Skip to main content
Log in

Emerging Strategies in Infectious Diseases

New Carbapenem and Trinem Antibacterial Agents

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

β-Lactam antibiotics represent the most commonly prescribed antibacterial agents. New β-lactams have been introduced continuously as many bacteria have developed resistance to older agents. In the late 1970s, a new class of exceptionally broad spectrum β-lactams, the carbapenems, was identified. Despite being a very potent compound, the antibacterial activity of the first carbapenem, imipenem, was compromised because of hydrolysis by the renal dehydropeptidase enzyme (DHP-1), and it is now coadministered with a potent competitive inhibitor of the DHP-1 enzyme, cilastin. Molecular modifications in the carbapenem nucleus were able to increase stability to DHP-1 and retain the antibacterial activity. However, some important pathogenic bacteria were found to be resistant to this new class of agents. In addition, other clinically important Gram-negative species, such as Pseudomonas aeruginosa, developed resistance mainly by the production of potent β-lactamases and reduced permeability of the outer membrane. Since the discovery of imipenem/cilastatin, a great number of carbapenems have been developed, and a few of them have been marketed. Stability to hydrolysis by DHP-1 and decrease in toxicity were achieved by meropenem and biapenem. However, only a slight increase in the antibacterial potency and spectrum has been accomplished with either the new marketed or experimental parenteral compounds. In addition, compounds that can be administered orally, such as the carbapenens faropenem, CS-834 and MK-826, and the trinem sanfetrinem, have been developed. However, when compared with the parenterally administered compounds, the oral agents seem to lose some in vitro antibacterial activity, especially against P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I

Similar content being viewed by others

References

  1. Livermore DM, Williams DJ. β-lactams: mode of action and mechanism of bacterial resistance. In: Lorian V, editor. Antibiotics in laboratory medicine. Baltimore: Williams & Wilkins, 1996: 502–78

    Google Scholar 

  2. Jacoby GA, Archer GL. New mechanisms of bacterial resistance to antimcrobial agents. N Engl J Med 1991; 324: 601–12

    Article  PubMed  CAS  Google Scholar 

  3. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995; 39: 1211–33

    Article  PubMed  CAS  Google Scholar 

  4. Philippon A, Labia R, Jacoby GA. Extended-spectrum β-lactamases. Antimicrob Agents Chemother 1989; 33: 1131–6

    Article  PubMed  CAS  Google Scholar 

  5. Jones RN. Important and emerging beta-lactamase-mediated resistances in hospital-based pathogens: the Amp C enzymes. Diagn Microbiol Infect Dis 1998 Jul; 31: 461–6

    Article  PubMed  CAS  Google Scholar 

  6. Kahan FM, Kropp H, Sundelof JG, et al. Thienamycin: development of imipenem-cilastatin. Antimicrob Agents Chemother 1983; 12D Suppl.: 1S–35S

    Google Scholar 

  7. Hikida M, Kawashima K, Yoshida M, et al. Inactivation of new carbapenem antibiotics by dehydropeptidase-I from porcine and human renal cortex. J Antimicrob Chemother 1992 Aug; 30: 129–34

    Article  PubMed  CAS  Google Scholar 

  8. Fink MP, Snydman DR, Niederman MS, et al. Treatment of severe pneumonia in hospitalized patients: results of a multi-center, randomized, double-blind trial comparing intravenous ciprofloxacin with imipenem-cilastatin. Antimicrob Agents Chemother 1994 Mar; 38: 547–57

    Article  PubMed  CAS  Google Scholar 

  9. Bradley JS, Garau J, Lode H, et al. Carbapenems in clinical practice: a guide to their use in serious infection. Int J Antimicrob Agents 1999; 11: 93–100

    Article  PubMed  CAS  Google Scholar 

  10. Coulton S, Hunt E. Recent Advances in the chemistry and biology of carbapenems antibiotics. In: Ellis GP, Lumskobe DK, editors. Progress in medicinal chemistry. Amsterdam, Elsevier Science BV, 1996: 99–145

    Google Scholar 

  11. Andrus A, Baker FA, Bouffard FA, et al. Structure-activity relationships among some totally synthetic carbapenems. In: Brown AG, Roberts SM, editors. Recent advances in the chemistry of β-lactams. London: The Royal Society of Chemistry, 1984: 86–99

    Google Scholar 

  12. Christensen BG. Structure activity relationships in beta-lactam antibiotics. In: Salton MEJ, Schockman GD, editors. Betalactam antibiotics. Mode of action, new development, and future prospects. London: Academic Press, 1981: 101–25

    Google Scholar 

  13. Miyadera T, Sugimura Y, Hashimoto T, et al. Synthesis and in vitro activity of a new carbapenem, RS-533. J Antibiot 1983 Aug; 36: 1034–9

    Article  PubMed  CAS  Google Scholar 

  14. Edwards JR, Betts MJ. Carbapenems: the pinnacle of the β-lactam antibiotics or room for improvement. J Antimicrob Chemother 2000 Jan; 45: 1–4

    Article  PubMed  CAS  Google Scholar 

  15. Tanimura H, Ochiai M, Sugimoto Y, et al. Tissue concentration and clinical efficacy of panipenem/betamipron in surgical infections. Chemotherapy Tokyo 1991; 39: 585–95

    Google Scholar 

  16. Edwards JR, Turner PJ, Wannop C, et al. In vitro antibacterial activity of SM-7338, a carbapenem antibiotic with stability to dehydropeptidase. I. Antimicrob Agents Chemother 1989 Feb; 33: 215–22

    Article  CAS  Google Scholar 

  17. Ubukata K, Hikida M, Yoshida M, et al. In vitro activity of LJC10,627, a new carbapenem antibiotic with high stability to dehydropeptidase. I. Antimicrob Agents Chemother 1990 June; 34: 994–1000

    Article  CAS  Google Scholar 

  18. Petersen PJ, Jacobous NV, Weiss WJ, et al. In vitro and in vivo activity of LJC10,627, a new carbapenem antibiotic with stability to dehydropeptidase. I. Antimicrob Agents Chemother 1991 Jan; 35: 203–7

    Article  CAS  Google Scholar 

  19. Neu HC, Gu JW, Fang W, et al. In vitro activity and β-lactamase stability of LJC 10, 627. Antimicrob Agents Chemother 1992 Jul; 36: 1418–23

    Article  PubMed  CAS  Google Scholar 

  20. Malanoski GJ, Collins L, Wennersten C, et al. In vitro activity of biapenem against clinical isolates of Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother 1993 Sep; 37: 2009–16

    Article  PubMed  CAS  Google Scholar 

  21. Clarke AM, Zemcov SJV. Comparative in vitro activity of biapenem, a new carbapenem antibiotic. Eur J Clin Microbiol Infect Dis 1993; 12: 377–84

    Article  PubMed  CAS  Google Scholar 

  22. Catchopole CR, Wise R, Thornber D, et al. In vitro activity of L-627, a new carbapenem. Antimicrob Agents Chemother 1992 Sep; 36: 1928–34

    Article  Google Scholar 

  23. Sader HS, Jones RN. Antimicrobial activity of the new carbapenem biapenem compared to imipenem, meropenem, and other broad-spectrum beta-lactam drugs. Eur J Clin Microbiol Infect Dis 1993; 12: 384–91

    Article  PubMed  CAS  Google Scholar 

  24. Nord CE, Lahnborg G. Biapenem versus imipenem in the treatment of experimental intra-abdominal infections. J Chemother 1995 Feb; 7: 42–4

    PubMed  CAS  Google Scholar 

  25. Hikida M, Masukawa Y, Nishiki K, et al. Low neurotoxicity of LJC 10,627, a novel 1β-methyl carbapenem antibiotic: inhibition of γ-aminobutyric acidA, benzodiazepine, and glycine receptor binding in relation to lack of central nervous system toxicity in rats. Antimicrob Agents Chemother 1993 Feb; 37: 199–202

    Article  PubMed  CAS  Google Scholar 

  26. Hikida M, Kawashima K, Nishiki K, et al. Renal dehydropeptidase-I stability of LJC 10,627, a new carbapenem antibiotic. Antimicrob Agents Chemother 1992 Feb; 36: 481–3

    Article  PubMed  CAS  Google Scholar 

  27. Kozawa O, Uematsu T, Matsuno H, et al. Pharmacokinetics and safety of a new parenteral carbapenem antibiotic, biapenem (L-627), in elderly subjects. Antimicrob Agents Chemother 1998 Jun; 42: 1433–6

    PubMed  CAS  Google Scholar 

  28. Toynaga Y, Ishihara T, Tezuka T, et al. Pharmacokinetic and clinical studies on biapenem (L-627) in the pediatric field [in Japanese]. Jpn J Antibiot 1994 Dec; 47: 1691–705

    PubMed  CAS  Google Scholar 

  29. Brismar Bo, Åkerlund JE, Sjöstedt S, et al. Biapenem versus imipenem/cilastatin in the treatment of complicated intra-abdominal infections: report from a Swedish Study Group. Scand J Infect Dis 1996; 28: 507–12

    Article  PubMed  CAS  Google Scholar 

  30. Ohtake N, Okamoto O, Mitomo R, et al. lβ-methyl-2-(5-sustituted pyrrolidin-3-ylthio)carbapenems; 3. Synthesis and antibacterial activity of BO-2727 and its related compounds. J Antibiot 1997 Jul; 50: 598–613

    CAS  Google Scholar 

  31. Mori M, Hikida M, Nishihara T, et al. Comparative stability of carbapenem and penem antibiotics to human recombinant dehydropeptidase-I. J Antimicrob Chemother 1996; 37: 1034–6

    Article  PubMed  CAS  Google Scholar 

  32. Hashizume T, Nakamura K, Nakagawa S. Affinities of BO-2727 for bactericidal penicillin-binding proteins and morphological change of Gram-negative rods. J Antibiot 1997 Feb; 50: 139–42

    Article  PubMed  CAS  Google Scholar 

  33. Kato Y, Otsuki M, Nishino T. Antibacterial properties of BO-2727, a new carbapenem antibiotic. J Antimicrob Chemother 1997; 40: 195–203

    Article  PubMed  CAS  Google Scholar 

  34. Shibata K, Adachi Y, Kato E, et al. In vitro and in vivo evaluation of BO-2727 against imipenem- and/or meropenem-resistant Pseudomonas aeruginosa. J Antibiot 1997 Feb; 50: 135–8

    Article  PubMed  CAS  Google Scholar 

  35. Mikamo H, Kawazoe K, Izumi K, et al. In vitro and in vivo antibacterial of a new carbapenem BO-2727 for use in obstetrics and gynecology. Chemother 1998; 44: 12–6

    Article  CAS  Google Scholar 

  36. Miyauchi M, Endo R, Hisaoka M, et al. Synthesis and structure-activity relantionships of a novel oral carbapenem, CS-834. J Antibiot 1997 May; 50: 429–39

    Article  PubMed  CAS  Google Scholar 

  37. Miyauchi M, Kanno M, Kawamoto I. A novel oral carbapenem CS-834: chemical stability of pivaloyloxymethyl esters of carbapenems and cephalosporins in phosphate buffer solution. J Antibiot 1997 Sep; 50: 794–5

    Article  PubMed  CAS  Google Scholar 

  38. Holme E, Greter J, Jacobson CE, et al. Carnitine deficiency induced by pivampicillin and pivamecillinam therapy. Lancet 1989 Aug; 2: 469–73

    Article  PubMed  CAS  Google Scholar 

  39. Umemura K, Ikeda Y, Kondo K, et al. Safety and pharmacokinetics of CS-834, a new oral carbapenem antibiotic, in healthy volunteers. Antimicrob Agents Chemother 1997 Dec; 41: 2664–9

    PubMed  CAS  Google Scholar 

  40. Sakagawa E, Otsuki M, Ou T, et al. In-vitro and in-vivo antibacterial activities of CS-834, a new oral carbapenem. J Antimicrob Chemother 1998; 42: 427–37

    Article  PubMed  CAS  Google Scholar 

  41. Fukuoka T, Ohya S, Utsui Y, et al. In vitro and in vivo antibacterial activities of CS-834, a novel oral carbapenem. Antimicrob Agents Chemother 1997 Dec; 41: 2652–63

    PubMed  CAS  Google Scholar 

  42. Yamaguchi K, Domon H, Miyazaki S, et al. In vitro and in vivo antibacterial activities of CS-834, a new oral carbapenem. Antimicrob Agents Chemother 1998 Mar; 42: 555–63

    Article  PubMed  CAS  Google Scholar 

  43. Fukuoka T, Kawada H, Kitayama A, et al. Efficacy of CS-834 against experimental pneumonia caused by penicillin-susceptible and -resistant Streptococcus pneumoniae in mice. Antimicrob Agents Chemother 1998 Jan; 42: 23–7

    PubMed  CAS  Google Scholar 

  44. Gill CJ, Jackson JJ, Gerckens LS, et al. In vitro activity and pharmacokinetic evaluation of a novel long-acting carbapenem antibiotic, MK-826 (L-749, 345). Antimicrob Agents Chemother 1998 Aug; 42: 1996–2001

    PubMed  CAS  Google Scholar 

  45. Fuchs PC, Barry AL, Brown SD. In-vitro antimicrobial activity of a carbapenem, MK-0826 (L-749,345) and a provisional interpretative criteria for disc tests. J Antimicrob Chemother 1999; 43: 703–6

    Article  PubMed  CAS  Google Scholar 

  46. Odenholt I, Löwdin E, Cars O. In vitro pharmacodynamic studies of L-749,345 in comparison with imipenem and ceftriaxone against Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother 1998 Sep; 42: 2365–70

    PubMed  CAS  Google Scholar 

  47. Jacoby G, Han P, Tran J. Comparative in vitro activities of carbapenem L-749,345 and other antimicrobials against multiresistant Gram-negative clinical pathogens. Antimicrob Agents Chemother 1997 Aug; 41: 1830–1

    PubMed  CAS  Google Scholar 

  48. Kohler J, Dorso KL, Young K, et al. In vitro activities of the potent, broad-spectrum carbapenem MK-0826 (L-749,345) against broad-spectrum and extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Escherichia coli clinical isolates. Antimicrob Agents Chemother 1999 May; 43: 1170–6

    PubMed  CAS  Google Scholar 

  49. Sundelof JG, Hajdu R, Gill CJ, et al. Pharmacokinetics of L-749,345, a long-acting carbapenem antibiotic, in primates. Antimicrob Agents Chemother 1997 Aug; 41: 1743–8

    PubMed  CAS  Google Scholar 

  50. Majumdar A, Birk K, Blum RA, et al. Pharmacokinetics of L-749,345, a carbapenem antibiotic, in healthy male and female volunteers [abstract F130]. In: Abstracts of the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington (DC): American Society for Microbiology, 1996: 122

  51. Sturm A, Pachon-Diaz J, Bach M, et al. Phase IIA randomized, double-blind, multicenter study of MK-826 versus ceftriaxone sodium in the treatment of serious lower respiratory tract infections: a preliminary analysis [abstract]. Clin Infect Dis 1998 Oct; 27: 952

    Google Scholar 

  52. Kim SH, Kim WB, Lee MG. Stability, tissue metabolism, tissue distribution, and blood partition of DA-1131, a new carbapenem. Res Commun Mol Pathol Pharmacol Dec 1995; 90: 347–62

    CAS  Google Scholar 

  53. Kim SH, Kwon JW, Lee MG. Pharmacokinetics and tissue distribution of a new carbapenem, DA-1131, after intravenous administration to mice, rats, rabbits, and dogs. Biopharm Drug Dispos 1998; 19: 219–29

    Article  PubMed  CAS  Google Scholar 

  54. Kim SH, Kim WB, Lee MG. Effect of probenecid on the renal excretion mechanism of a new carbapenem, DA-1131, in rats and rabbits. Antimicrob Agents Chemother 1999 Jan; 43: 96–9

    PubMed  CAS  Google Scholar 

  55. Kim SH, Kim WB, Lee MG. Interspecies pharmacokinetic scaling of a new carbapenem, DA-1131, in mice, rats, rabbits, and dogs, and prediction of human pharmacokinetics. Biopharm Drug Dispos 1998; 19: 231–5

    Article  PubMed  CAS  Google Scholar 

  56. Tsuji M, Ishii Y, Ohno A, et al. In vitro and in vivo antibacterial activities of S-4661, a new carbapenm. Antimicrob Agents Chemother 1998 Jan; 42: 94–9

    PubMed  CAS  Google Scholar 

  57. Tanaka M, Hohmura M, Nishi T, et al. Antimicrobial activity of DU-6681a, a parent compound of novel oral carbapenem DZ-2640. Antimicrob Agents Chemother 1997 Jun; 41: 1260–8

    PubMed  CAS  Google Scholar 

  58. Ohba F, Nakamura-Kamijo M, Watanabe N, et al. In vitro and in vivo antibacterial activities of ER-35786, a new antipseudomonal carbapenem. Antimicrob Agents Chemother 1997 Feb; 41: 298–307

    PubMed  CAS  Google Scholar 

  59. Kohler T, Michea-Hamzehpour M, Epp SF, et al. Carbapenem activities against Pseudomonas aeruginosa: respective contributions of OprD and efflux systems. Antimicrob Agents Chemother 1999 Feb; 43: 424–7

    PubMed  CAS  Google Scholar 

  60. Yang Y, Testa RT, Bhachech N, et al. Biochemical characterization of novel tetrahydrofuranyl 1beta-methylcarbapenems: stability to hydrolysis by renal dehydropeptidases and bacterial beta-lactamases, binding to penicillin binding proteins, and permeability properties. Antimicrob Agents Chemother. 1999 Dec; 43: 2904–9

    PubMed  CAS  Google Scholar 

  61. Weiss WJ, Mikels SM, Petersen PJ, et al. In vivo activities of peptidic prodrugs of novel aminomethyl tetrahydrofuranyl-1 beta-methylcarbapenems. Antimicrob Agents Chemother 1999 Mar; 43: 460–4

    PubMed  CAS  Google Scholar 

  62. Matsumara N, Minami S, Mitsuhashi S. Antibacterial activity of T-5575, a novel 2-carboxypenam, and its stability to β-lactamase. J Antimicrob Chemother 1997; 39: 31–4

    Article  Google Scholar 

  63. Modugno ED, Erbetti I, Ferrari L, et al. In vitro activity of the tribactam GV129606 against Gram-positive, Gram-negative, and anaerobic bacteria. Antimicrob Agents Chemother 1994 Oct; 38: 2362–8

    Article  PubMed  Google Scholar 

  64. Johnson AP, Warner M, Speller DC. In-vitro activity of sanfetrinem against isolates of Streptococcus pneumoniae and Staphylococcus aureus. J Antimicrob Chemother 1998 Nov; 42: 643–6

    Article  PubMed  CAS  Google Scholar 

  65. Sifaoui F, Varon E, Kitzis MD, et al. In vitro activity of sanfetrinem and affinity for the penicillin-binding proteins of Streptococcus pneumoniae. Antimicrob Agents Chemother 1998 Jan; 42: 173–5

    PubMed  CAS  Google Scholar 

  66. Modugno ED, Broggio R, Erbetti I, et al. In vitro and in vivo antibacterial activities of GV 129606, a new broad-spectrum trinem. Antimicrob Agents Chemother 1997 Dec; 41: 2742–8

    PubMed  Google Scholar 

  67. Wise R, Andrews JM, Brenwald N. In vitro activity of the tricyclic β-lactam GV 104326. Antimicrob Agents Chemother 1996 May; 40: 1248–53

    PubMed  CAS  Google Scholar 

  68. Singh KV, Coque TM, Murray BE. In vitro activity of the trinem sanfetrinem (GV 104326) against gram-positive organisms. Antimicrob Agents Chemother 1996 Sep; 40: 2142–6

    PubMed  CAS  Google Scholar 

  69. Doern GV, Pierce G, Brueggemann AB. In vitro activity of sanfetrinem (GV104326), a new trinem antimicrobial agent, versus Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. Diagn Microbiol Infect Dis 1996 Sep; 26: 39–42

    Article  PubMed  CAS  Google Scholar 

  70. Andrews JM, Hadley N, Brenwald NP, et al. Susceptibility testing of fastidious organisms. J Antimicrob Chemother 1997 Mar; 39: 436–7

    Article  PubMed  CAS  Google Scholar 

  71. Spangler SK, Lin G, Jacobs MR, et al. Postantibiotic effect of sanfetrinem compared with those of six other agents against 12 penicillin-susceptible and -resistant pneumococci. Antimicrob Agents Chemother 1997 Oct; 41: 2173–6

    PubMed  CAS  Google Scholar 

  72. Spangler SK, Jacobs MR, Appelbaum PC. MIC and time-kill studies of antipneumococcal activity of GV 118819X (sanfetrinem) compared with those of other agents. Antimicrob Agents Chemother 1997 Jan; 41: 148–55

    PubMed  CAS  Google Scholar 

  73. Betriu C, Gomez M, Palau ML, et al. Activities of new antimicrobial agents (trovafloxacin, moxifloxacin, sanfetrinem, and quinupristin-dalfopristin) against Bacteroides fragilis group: comparison with the activities of 14 other agents. Antimicrob Agents Chemother 1999 Sep; 43: 2320–2

    PubMed  CAS  Google Scholar 

  74. Babini GS, Yuan M, Livermore DM. Interactions of beta-lactamases with sanfetrinem (GV 104326) compared to those with imipenem and with oral beta-lactams. Antimicrob Agents Chemother 1998 May; 42: 1168–75

    PubMed  CAS  Google Scholar 

  75. Chen HY, Livermore DM. Comparative activity of cefepime against chromosomal β-lactamase inducibility mutants of gram-negative bacteria. J Antimicrob Chemother 1993; 32 Suppl. B: 63–74

    Article  PubMed  Google Scholar 

  76. Tullio V, Palarchio AI, Bonino A, et al. Sub-MICs of sanfetrinem promote the interaction of human polymorphonuclear granulocytes with a multiply resistant strain of Klebsiella pneumoniae. J Antimicrob Chemother 1998 Aug; 42: 249–52

    Article  PubMed  Google Scholar 

  77. Cuffini AM, Tullio V, Bonino A, et al. Entry of sanfetrinem into human polymorphonuclear granulocytes and its cell-associated activity against intracellular, penicillin-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 1998 Jul; 42: 1745–50

    PubMed  CAS  Google Scholar 

  78. Tamura S, Miyazaki S, Tateda K, et al. In vivo antibacterial activities of sanfetrinem cilexetil, a new oral tricyclic antibiotic. Antimicrob Agents Chemother 1998 Jul; 42: 1858–61

    PubMed  CAS  Google Scholar 

  79. Efthymiopoulos CA, Capriati A, Barrington P, et al. Pharmacokinetics of GV 104326, a novel tribactam antibiotic, following single intravenous and oral (as its prodrug GV118819X) administration in man [abstract F82]. In: Abstracts of the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washinton, DC: American Society for Microbiology, 1994: 129

  80. Wise R, Andrews JM, Da Ros L, et al. A study to determine the pharmacokinetics and inflammatory fluid penetration of two doses of a solid formulation of the hexetil prodrug of a trinem, sanfetrinem (GV 104326). Antimicrob Agents Chemother 1997 Aug; 41: 1761–4

    PubMed  CAS  Google Scholar 

  81. Sader HS, Pfaller MA, Tenover FC, et al. Evaluation and characterization of multiresistant Enterococcus faecium from twelve U.S. medical centers. J Clin Microbiol 1994 Nov; 32: 2840–2

    PubMed  CAS  Google Scholar 

  82. Jones RN, Pfaller MA. Bacterial resistance: a worldwide problem. Diagn Microbiol Infect Dis 1998 Jun; 31: 379–88

    Article  PubMed  CAS  Google Scholar 

  83. Sader HS, Mendes CF, Pignatari AC, et al. Use of macrorestriction analysis to demonstration interhospital spread of multi-resistant Acinetobacter baumannii in São Paulo, Brazil. Clin Infect Dis 1996 Sep; 23: 631–4

    Article  PubMed  CAS  Google Scholar 

  84. Sader HS, Jones RN, Gales AC, et al. Antimicrobial susceptibility of patterns for pathogens isolated from patients in Latin American medical centers with a diagnosis of pneumonia: results from the SENTRY Antimicrobial Surveillance Program (1997). Diagn Microbiol Infect Dis 1998 Dec; 32: 289–301

    Article  PubMed  CAS  Google Scholar 

  85. Carmeli Y, Troillet N, Eliopoulos GM, et al. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother 1999 Jun; 43: 1379–82

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Ronald N. Jones for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélio S. Sader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sader, H.S., Gales, A.C. Emerging Strategies in Infectious Diseases. Drugs 61, 553–564 (2001). https://doi.org/10.2165/00003495-200161050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200161050-00001

Keywords

Navigation