, Volume 61, Issue 12, pp 1721–1733 | Cite as

Tamoxifen Resistance in Breast Cancer

Elucidating Mechanisms
  • Lambert C. J. Dorssers
  • Silvia van der Flier
  • Arend Brinkman
  • Ton van Agthoven
  • Jos Veldscholte
  • Els M. J. J. Berns
  • Jan G. M. Klijn
  • Louk V. A. M. Beex
  • John A. Foekens
Review Article


Tamoxifen has been used for the systemic treatment of patients with breast cancer for nearly three decades. Treatment success is primarily dependent on the presence of the estrogen receptor (ER) in the breast carcinoma. While about half of patients with advanced ER-positive disease immediately fail to respond to tamoxifen, in the responding patients the disease ultimately progresses to a resistant phenotype.

The possible causes for intrinsic and acquired resistance have been attributed to the pharmacology of tamoxifen, alterations in the structure and function of the ER, the interactions with the tumour environment and genetic alterations in the tumour cells. So far no prominent mechanism leading to resistance has been identified.

The recent results of a functional screen for breast cancer antiestrogen resistance (BCAR) genes responsible for development of tamoxifen resistance in human breast cancer cells are reviewed. Individual BCAR genes can transform estrogen-dependent breast cancer cells into estrogen-independent and tamoxifen-resistant cells in vitro. Furthermore, high levels of BCAR1/p130Cas protein in ER-positive primary breast tumours are associated with intrinsic resistance to tamoxifen treatment. These results indicate a prominent role for alternative growth control pathways independent of ER signalling in intrinsic tamoxifen resistance of ER-positive breast carcinomas.

Deciphering the differentiation characteristics of normal and malignant breast epithelial cells with respect to proliferation control and regulation of cell death (apoptosis) is essential for understanding therapy response and development of resistance of breast carcinoma.


Breast Cancer Epidermal Growth Factor Receptor Tamoxifen Fulvestrant Breast Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the Dutch Cancer Society/KWF and the Netherlands Organisation for Scientific Research (NWO). The contribution of the members of our research groups is gratefully acknowledged. We appreciate the critical comments and suggestions on the manuscript of Mrs Marion Meijer-Van Gelder MD and of the reviewers of the manuscript.


  1. 1.
    Bernstein L, Ross RK. Endogenous hormones and breast cancer risk. Epidemiol Rev 1993; 15: 48–65PubMedGoogle Scholar
  2. 2.
    Pike MC, Spicer DV, Dahmoush L, et al. Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev 1993; 15: 17–35PubMedGoogle Scholar
  3. 3.
    Nandi S, Guzman RC, Yang J. Hormones and mammary carcinogenesis in mice, rats, and humans: a unifying hypothesis. Proc Natl Acad Sci U S A 1995; 92: 3650–7PubMedCrossRefGoogle Scholar
  4. 4.
    Russo J, Russo IH. Cellular basis of breast cancer susceptibility. Oncol Res 1999; 11(4): 169–78PubMedGoogle Scholar
  5. 5.
    Tinnemans JG, Beex LV, Wobbes T, et al. Steroid-hormone receptors in nonpalpable and more advanced stages of breast cancer. A contribution to the biology and natural history of carcinoma of the female breast. Cancer 1990; 66(6): 1165–7Google Scholar
  6. 6.
    Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83: 835–9PubMedCrossRefGoogle Scholar
  7. 7.
    Beato M, Herrlich P, Schütz G. Steroid hormone receptors: many actors in search of a plot. Cell 1995; 83: 851–7PubMedCrossRefGoogle Scholar
  8. 8.
    McKenna NJ, Lanz RB, O’Malley BW. Nuclear receptor coregulators: cellular and molecular biology. Endocrinol Rev 1999; 20(3): 321–44CrossRefGoogle Scholar
  9. 9.
    Robyr D, Wolffe AP, Wahli W. Nuclear hormone receptor coregulators in action: diversity for shared tasks. Mol Endocrinol 2000; 14(3): 329–47PubMedCrossRefGoogle Scholar
  10. 10.
    Cheung J, Smith DF. Molecular chaperone interactions with steroid receptors: an update. Mol Endocrinol 2000; 14(7): 939–46PubMedCrossRefGoogle Scholar
  11. 11.
    Kuiper GG, Enmark E, Pelto-Huikko M, et al. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 1996; 93(12): 5925–30PubMedCrossRefGoogle Scholar
  12. 12.
    Mosselman S, Polman J, Dijkema R. ERβ: identification and characterization of a novel human estrogen receptor. FEBS Lett 1996; 392: 49–53PubMedCrossRefGoogle Scholar
  13. 13.
    Vladusic EA, Hornby AE, Guerra-Vladusic FK, et al. Expression of estrogen receptor β messenger RNA variant in breast cancer. Cancer Res 1998; 58: 210–4PubMedGoogle Scholar
  14. 14.
    Speirs V, Parkes AT, Kerin MJ, et al. Coexpression of estrogen receptor alpha and beta: poor prognostic factors in human breast cancer? Cancer Res 1999; 59(3): 525–8PubMedGoogle Scholar
  15. 15.
    Speirs V, Malone C, Walton DS, et al. Increased expression of estrogen receptor beta mRNA in tamoxifen-resistant breast cancer patients. Cancer Res 1999; 59(21): 5421–4PubMedGoogle Scholar
  16. 16.
    Speirs V, Kerin MJ. Prognostic significance of oestrogen receptor beta in breast cancer. Br J Surg 2000; 87(4): 405–9PubMedCrossRefGoogle Scholar
  17. 17.
    Cullen R, MaGuire T, Diggin P, et al. Detection of estrogen receptor-beta mRNA in breast cancer using RT-PCR. Int J Biol Markers 2000; 15(1): 114–5PubMedGoogle Scholar
  18. 18.
    Knowlden JM, Gee JM, Robertson JF, et al. A possible divergent role for the oestrogen receptor alpha and beta subtypes in clinical breast cancer. Int J Cancer 2000; 89(2): 209–12PubMedCrossRefGoogle Scholar
  19. 19.
    Jarvinen TA, Pelto-Huikko M, Holli K, et al. Estrogen receptor beta is coexpressed with ERalpha and PR and associated with nodal status, grade, and proliferation rate in breast cancer. Am J Pathol 2000; 156(1): 29–35PubMedCrossRefGoogle Scholar
  20. 20.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57–70PubMedCrossRefGoogle Scholar
  21. 21.
    Beatson GT. On the treatment of inoperable cases of carcinoma of the mamma. Suggestions for a new method of treatment with illustrative cases. Lancet 1896; 2: 104–7Google Scholar
  22. 22.
    Horwitz KB, Wei LL, Sedlacek SM, et al. Progestin action and progesterone receptor structure in human breast cancer: a review. Recent Prog Horm Res 1985; 41: 249–316PubMedGoogle Scholar
  23. 23.
    Foekens JA, Van Putten WLJ, Portengen H, et al. Prognostic value of PS2 and cathepsin D in 710 human primary breast tumors: multivariate analysis. J Clin Oncol 1993; 11:899–908PubMedGoogle Scholar
  24. 24.
    MacGregor JI, Jordan VC. Basic guide to the mechanisms of antiestrogen action. Pharmacol Rev 1998; 50: 151–96PubMedGoogle Scholar
  25. 25.
    Osborne CK, Elledge RM, Fuqua SAW. Estrogen receptors in breast cancer. Sci Am Sci Med 1996; 3: 32–41Google Scholar
  26. 26.
    Brzozowski AM, Pike ACW, Dauter Z, et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997; 389: 753–8PubMedCrossRefGoogle Scholar
  27. 27.
    Musgrove EA, Hamilton JA, Lee CSL, et al. Growth factor, steroid, and steroid antagonist regulation of cyclin gene expression associated with changes in T-47D human breast cancer cell cycle progression. Mol Cell Biol 1993; 13: 3577–87PubMedGoogle Scholar
  28. 28.
    Jordan VC, Murphy CS. Endocrine pharmacology of antiestrogens as antitumor agents. Endocrinol Rev 1990; 11: 578–610CrossRefGoogle Scholar
  29. 29.
    Early Breast Cancer Trialists’ Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet 1998; 351(9114): 1451–67CrossRefGoogle Scholar
  30. 30.
    Veronesi U, Maisonneuve P, Costa A, et al. Prevention of breast cancer with tamoxifen: preliminary findings from the Italian randomised trial among hysterectomised women. Lancet 1998; 352: 93–7PubMedGoogle Scholar
  31. 31.
    Powles T, Eeles R, Ashley S, et al. Interim analysis of the incidence of breast cancer in the Royal Marsden Hospital tamoxifen randomised chemoprevention trial. Lancet 1998; 352: 98–101PubMedGoogle Scholar
  32. 32.
    Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 1998; 90(18): 1371–88PubMedCrossRefGoogle Scholar
  33. 33.
    Jordan VC, Morrow M. Tamoxifen, raloxifene, and the prevention of breast cancer. Endocr Rev 1999; 20(3): 253–78PubMedCrossRefGoogle Scholar
  34. 34.
    Chlebowski RT. Reducing the risk of breast cancer. N Engl J Med 2000; 343(3): 191–8PubMedCrossRefGoogle Scholar
  35. 35.
    Jordan VC, Phelps E, Lindgren JU. Effects of anti-estrogens on bone in castrated and intact female rats. Breast Cancer Res Treat 1987; 10(1): 31–5PubMedCrossRefGoogle Scholar
  36. 36.
    Jordan VC, Robinson SP. Species-specific pharmacology of antiestrogens: role of metabolism. Fed Proc 1987; 46(5): 1870–4PubMedGoogle Scholar
  37. 37.
    Gottardis MM, Jordan VC. Antitumor actions of keoxifene and tamoxifen in the N-nitrosomethylurea-induced rat mammary carcinoma model. Cancer Res 1987; 47(15): 4020–4PubMedGoogle Scholar
  38. 38.
    Gottardis MM, Robinson SP, Satyaswaroop PG, et al. Contrasting actions of tamoxifen on endometrial and breast tumor growth in the athymic mouse. Cancer Res 1988; 48(4): 812–5PubMedGoogle Scholar
  39. 39.
    Dhingra K. Antiestrogens — tamoxifen, SERMs and beyond. Invest New Drugs 1999; 17(3): 285–311PubMedCrossRefGoogle Scholar
  40. 40.
    Osborne CK, Zhao H, Fuqua SA. Selective estrogen receptor modulators: structure, function, and clinical use. J Clin Oncol 2000; 18(17): 3172–86PubMedGoogle Scholar
  41. 41.
    Klijn JG, Beex LV, Mauriac L, et al. Combined treatment with buserelin and tamoxifen in premenopausal metastatic breast cancer: a randomized study. J Natl Cancer Inst 2000; 92(11): 903–11PubMedCrossRefGoogle Scholar
  42. 42.
    Klijn JGM, Blarney RW, Boccardo F, et al. Combined tamoxifen and luteinizing hormone-releasing hormone (LHRH) agonist versus agonist alone in premenopausal advanced breast cancer: a meta-analysis of four randomized trials. J Clin Oncol 2001; 19: 343–53PubMedGoogle Scholar
  43. 43.
    Jaiyesimi IA, Buzdar AU, Decker DA, et al. Use of tamoxifen for breast cancer: twenty-eight years later. J Clin Oncol 1995; 13: 513–29PubMedGoogle Scholar
  44. 44.
    Hayward JL, Carbone PP, Heuson JC, et al. Assessment of response to therapy in advanced breast cancer. Cancer 1977; 39: 1289–93PubMedCrossRefGoogle Scholar
  45. 45.
    Howell A, Mackintosh J, Jones M, et al. The definition of the ‘no change’ category in patients treated with endocrine therapy and chemotherapy for advanced carcinoma of the breast. Eur J Cancer Clin Oncol 1988; 24(10): 1567–72PubMedCrossRefGoogle Scholar
  46. 46.
    Robertson JF, Williams MR, Todd J, et al. Factors predicting the response of patients with advanced breast cancer to endocrine (Megace) therapy. Eur J Cancer Clin Oncol 1989; 25(3): 469–75PubMedCrossRefGoogle Scholar
  47. 47.
    Foekens JA, Portengen H, Look MP, et al. Relationship of PS2 with response to tamoxifen therapy in patients with recurrent breast cancer. Br J Cancer 1994; 70: 1217–23PubMedCrossRefGoogle Scholar
  48. 48.
    Klijn JGM, Berns EMJJ, Foeken JA. Prognostic and predictive factors in breast cancer. In: Manni A, editor. Contemporary endocrinology: endocrinology of breast cancer. Totowa (NJ): Humana Press, 1999: 205–20Google Scholar
  49. 49.
    Foekens JA, Look MP, Peters HA, et al. Urokinase-type plasminogen activator and its inhibitor PAI-1: predictors of poor response to tamoxifen therapy in recurrent breast cancer. JNCI 1995; 87: 751–6PubMedCrossRefGoogle Scholar
  50. 50.
    Nicholson S, Wright C, Sainsbury JRC, et al. Epidermal growth factor receptor (EGFr) as a marker for poor prognosis in node-negative breast cancer patients: neu and tamoxifen failure. J Steroid Biochem Mol Biol 1990; 37: 811–5PubMedCrossRefGoogle Scholar
  51. 51.
    Berns EMJJ, Foekens JA, Van Staveren IL, et al. Oncogene amplification and prognosis in breast cancer: relationship with systemic treatment. Gene 1995; 159: 11–8PubMedCrossRefGoogle Scholar
  52. 52.
    Nicholson S, Halcrow P, Farndon JR, et al. Expression of epidermal growth factor receptors associated with lack of response to endocrine therapy in recurrent breast cancer. Lancet 1989; i: 182–5CrossRefGoogle Scholar
  53. 53.
    Klijn JGM, Berns PMJJ, Schmitz PIM, et al. The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: a review on 5232 patients. Endocr Rev 1992; 13: 3–17PubMedGoogle Scholar
  54. 54.
    Berns EMJJ, Klijn JGM, Van Putten WLJ, et al. p53 protein accumulation predicts poor response to tamoxifen therapy of patients with recurrent breast cancer. J Clin Oncol 1998; 16: 121–7PubMedGoogle Scholar
  55. 55.
    Berns EMJJ, Foekens JA, Vossen R, et al. Complete sequencing of TP53 predicts poor response to systemic treatment of advanced breast cancer. Cancer Res 2000; 60: 2155–62PubMedGoogle Scholar
  56. 56.
    Foekens JA, Romain S, Look MP, et al. Thymidine kinase and thymidylate synthetase in advanced breast cancer: response to tamoxifen and chemotherapy. Cancer Res 2001; 61: 1421–5PubMedGoogle Scholar
  57. 57.
    Encarnaciön CA, Ciocca DR, McGuire WL, et al. Measurement of steroid hormone receptors in breast cancer patients on tamoxifen. Breast Cancer Res Treat 1993; 26: 237–46PubMedCrossRefGoogle Scholar
  58. 58.
    Johnston SRD, Saccani-Jotti G, Smith IE, et al. Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Cancer Res 1995; 55: 3331–8PubMedGoogle Scholar
  59. 59.
    Robertson JFR. Oestrogen receptor: a stable phenotype in breast cancer. Br J Cancer 1996; 73: 5–12PubMedCrossRefGoogle Scholar
  60. 60.
    Johnston SRD, Lu B, Dowsett M, et al. Comparison of estrogen receptor DNA binding in untreated and acquired anti-estrogen-resistant human breast tumors. Cancer Res 1997; 57: 3723–7PubMedGoogle Scholar
  61. 61.
    Howell A, Dowsett M. Recent advances in endocrine therapy of breast cancer. BMJ 1997; 315: 863–6PubMedCrossRefGoogle Scholar
  62. 62.
    Santen RJ, Harvey HA. Use of aromatase inhibitors in breast carcinoma. Endocr Relat Cancer 1999; 6(1): 75–92PubMedCrossRefGoogle Scholar
  63. 63.
    Minton SE. New hormonal therapies for breast cancer. Cancer Control 1999; 6(3): 247–55PubMedGoogle Scholar
  64. 64.
    King RJB. Receptors, growth factors and steroid insensitivity of tumours. J Endocrinol 1990; 124: 179–81PubMedCrossRefGoogle Scholar
  65. 65.
    Johnston SRD, Dowsett M, Smith IE. Towards a molecular basis for tamoxifen resistance in breast cancer. Ann Oncol 1992; 3: 503–11PubMedGoogle Scholar
  66. 66.
    Horwitz KB. Mechanisms of hormone resistance in breast cancer. Breast Cancer Res Treat 1993; 26: 119–30PubMedCrossRefGoogle Scholar
  67. 67.
    Jordan VC. Molecular mechanisms of antiestrogen action in breast cancer. Breast Cancer Res Treat 1994; 31: 41–52PubMedCrossRefGoogle Scholar
  68. 68.
    Osborne CK, Fuqua SAW. Mechanisms of tamoxifen resistance. Breast Cancer Res Treat 1994; 32: 49–55PubMedCrossRefGoogle Scholar
  69. 69.
    Clarke R, Thompson EW, Leonessa F, et al. Hormone resistance, invasiveness, and metastatic potential in breast cancer. Breast Cancer Res Treat 1993; 24: 227–39PubMedCrossRefGoogle Scholar
  70. 70.
    Klijn JGM, Berns EMJJ, Dorssers LCJ, et al. Molecular markers of resistance to endocrine treatment of breast cancer. In: Dickson RB, Lippman ME, editors. Drug and hormonal resistance in breast cancer, part II: cellular and molecular mechanisms. Chichester: Ellis Horwood, 1994: 133–68Google Scholar
  71. 71.
    Clarke R, Brünner N. Cross-resistance and molecular mechanisms in antiestrogen resistance. Endocr Rel Cancer 1995; 2: 59–72CrossRefGoogle Scholar
  72. 72.
    Katzenellenbogen BS, Montano MM, Ekena K, et al. Anti-estrogens: mechanisms of action and resistance in breast cancer. Breast Cancer Res Treat 1997; 44: 23–38PubMedCrossRefGoogle Scholar
  73. 73.
    Jordan VC, Collins MM, Rowsby L, et al. A monohydroxylated metabolite of tamoxifen with potent antioestrogenic activity. J Endocrinol 1977; 75(2): 305–16PubMedCrossRefGoogle Scholar
  74. 74.
    Buckley MM, Goa KL. Tamoxifen: a reappraisal of its pharma-codynamic and pharmacokinetic properties, and therapeutic use. Drugs 1989; 37(4): 451–90PubMedCrossRefGoogle Scholar
  75. 75.
    Wolf DM, Jordan VC. Drug resistance to tamoxifen during breast cancer therapy. Breast Cancer Res Treat 1993; 27: 27–40PubMedCrossRefGoogle Scholar
  76. 76.
    Osborne CK. Tamoxifen in the treatment of breast cancer. N Engl J Med 1998; 339(22): 1609–18PubMedCrossRefGoogle Scholar
  77. 77.
    Wolf DM, Langan-Fahey SM, Parker CJ, et al. Investigation of the mechanism of tamoxifen-stimulated breast tumor growth with nonisomerizable analogues of tamoxifen and metabolites. J Natl Cancer Inst 1993; 85: 806–12PubMedCrossRefGoogle Scholar
  78. 78.
    Osborne CK, Jarman M, McCague R, et al. The importance of tamoxifen metabolism in tamoxifen-stimulated breast tumor growth. Cancer Chemother Pharmacol 1994; 34: 89–95PubMedCrossRefGoogle Scholar
  79. 79.
    Johnston SRD, Haynes BP, Smith IE, et al. Acquired tamoxifen resistance in human breast cancer and reduced intra-tumoral drug concentration. Lancet 1993; 342: 1521–2PubMedCrossRefGoogle Scholar
  80. 80.
    Dowsett M. Endocrine resistance in advanced breast cancer. Acta Oncol 1996; 35: 91–5PubMedCrossRefGoogle Scholar
  81. 81.
    Osborne CK, Coronado-Heinsohn EB, Hilsenbeck SG, et al. Comparison of the effects of a pure steroidal antiestrogen with those of tamoxifen in a model of human breast cancer. JNCI 1995; 87: 746–50PubMedCrossRefGoogle Scholar
  82. 82.
    Howell A, DeFriend D, Robertson J, et al. Response to a specific antioestrogen (ICI 182780) in tamoxifen-resistant breast cancer. Lancet 1995; 345: 29–30PubMedCrossRefGoogle Scholar
  83. 83.
    Sluyser M. Steroid/thyroid receptor-like proteins with oncogenic potential: a review. Cancer Res 1990; 50: 451–8PubMedGoogle Scholar
  84. 84.
    Karnik PS, Kulkarni S, Liu XP, et al. Estrogen receptor mutations in tamoxifen-resistant breast cancer. Cancer Res 1994; 54: 349–53PubMedGoogle Scholar
  85. 85.
    Roodi N, Bailey LR, Kao W-Y, et al. Estrogen receptor gene analysis in estrogen receptor-positive and receptor-negative primary breast cancer. JNCI 1995; 87: 446–51PubMedCrossRefGoogle Scholar
  86. 86.
    Catherino WH, Wolf DM, Jordan VC. A naturally occurring estrogen receptor mutation results in increased estrogenicity of a tamoxifen analog. Mol Endocrinol 1995; 9: 1053–63PubMedCrossRefGoogle Scholar
  87. 87.
    Fuqua SA, Fitzgerald SD, Chamness GC, et al. Variant human breast tumor estrogen receptor with constitutive transcriptional activity. Cancer Res 1991; 51(1): 105–9PubMedGoogle Scholar
  88. 88.
    Koehorst SGA, Jacobs HM, Thijssen JHH, et al. Wild type and alternatively spliced estrogen receptor messenger RNA in human meningioma tissue and MCF7 breast cancer cells. J Steroid Biochem Mol Biol 1993; 45: 227–33PubMedCrossRefGoogle Scholar
  89. 89.
    Murphy LC, Hilsenbeck SG, Dotzlaw H, et al. Relationship of clone 4 estrogen receptor variant messenger RNA expression to some known prognostic variables in human breast cancer. Clinical Cancer Res 1995; 1: 155–9Google Scholar
  90. 90.
    Daffada AAI, Johnston SRD, Smith IE, et al. Exon 5 deletion variant estrogen receptor messenger RNA expression in relation to tamoxifen resistance and progesterone receptor/pS2 status in human breast cancer. Cancer Res 1995; 55: 288–93PubMedGoogle Scholar
  91. 91.
    Dowsett M, Daffada A, Chan CM, et al. Oestrogen receptor mutants and variants in breast cancer. Eur J Cancer 1997; 33(8): 1177–83PubMedCrossRefGoogle Scholar
  92. 92.
    van Dijk MA, Hart AA, van’t Veer LJ. Differences in estrogen receptor alpha variant messenger RNAs between normal human breast tissue and primary breast carcinomas. Cancer Res 2000; 60(3): 530–3PubMedGoogle Scholar
  93. 93.
    Fuqua SA, Schiff R, Parra I, et al. Expression of wild-type estrogen receptor beta and variant isoforms in human breast cancer. Cancer Res 1999; 59(21): 5425–8PubMedGoogle Scholar
  94. 94.
    Leygue E, Dotzlaw H, Watson PH, et al. Expression of estrogen receptor beta1, beta2, and beta5 messenger RNAs in human breast tissue. Cancer Res 1999; 59(6): 1175–9PubMedGoogle Scholar
  95. 95.
    Cullen KJ, Smith HS, Hill S, et al. Growth factor messenger RNA expression by human breast fibroblasts from benign and malignant lesions. Cancer Res 1991; 51: 4978–85PubMedGoogle Scholar
  96. 96.
    Clarke R, Dickson RB, Lippman ME. Hormonal aspects of breast cancer. Growth factors, drugs and stromal interactions. Crit Rev Oncol Hematol 1992; 12: 1–23Google Scholar
  97. 97.
    Murphy LC. Antiestrogen action and growth factor regulation. Breast Cancer Res Treat 1994; 31: 61–71PubMedCrossRefGoogle Scholar
  98. 98.
    Dickson RB, Lippman ME. Growth factors in breast cancer. Endocr Rev 1995; 16: 559–89PubMedGoogle Scholar
  99. 99.
    De Cupis A, Favoni RE. Oestrogen growth factor cross-talk in breast carcinoma: a specific target for novel antioestrogens. Trends Pharmacol Sci 1997; 18: 245–51PubMedGoogle Scholar
  100. 100.
    Reiss M, Barcellos-Hoff MH. Transforming growth factor-β in breast cancer: a working hypothesis. Breast Cancer Res Treat 1997; 45: 81–95PubMedCrossRefGoogle Scholar
  101. 101.
    Dorssers LCJ, Van Agthoven T, Sieuwerts AM. Genetic mechanisms involved in progression to hormone independence of human breast cancer. In: Berns PMJJ, Romijn JC, Schroeder FH, editors. Mechanisms of progression to hormone-independent growth of breast and prostatic cancer. Carnforth: Parthenon Publishing Group, 1991: 169–82Google Scholar
  102. 102.
    Liang P, Averboukh L, Keyomarsi K, et al. Differential display and cloning of messenger RNAs from human breast cancer versus mammary epithelial cells. Cancer Res 1992; 52: 6966–8PubMedGoogle Scholar
  103. 103.
    Nacht M, Ferguson AT, Zhang W, et al. Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer. Cancer Res 1999; 59(21): 5464–70PubMedGoogle Scholar
  104. 104.
    Hilsenbeck SG, Friedrichs WE, Schiff R, et al. Statistical analysis of array expression data as applied to the problem of tamoxifen resistance. J Natl Cancer Inst 1999; 91(5): 453–9PubMedCrossRefGoogle Scholar
  105. 105.
    Perou CM, Jeffrey SS, van de Rijn M, et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci U S A 1999; 96(16): 9212–7PubMedCrossRefGoogle Scholar
  106. 106.
    Martin KJ, Kritzman BM, Price LM, et al. Linking gene expression patterns to therapeutic groups in breast cancer. Cancer Res 2000; 60(8): 2232–8PubMedGoogle Scholar
  107. 107.
    Kasid A, Lippman ME, Papageorge AE, et al. Transfection of v-RasH DNA into MCF-7 human breast cancer cells bypasses dependence on estrogen for tumorgenicity. Science 1985; 228: 725–8PubMedCrossRefGoogle Scholar
  108. 108.
    Cullen KJ, Lippman ME, Chow D, et al. Insulin-like growth factor-II overexpression in MCF-7 cells induces phenotypic changes associated with malignant progression. Mol Endocrinol 1992; 6: 91–100PubMedCrossRefGoogle Scholar
  109. 109.
    Van Agthoven T, Van Agthoven TLA, Portengen H, et al. Ectopic expression of epidermal growth factor receptors induces hormone independence in ZR-75-1 human breast cancer cells. Cancer Res 1992; 52: 5082–8PubMedGoogle Scholar
  110. 110.
    Benz CC, Scott GK, Sarup JC, et al. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat 1992; 24: 85–95PubMedCrossRefGoogle Scholar
  111. 111.
    Lupu R, Cardillo M, Cho C, et al. The significance of heregulin in breast cancer tumor progression and drug resistance. Breast Cancer Res Treat 1996; 38: 57–66PubMedCrossRefGoogle Scholar
  112. 112.
    Zhang LR, Kharbanda S, Chen D, et al. MCF-7 breast carcinoma cells overexpressing FGF-1 form vascularized, meta-static tumors in ovariectomized or tamoxifen-treated nude mice. Oncogene 1997; 15: 2093–108PubMedCrossRefGoogle Scholar
  113. 113.
    McLeskey SW, Kurebayashi J, Honig SF, et al. Fibroblast growth factor 4 transfection of MCF-7 cells produces cell lines that are tumorigenic and metastatic in ovariectomized or tamoxifen-treated athymic nude mice. Cancer Res 1993; 53: 2168–77PubMedGoogle Scholar
  114. 114.
    McLeskey SW, Tobias CA, Vezza PR, et al. Tumor growth of FGF or VEGF transfected MCF-7 breast carcinoma cells correlates with density of specific microvessels independent of the transfected angiogenic factor. Am J Pathol 1998; 153(6): 1993–2006PubMedCrossRefGoogle Scholar
  115. 115.
    Arteaga CL, Caerty-Dugger T, Moses HL, et al. Transforming growth factor β1 can induce estrogen-independent tumorigenicity of human breast cancer cells in athymic mice. Cell Growth Differ 1993; 4: 193–201PubMedGoogle Scholar
  116. 116.
    Musgrove EA, Lee CSL, Buckley MF, et al. Cyclin Dl induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci U S A 1994; 91: 8022–6PubMedCrossRefGoogle Scholar
  117. 117.
    El-Ashry D, Miller DL, Kharbanda S, et al. Constitutive Raf-1 kinase activity in breast cancer cells induces both estrogen-independent growth and apoptosis. Oncogene 1997; 15:423–35PubMedCrossRefGoogle Scholar
  118. 118.
    Surmacz E, Burgaud JL. Overexpression of insulin receptor substrate 1 (IRS-1) in the human breast cancer cell line MCF-7 induces loss of estrogen requirements for growth and transformation. Clin Cancer Res 1995; 1(11): 1429–36PubMedGoogle Scholar
  119. 119.
    Guvakova MA, Surmacz E. Overexpressed IGF-I receptors reduce estrogen growth requirements, enhance survival, and promote E-cadherin-mediated cell-cell adhesion in human breast cancer cells. Exp Cell Res 1997; 231(1): 149–62PubMedCrossRefGoogle Scholar
  120. 120.
    Tsai M-S, Bogart D, Lupu R. Expression of CYR61, a ligand for integrin αVβ3, modulates breast cancer progression. Proc Am Assoc Cancer Res 2000; 41: 72Google Scholar
  121. 121.
    Campbell RA, Patel NM, Ali S, et al. Constitutive activation of the serine/threonine kinase AKT confers tamoxifen resistance and hormonal autonomy in ERα positive breast cancer cells. Proc Am Assoc Cancer Res 2000; 41: 427Google Scholar
  122. 122.
    Van Agthoven T, Van Agthoven TLA, Dekker A, et al. Induction of estrogen independence of ZR-75-1 human breast cancer cells by epigenetic alterations. Mol Endocrinol 1994; 8: 1474–83PubMedCrossRefGoogle Scholar
  123. 123.
    Wright C, Nicholson S, Angus B, et al. Relationship between c-erbB-2 protein product expression and response to endocrine therapy in advanced breast cancer. Br J Cancer 1992; 65: 118–21PubMedCrossRefGoogle Scholar
  124. 124.
    Paik S, Hartmann DP, Dickson RB, et al. Antiestrogen resistance in ER positive breast cancer cells. Breast Cancer Res Treat 1994; 31: 301–7PubMedCrossRefGoogle Scholar
  125. 125.
    Toi M, Harris AL, Bicknell R. cDNA transfection followed by the isolation of a MCF-7 breast cell line resistant to tamoxifen in vitro and in vivo. Br J Cancer 1993; 68: 1088–96PubMedCrossRefGoogle Scholar
  126. 126.
    Dorssers LCJ, Van Agthoven T, Dekker A, et al. Induction of antiestrogen resistance in human breast cancer cells by random insertional mutagenesis using defective retroviruses: identification of bcar-1, a common integration site. Mol Endocrinol 1993; 7: 870–8PubMedCrossRefGoogle Scholar
  127. 127.
    Varmus H. Retroviruses. Science 1988; 240: 1427–35PubMedCrossRefGoogle Scholar
  128. 128.
    Kung HJ, Boerkoel C, Carter TH. Retroviral mutagenesis of cellular oncogenes: a review with insights into the mechanisms of insertional activation. Curr Top Microbiol Immunol 1991; 171: 1–25PubMedCrossRefGoogle Scholar
  129. 129.
    Jonkers J, Berns A. Retroviral insertional mutagenesis as a strategy to identify cancer genes. Biochim Biophys Acta Rev Cancer 1996; 1287: 29–57CrossRefGoogle Scholar
  130. 130.
    Dorssers LCJ, Veldscholte J. Identification of a novel breast-cancer-anti-estrogen-resistance (BCAR2) locus by cell-fusion-mediated gene transfer in human breast-cancer cells. Int J Cancer 1997; 72: 700–5PubMedCrossRefGoogle Scholar
  131. 131.
    Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA 1. Science 1994; 266: 66–71PubMedCrossRefGoogle Scholar
  132. 132.
    Wooster R, Bignell G, Lancaster J, et al. Identification of the breast cancer susceptibility gene BRCA 2. Nature 1995; 378: 789–92PubMedCrossRefGoogle Scholar
  133. 133.
    Brinkman A, Van der Flier S, Kok EM, et al. BCAR1, a human homologue of the adapter protein p130Cas and antiestrogen resistance in breast cancer cells. J Natl Cancer Inst 2000; 92: 112–20PubMedCrossRefGoogle Scholar
  134. 134.
    Sakai R, Iwamatsu A, Hirano N, et al. A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation-dependent manner. EMBO J 1994; 13:3748–56PubMedGoogle Scholar
  135. 135.
    Manié SN, Beck ARP, Astier A, et al. Involvement of p130Cas and p105HEF1, a novel Cas-like docking protein, in a cytoskeleton-dependent signaling pathway initiated by ligation of integrin or antigen receptor on human B cells. J Biol Chem 1997; 272: 4230–6PubMedCrossRefGoogle Scholar
  136. 136.
    O’Neill GM, Fashena SJ, Golemis EA. Integrin signalling: a new cas(t) of characters enters the stage. Trends Cell Biol 2000; 10(3): 111–9PubMedCrossRefGoogle Scholar
  137. 137.
    Van Agthoven T, Van Agthoven TLA, Dekker A, et al. Identification of BCAR3 by a random search for genes involved in antiestrogen resistance of human breast cancer cells. EMBO J 1998; 17: 2799–808PubMedCrossRefGoogle Scholar
  138. 138.
    Van der Flier S, Brinkman A, Look MP, et al. Bcar1/p130Cas protein and primary breast cancer: prognosis and response to tamoxifen treatment. J Natl Cancer Inst 2000; 92: 120–7PubMedCrossRefGoogle Scholar
  139. 139.
    Van der Flier S, Chan CMW, Brinkman A, et al. BCAR1/p130Cas expression in untreated and acquired tamoxifen-resistant human breast carcinomas. Int J Cancer 2000; 85(5): 465–8CrossRefGoogle Scholar
  140. 140.
    Chepko G, Smith GH. Mammary epithelial stem cells: our current understanding. J Mammary Gland Biol Neoplasia 1999; 4(1): 35–52PubMedCrossRefGoogle Scholar
  141. 141.
    Chepko G, Smith GH. Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue Cell 1997; 29(2): 239–53PubMedCrossRefGoogle Scholar
  142. 142.
    Russo J, Ao X, Grill C, et al. Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res Treat 1999; 53(3): 217–27PubMedCrossRefGoogle Scholar
  143. 143.
    Tot T. The cytokeratin profile of medullary carcinoma of the breast. Histopathology 2000; 37(2): 175–81PubMedCrossRefGoogle Scholar
  144. 144.
    Shyamala G, Yang X, Cardiff RD, et al. Impact of progesterone receptor on cell-fate decisions during mammary gland development. Proc Natl Acad Sci U S A 2000; 97(7): 3044–9PubMedCrossRefGoogle Scholar
  145. 145.
    Lakhani SR. The transition from hyperplasia to invasive carcinoma of the breast. J Pathol 1999; 187(3): 272–8PubMedCrossRefGoogle Scholar
  146. 146.
    Van Agthoven T, Timmermans M, Foekens JA, et al. Differential expression of estrogen, progesterone, and epidermal growth factor receptors in normal, benign, and malignant human breast tissues using dual staining immunohistochemistry. Am J Pathol 1994; 144: 1238–46PubMedGoogle Scholar
  147. 147.
    Sharma AK, Horgan K, Douglas-Jones A, et al. Dual immuno-cytochemical analysis of oestrogen and epidermal growth factor receptors in human breast cancer. Br J Cancer 1994; 69: 1032–7PubMedCrossRefGoogle Scholar
  148. 148.
    Clarke RB, Howell A, Potten CS, et al. Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 1997; 57: 4987–91PubMedGoogle Scholar
  149. 149.
    Shoker BS, Jarvis C, Sibson DR, et al. Oestrogen receptor expression in the normal and pre-cancerous breast. J Pathol 1999; 188(3): 237–44PubMedCrossRefGoogle Scholar
  150. 150.
    Shoker BS, Jarvis C, Clarke RB, et al. Estrogen receptor-positive proliferating cells in the normal and precancerous breast. Am J Pathol 1999; 155(6): 1811–5PubMedCrossRefGoogle Scholar
  151. 151.
    Anderson TJ. Pathological studies of apoptosis in the normal breast. EndocrRelat Cancer 1999; 6(1): 9–12CrossRefGoogle Scholar
  152. 152.
    Ellis PA, Saccani-Jotti G, Clarke R, et al. Induction of apoptosis by tamoxifen and ICI 182780 in primary breast cancer. Int J Cancer 1997; 72: 608–13PubMedCrossRefGoogle Scholar
  153. 153.
    Dowsett M, Archer C, Assersohn L, et al. Clinical studies of apoptosis and proliferation in breast cancer. Endocr Relat Cancer 1999; 6(1): 25–8PubMedCrossRefGoogle Scholar
  154. 154.
    Kuukasjärvi T, Kononen J, Helin H, et al. Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol 1996; 14: 2584–9PubMedGoogle Scholar
  155. 155.
    Spataro V, Goldhirsch A. Breast cancer: relevance of estrogen receptor determination at relapse. J Clin Oncol 1997; 15: 862PubMedGoogle Scholar
  156. 156.
    Duggan DJ, Bittner M, Chen Y, et al. Expression profiling using cDNA microarrays. Nat Genet 1999; 21 Suppl. 1: 10–4PubMedCrossRefGoogle Scholar
  157. 157.
    Brown PO, Botstein D. Exploring the new world of the genome with DNA microarrays. Nat Genet 1999; 21 Suppl. 1: 33–7PubMedCrossRefGoogle Scholar
  158. 158.
    Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286(5439): 531–7PubMedCrossRefGoogle Scholar
  159. 159.
    Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403(6769): 503–11PubMedCrossRefGoogle Scholar
  160. 160.
    Bittner M, Meltzer P, Chen Y, et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 2000; 406(6795): 536–40PubMedCrossRefGoogle Scholar
  161. 161.
    Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000; 406(6797): 747–52PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2001

Authors and Affiliations

  • Lambert C. J. Dorssers
    • 1
  • Silvia van der Flier
    • 1
  • Arend Brinkman
    • 1
  • Ton van Agthoven
    • 1
  • Jos Veldscholte
    • 1
  • Els M. J. J. Berns
    • 2
  • Jan G. M. Klijn
    • 2
  • Louk V. A. M. Beex
    • 3
  • John A. Foekens
    • 2
  1. 1.Department of Pathology, Division of Molecular Biology, Josephine Nefkens Institute, Room Be432University Hospital RotterdamRotterdamThe Netherlands
  2. 2.Department of Medical Oncology, Division of Endocrine Oncology, Josephine Nefkens InstituteUniversity Hospital RotterdamRotterdamThe Netherlands
  3. 3.Medical OncologyUniversity Hospital NijmegenNijmegenThe Netherlands

Personalised recommendations