoda Y, Nagai H, Tanahashi M, et al. Cyclosporine A and FK-506 inhibit development of superantigen-potentiated collagen-induced arthritis in mice. Gen Pharmacol 1998; 30: 777–82CrossRefGoogle Scholar
  35. 35.
    Fuseler JW, Hearth-Holmes M, Grisham MB, et al. FK-506 attenuates developing and established joint inflammation and suppresses interleukin 6 and nitric oxide expression in bacterial cell wall induced polyarthritis. J Rheumatol 2000; 27: 190–9PubMedGoogle Scholar
  36. 36.
    Sugiyama E, Suzuki H, Tunru IS, et al. FK-506, an immunosuppressant partially inhibits interleukin 6 production by adherent rheumatoid synovial cells. J Rheumatol 1994; 21: 1597–601PubMedGoogle Scholar
  37. 37.
    Gremillion RB, Posever JO, Manek N, et al. Tacrolimus (FK-506) in the treatment of severe refractory rheumatoid arthritis: Initial experience in 12 patients. J Rheumatol 1999; 26: 2332–6PubMedGoogle Scholar
  38. 38.
    Yocum DE. Cyclosporine, FK506, rapamycin and other immunomodulators. Rheum Dis Clin North Am 1996; 22: 133–54PubMedCrossRefGoogle Scholar
  39. 39.
    Carlson RP, Hartman DA, Tomchek LA, et al. Rapamycin, a potential disease-modifying antiarthritis drug. J Pharmacol Exp Ther 1993; 266: 1125–38PubMedGoogle Scholar
  40. 40.
    Kay JE, Kromwel L, Doe SEA, et al. Inhibition of T and B lymphocyte proliferation by rapamycin. Immunology 1991; 72: 544–9PubMedGoogle Scholar
  41. 41.
    Martel RR, Klicius J, Galet S. Inhibition of the immune response by rapamycin, a new antifugal antibiotic. Can J Physiol Pharamacol 1977; 55: 48–51CrossRefGoogle Scholar
  42. 42.
    Gosio B. Ricerche bacteriologiche e chimiche sulle alterazion del mais. Riv Igiene e Sanita Pubblica 1896; 7: 825–68Google Scholar
  43. 43.
    Birkinshaw JH, Raistrick H, Ross DJ. Studies in the biochemistry of micro-organisms. Biochem J 1952; 50: 630–4PubMedGoogle Scholar
  44. 44.
    Platz KP, Sollinger HW, Hulleh D A, et al. A new, potent immunosuppressive agent. Transplantation 1991; 51: 27–31PubMedCrossRefGoogle Scholar
  45. 45.
    Euqui EM, Almquist SJ, Muller CD, et al. Lymphocyte-selective cytostatic and immunosuppressive effects of mycophenolic acid in vitro: Role of deoxy guanosine nucleotide depletion. Scand J Immunol 1991; 33: 161–73CrossRefGoogle Scholar
  46. 46.
    Franklin TJ, Cook JM. The inhibition of nucleic acid synthesis by mycophenolic acid. Biochem J 1969; 113: 514–24Google Scholar
  47. 47.
    Sweeney MJ, Hoffman DH, Esterman MA. Metabolism and biochemistry of mycophenolic acid. Cancer Res 1972; 32: 1803–9PubMedGoogle Scholar
  48. 48.
    Allison AC, Eugui EM. Purine metabolism and immunosuppressive effects of mycophenolate mofetil (MMF). Clin Transpl 1996; 10: 77–84Google Scholar
  49. 49.
    Taylor DO, Ensley RD, Olsen SL, et al. Mycophenolate mofetil (RS-61443): preclinical, clinical and three-year experience in heart transplantation. J Heart Lung Transplant 1994; 13: 571–82PubMedGoogle Scholar
  50. 50.
    Merkel PA, Letourneau EN, Polisson RP. Investigational agents for rheumatoid arthritis. Rheum Dis Clin North Am 1995; 21: 779–96PubMedGoogle Scholar
  51. 51.
    Chan TM, Li FK, Tang CSO, et al. Efficacy of mycophenolate mofetil in patients with diffuse proliferative lupus nephritis. N Engl J Med 2000; 343: 1156–62PubMedCrossRefGoogle Scholar
  52. 52.
    Goldblum R, Rees MMC, Euqui E, et al. Immunologic changes in patients with rheumatoid arthritis treated for one year with a new DMARD, mycophenolate mofetil [abstract]. Arthritis Rheum 1991; 34: S157Google Scholar
  53. 53.
    Schiff MH, Goldmlum R, Rees MMC. New DMARD, mycophenate mofetil, effectively treats refractory rheumatoid arthritis patients for one year [abstract]. Arthritis Rheum 1991; 34: S89CrossRefGoogle Scholar
  54. 54.
    Fox RI, Herrmann ML, Frangou CG, et al. How does leflunomide modulate the immune response in rheumatoid arthritis? Biodrugs 1999; 4: 301–15CrossRefGoogle Scholar
  55. 55.
    Fox RI, Herrmann ML, Frangou CG, et al. Mechanism of action for leflunomide in rheumatoid arthritis. Clin Immunol 1999; 93: 198–208PubMedCrossRefGoogle Scholar
  56. 56.
    Manna SK, Aggarwal BB. Immunosuppressive leflunomide metabolite (A77 1726) blocks TNF-dependent nuclear factor-kappa B activation and gene expression. J Immunol 1999; 162: 2095–102PubMedGoogle Scholar
  57. 57.
    Strand V, Cohen S, Schiff M, et al. Treatment of active rheumatoid arthritis with leflunomide compared with placebo and methotrexate. Leflunomide Rheumatoid Arthritis Investigators Group. Arch Intern Med 1999; 159: 2542–50PubMedCrossRefGoogle Scholar
  58. 58.
    Smolen JS, Kalden JR, Scott DL, et al. Efficacy and safety of leflunomide compared with placebo and sulphasalazine in active rheumatoid arthritis: a double blind, randomized, multicentre trial. European Leflunomide Study Group. Lancet 1999; 353: 259–66PubMedCrossRefGoogle Scholar
  59. 59.
    Saklatvala J. Tumor necrosis factor alpha stimulates resoption and inhibits synthesis of proteoglycan and cartilage. Nature 1986; 322: 547–9PubMedCrossRefGoogle Scholar
  60. 60.
    Keffer J, Probert L, Cazlaris H, et al. Transgenic mice expressing human tumor necrosis factor: a predictive model of arthritis. EMBO J 1991; 10: 4025–31PubMedGoogle Scholar
  61. 61.
    Williams RO, Feldmann M, Maini RN. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad Sci U S A 1992; 89: 9784–8PubMedCrossRefGoogle Scholar
  62. 62.
    Elliott MJ, Maini RN, Feldmann M, et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum 1993; 36: 1681–90PubMedCrossRefGoogle Scholar
  63. 63.
    Elliott MJ, Maini RN, Feldmann M, et al. Randomized double-blind comparison of chimeric monoclonal antibody to tumor necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 1994; 344: 1105–10PubMedCrossRefGoogle Scholar
  64. 64.
    Elliott MJ, Maini RN, Feldmann M, et al. Repeated therapy with monoclonal antibody to tumor necrosis factor alpha (cA2) in patients with rheumatoid arthritis. Lancet 1994; 344: 1125–7PubMedCrossRefGoogle Scholar
  65. 65.
    Maini RN, Breedveld FC, Kelden JR, et al. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum 1998; 41: 1552–63PubMedCrossRefGoogle Scholar
  66. 66.
    Lipsky PE, van der Heijde DM, St Clair EW, et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N Engl J Med 2000; 343: 1594–602PubMedCrossRefGoogle Scholar
  67. 67.
    Keane J, Gershon S, Wise RP, et al. Tuberculosis associated with infliximab, a tumor necrosis factor alpha — neutralizing agent. N Engl J Med 2001; 345: 1098–104PubMedCrossRefGoogle Scholar
  68. 68.
    Moreland LW, Margolies G, Heck LW, et al. Recombinant soluble tumor necrosis factor receptor (p80) fusion protein: toxicity and dose finding trial in refractory rheumatoid arthritis. J Rheumatol 1996; 23: 1849–55PubMedGoogle Scholar
  69. 69.
    Moreland LW, Baumgartner SW, Schiff MH, et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N Engl J Med 1997; 337: 141–7PubMedCrossRefGoogle Scholar
  70. 70.
    Weinblatt ME, Kremer JM, Bankhurst AD, et al. A trial of etanercept, a recombinant tumor necrosis factor receptor: Fc fusion protein in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 1999; 340: 253–9PubMedCrossRefGoogle Scholar
  71. 71.
    Bathon JM, Martin RW, Fleischmann RM, et al. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med 2000; 343: 1586–93PubMedCrossRefGoogle Scholar
  72. 72.
    Dinarello CA. Biological basis for interleukin-1 in disease. Blood 1996; 87: 2095–147PubMedGoogle Scholar
  73. 73.
    Nicklin MJ, Hughes DE, Barton JL, et al. Arterial inflammatory in mice lacking the interleukin 1 receptor antagonist gene. J Exp Med 2000; 191: 303–12PubMedCrossRefGoogle Scholar
  74. 74.
    Horai R, Saijo S, Tanioka H, et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J Exp Med 2000; 191: 313–20PubMedCrossRefGoogle Scholar
  75. 75.
    Miesel R, Ehrlich W, Wohlert H, et al. The effects of interleukin-1 receptor antagonist on oxidant-induced arthritis in mice. Clin Exp Rheumatol 1995; 13: 595–601PubMedGoogle Scholar
  76. 76.
    Drevlow BE, Lovis R, Haag MA, et al. Recombinant human interleukin-1 receptor type I in the treatment of patients with active rheumatoid arthritis. Arthritis Rheum 1996; 39: 257–65PubMedCrossRefGoogle Scholar
  77. 77.
    Bresnihan B, Alvaro-Gracia JM, Cobby M, et al. Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Arthritis Rheum 1998; 41: 2196–204PubMedCrossRefGoogle Scholar
  78. 78.
    Kumar S, Votta BJ, Rieman DJ, et al. IL-1 and TNF-induced bone resorption in mediated by p38 mitogen activated protein kinase. J Cell Physiol 2001; 187: 294–303PubMedCrossRefGoogle Scholar
  79. 79.
    Suzuki M, Tetsuka T, Yoshida S, et al. The role of p38 mitogen-activated protein kinase in IL-6 and IL-8 production from the TNF-α or IL-1β-stimulated rheumatoid synovial fibroblast. FEBS Lett 2000; 465: 23–7PubMedCrossRefGoogle Scholar
  80. 80.
    Han Z, Boyle DL, Aupperle KR, et al. Jun N-terminal kinase in rheumatoid arthritis. J Pharmacol Exp Ther 1999; 291: 124–30PubMedGoogle Scholar
  81. 81.
    Schett G, Tohidast-Akvad M, Smolen JS, et al. Activation, differential, localization and regulation of the stress-activated protein kinases, extracellular signal-regulated kinase, C-Jun N-Terminal kinase, and p38 mitogen-activated protein kinase, in synovial tissue and cells in rheumatoid arthritis. Arthritis Rheum 2000; 43: 2501–12PubMedCrossRefGoogle Scholar
  82. 82.
    Henry JR, Rupert KC, Dodd JH, et al. Potent inhibitors of the MAP kinase p 38. Bioorg Med Chem Lett 1998; 8: 3335–40PubMedCrossRefGoogle Scholar
  83. 83.
    Lee JC, Kassis S, Kumar S, et al. p38 mitogen-activated kinase inhibitors mechanisms and therapeutic potentials. Pharmacol Ther 1999; 82: 389–97PubMedCrossRefGoogle Scholar
  84. 84.
    Badger AM, Olivera D, Talmadge JE, et al. Protective effect of SK&F 86002, a novel dual inhibitor of arachidonic acid metabolism, in murine models of endotoxin shock: inhibition of tumor necrosis factor as a possible mechanism of action. Circ Shock 1989; 27: 51–61PubMedGoogle Scholar
  85. 85.
    Badger AM, Bradbeer JN, Votta B, et al. Pharmacological profile of SB203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function. J Pharmacol Exp Ther 1996; 279: 1453–61PubMedGoogle Scholar
  86. 86.
    Badger AM, Cook MN, Lark MW, et al. SB203580 inhibits p38 mitogen-activated protein kinase, nitric oxide production, and inducible nitric oxide synthase in bovine cartilage-derived chondrocytes. J Immunol 1998; 161: 467–73PubMedGoogle Scholar
  87. 87.
    Kumar S, Jiang MS, Adams JL, et al. Pyridinylimidazole compound SB203580 inhibits the activity but not the activation of p38 mitogen-activated protein kinase. Biochem Biophys Res Commun 1999; 263: 825–31PubMedCrossRefGoogle Scholar
  88. 88.
    Borsch-Hanbold AG, Pasquet S, Watson SP. Direct inhibition of cyclooxygenase-1 and -2 by the kinase inhibitors SB203580 and PD 98059. J Biol Chem 1998; 273: 28766–72CrossRefGoogle Scholar
  89. 89.
    Cuenda A, Rouse J, Doza YN, et al. SB203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 1999; 364: 229–33CrossRefGoogle Scholar
  90. 90.
    Wilson KP, McCaffrey PG, Hsiao K, et al. The structural basis for the specificity of pyridinylamidazole inhibitors of p38 MAP kinase. Chem Biol 1997; 4: 423–31PubMedCrossRefGoogle Scholar
  91. 91.
    Tong L, Pav S, White DM, et al. Highly specific inhibitor of p38 MAP kinase binds in the ATP pocket. Nat Struct Biol 1997; 4: 311–6PubMedCrossRefGoogle Scholar
  92. 92.
    Jackson JR, Bolognese B, Hillegass L, et al. Pharmacological effects of SB220025 a selective inhibitor of p38 mitogen-activated protein kinase, in angiogenesis and chronic inflammatory disease models. J Pharmacol Exp Ther 1998; 284: 687–92PubMedGoogle Scholar
  93. 93.
    Badger AM, Griswold DE, Kapadia R, et al. Disease-modifying activity of SB242235, a selective inhibitor of p38 mitogen-activated protein kinase, in rat adjuvant-induced arthritis. Arthritis Rheum 2000; 43: 175–83PubMedCrossRefGoogle Scholar
  94. 94.
    McLay IM, Halley F, Souness JE, et al. The discovery of RPR200765A, a p38 MAP kinase inhibitor displaying a good oral anti-arthritic efficacy. Bioorg Med Chem 2001; 9: 537–54PubMedCrossRefGoogle Scholar
  95. 95.
    Boehm JC, Adams JC. New inhibitors of p38 kinase. Expert Opin Ther Pat 2000; 10: 25–37CrossRefGoogle Scholar
  96. 96.
    Dumas J, Sibley R, Riedl B, et al. Discovery of a new class of p38 kinase inhibitors. Bioorg Med Chem Lett 2000; 10: 2047–50PubMedCrossRefGoogle Scholar
  97. 97.
    Redman AM, Johnson JS, Dally R, et al. p38 kinase inhibitors for the treatment of arthritis and osteoporosis: Thienyl, Furyl and Pyrroly Ureas. Bioorg Med Chem Lett 2001; 11: 9–12PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2002

Authors and Affiliations

  1. 1.Section of Rheumatology, Department of Internal Medicine, Medical SchoolUniversity of IoanninaIoanninaGreece

Personalised recommendations