, Volume 58, Issue 3, pp 391–396 | Cite as

Angiogenesis in Cardiovascular Disease

Current Status and Therapeutic Potential
  • Frank W. Sellke
  • Michael Simons
Leading Article


Therapeutic angiogenesis, in the form of growth factor protein administration or gene therapy, has emerged as a new method of treatment for patients with severe, inoperable coronary artery disease. Improved myocardial perfusion and function after the administration of angiogenic growth factors has been demonstrated in animal models of chronic myocardial ischaemia. Recently, preliminary clinical trials using growth factor proteins or genes encoding these angiogenic factors have demonstrated clinical and other objective evidence of relevant angiogenesis. Thus, therapeutic angiogenesis has the potential to extend treatment options to patients who are not optimal candidates for conventional methods of myocardial revascularisation.


Vascular Endothelial Growth Factor Adis International Limited Myocardial Perfusion Basic Fibroblast Growth Factor Therapeutic Angiogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schaper W, Ito WD. Molecular mechanisms of coronary collateral vessel growth. Circ Res 1996; 79: 911–9PubMedCrossRefGoogle Scholar
  2. 2.
    Hariawala M, Sellke FW. Angiogenesis and the heart: therapeutic implications. JRSM 1997; 90: 307–11Google Scholar
  3. 3.
    Ware JA, Simons M. Angiogenesis in ischemic heart disease. Nature Med 1997; 3(2): 158–64PubMedCrossRefGoogle Scholar
  4. 4.
    Fujita M, Ikemoto M, Kishishita M, et al. Elevated basic fibroblast growth factor in pericardial fluid of patients with unstable angina. Circulation 1996; 94(4): 610–13PubMedCrossRefGoogle Scholar
  5. 5.
    Sellke FW, Harrison DG. The coronary microcirculation and angiogenesis. In: Ware JA, Simons M, editors. Cardiac angiogenesis. New York: Oxford University Press, 1999Google Scholar
  6. 6.
    Li J, Brown LF, Hibberd MG, et al. VEGF, flk-1, flt-1 expression in a rat model myocardial infarction model of angiogenesis. Am J Physiol 1996; 270: H1803–11PubMedGoogle Scholar
  7. 7.
    Sellke FW, Wang SY, Stamler A, et al. Enhanced microvascular relaxations to VEGF and bFGF in chronically ischemic myocardium. Am J Physiol 1996; 271: H713–20PubMedGoogle Scholar
  8. 8.
    Klagsbrun M, D’More PA. Regulators of angiogenesis. Annu Rev Physiol 1991; 53: 217–39PubMedCrossRefGoogle Scholar
  9. 9.
    Ishikawa F, Miyazono K, Hellman U, et al. Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature 1989; 338: 557–62PubMedCrossRefGoogle Scholar
  10. 10.
    Harada K, Grossman W, Friedman M, et al. Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J Clin Invest 1994; 94: 623–30PubMedCrossRefGoogle Scholar
  11. 11.
    Sellke FW, Wang SY, Friedman M, et al. Basic FGF enhances endothelium—dependent relaxation of the collateral-perfused coronary microcirculation. Am J Physiol 1994; 267: H1303–11PubMedGoogle Scholar
  12. 12.
    Unger EF, Banai S, Shou M, et al. A model to assess interventions to improve collateral blood flow: continuous administration of agents into the left coronary artery in dogs. Cardiovasc Res 1993; 27: 785–91PubMedCrossRefGoogle Scholar
  13. 13.
    Lopez J, Edelman ER, Stamler A, et al. Angiogenic potential of perivascular delivery of aFGF in a porcine model of chronic myocardial ischemia. Am J Physiol 1998; 274: H930–6PubMedGoogle Scholar
  14. 14.
    Sellke FW, Li J, Stamler A, et al. Angiogenesis induced by acidic fibroblast growth factor as an alternative method of revascularization for chronic myocardial ischemia. Surgery 1996; 120: 182–8PubMedCrossRefGoogle Scholar
  15. 15.
    Lazarous DF, Scheinowitz M, Shou M, et al. Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation 1995; 91: 145–53PubMedCrossRefGoogle Scholar
  16. 16.
    Sellke FW, Tofukuji M, Laham RJ, et al. Comparison of VEGF delivery techniques on collateral-dependent microvascular reactivity. Microvasc Res 1998; 55: 175–8PubMedCrossRefGoogle Scholar
  17. 17.
    Laham RJ, Simons M, Tofukuji M, et al. Modulation of myocardial perfusion and vascular reactivity by pericardial basic fibroblast growth factor: insight into ischemia-induced reduction in endothelium-dependent relaxation. J Thorac Cardiovasc Surg 1998; 116: 1022–8PubMedCrossRefGoogle Scholar
  18. 18.
    Banai S, Jaklitsch MT, Shou M, et al. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 1994; 89(5): 2183–9PubMedCrossRefGoogle Scholar
  19. 19.
    Harada K, Friedman M, Lopez JJ, et al. Vascular endothelial growth factor administration in chronic myocardial ischemia. Am J Physiol 1996; 270: H1791–802PubMedGoogle Scholar
  20. 20.
    Giordiano FJ, Ping P, McKirnan S, et al. Intracoronary transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nature Med 1996; 2: 534–9CrossRefGoogle Scholar
  21. 21.
    Mack CA, Patel SR, Schwarz EA, et al. Biological bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121. J Thorac Cardiovasc Surg 1998; 115: 168–77PubMedCrossRefGoogle Scholar
  22. 22.
    Scorsin M, Hagege AA, Dolizy I, et al. Can cellular transplantation improve function in doxirubicin-induced heart failure? Circulation 1998; 98: II–151–156Google Scholar
  23. 23.
    Sayeed-Shah U, Mann MJ, Martin J. et al. Complete reversal of ischemic wall motion abnormalities by combined use of gene therapy with transmyocardial laser revascularization. J Thorac Cardiovasc Surg 1998; 116: 763–9PubMedCrossRefGoogle Scholar
  24. 24.
    Yamamoto N, Kohmoto T, Gu A, et al. Angiogenesis is enhanced in ischemic canine myocardium by transmyocardial laser revascularization. J Am Coll Cardiol 1998; 31(6): 1426–33PubMedCrossRefGoogle Scholar
  25. 25.
    Spanier T, Smith CR, Burkhoff D. Angiogenesis: a possible mechanism underlying the clinical benefits of transmyocardial laser revascularization. J Clin Laser Med Surg 1997; 15(6): 269–73PubMedGoogle Scholar
  26. 26.
    Isner JM, Pieczek A, Schainfeld R, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischemic limb. Lancet 1996; 348(9024): 370–74PubMedCrossRefGoogle Scholar
  27. 27.
    Losordo DW, Vale PR, Symes JF, et al. gene therpay for myocardial angiogenesis. Initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998; 98: 2800–4PubMedCrossRefGoogle Scholar
  28. 28.
    Schumacher B, Pecher P, von Specht B, et al. Induction of neoangiogenesis in ischemic myocardium by human growth factors. Circulation 1998; 97: 645–50PubMedCrossRefGoogle Scholar
  29. 29.
    Henry T, Rocha-Singh K, Isner J, et al. Results of intracoronary recombinant human vascular endothelial growth factor (rhVEGF) administration trial [abstract]. J Am Coll Cardiol 1998; 31 Suppl. 2A:65AGoogle Scholar
  30. 30.
    Sellke FW, Laham RJ, Edelman ER, et al. Therapeutic angiogenesis with basic fibroblast growth factor: technique and early results. Ann Thorac Surg 1998; 65: 1540–4PubMedCrossRefGoogle Scholar
  31. 31.
    Laham RJ, Sellke FW, Edelman ER, et al. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary artery bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation. In pressGoogle Scholar
  32. 32.
    Laham RJ, Garcia L, Baim, DS, et al. Therapeutic angiogenesis using basic fibroblast growth factor and vascular endothelial growth factor using various delivery strategies. Current Intervention Cardiology Reports. In pressGoogle Scholar
  33. 33.
    Semenza GL, Agani F, Iyer N, et al. Hypoxia-inducible factor 1: from molecular biology to cardiopulmonary physiology. Chest 1998; 114: 40S–5SPubMedCrossRefGoogle Scholar
  34. 34.
    Asahara T, Bauters C, Zheng LP, et al. Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 1995 1 Nov; 92 (9 Suppl.): II365–71PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 1999

Authors and Affiliations

  1. 1.Division of Cardiothoracic Surgery and Cardiovascular DivisionBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA

Personalised recommendations