Skip to main content
Log in

Epidemiology of Risk Factors for Hypertension

Implications for Prevention and Therapy

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

We review the present knowledge of risk factors for arterial hypertension. Both genetic and environmental factors as well as their interaction and biological plausibility are reviewed. Recent data confirm that the interaction of genetics with multiple environmental risk factors explains the high prevalence of hypertension in the industrialised countries. The most important modifiable environmental risk factors are high salt intake, alcohol intake, obesity and low physical activity.

The role of stress in the aetiology of high blood pressure is still under investigation, but recent clinical experimental and epidemiological data have shed light on how stress could be related to hypertension.

The implications for prevention and treatment are discussed both at the population and individual levels. The population approach involves a public health policy aiming at modification of the major risk factors. The individual approach involves nonpharmacological measures to prevent the development of hypertension and to treat high normal blood pressure and mild hypertension with no additional cardiovascular risk factors. Pharmacological treatment of hypertension in most individuals should use agents that have been proven to be effective in randomised controlled trials with ‘hard’ endpoints such as cardiovascular and cerebrovascular morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kannel WB, Schwartz MJ, McNamara PM. Blood pressure and risk of coronary heart disease: the Framingham study. Dis Chest 1969; 56: 43–52

    PubMed  CAS  Google Scholar 

  2. Selmer R. Blood pressure and twenty-year mortality in the city of Bergen, Norway. Am J Epidemiol 1992; 136: 428–40

    PubMed  CAS  Google Scholar 

  3. Kannel WB. Risk factors for atherosclerotic cardiovascular outcomes in different arterial territories. J Cardiovasc Risk 1994; 1: 333–9

    PubMed  CAS  Google Scholar 

  4. Neaton JD, Wentworth D, Multiple Risk Factor Intervention Trial Research Group. Serum cholesterol, blood pressure, cigarette smoking, and death from coronary heart disease: overall findings and differences by age for 316 099 white men. Arch Intern Med 1992; 152: 56–64

    PubMed  CAS  Google Scholar 

  5. Pekkanen J, Nissinen A, Puska P, et al. Risk factors and 25 year risk of coronary heart disease in a male population with a high incidence of the disease: the Finnish cohorts of the seven countries study. BMJ 1989; 299: 81–5

    PubMed  CAS  Google Scholar 

  6. Menotti A, Keys A, Kromhout D, et al. Twenty-five-year mortality from coronary heart disease and its prediction in five cohorts of middle-aged men in Finland, The Netherlands and Italy. Prev Med 1990; 19: 270–8

    PubMed  CAS  Google Scholar 

  7. Kornitzer M, Dramaix M, Beriot I, et al. Twenty-five-year mortality follow-up in the Belgian bank study. Cardiology 1993; 82: 153–71

    PubMed  CAS  Google Scholar 

  8. Collins R, Peto R, MacMahon S, et al. Blood pressure, stroke, and coronary heart disease. Part 2, short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. Lancet 1990; 335: 827–38

    PubMed  CAS  Google Scholar 

  9. Bots ML, Grobbee DE, Hofman A. High blood pressure in the elderly. Epidemiol Rev 1991; 13: 294–314

    PubMed  CAS  Google Scholar 

  10. Staessen J, Amery A, Fagard R. Isolated systolic hypertension in the elderly. J Hypertens 1990; 8: 393–405

    PubMed  CAS  Google Scholar 

  11. Amery A, Birkenhager W, Brisko P, et al. Mortality and morbidity results from the European Working Party on high blood pressure in the elderly trial. Lancet 1985; I: 1349–54

    Google Scholar 

  12. Dahlöf B, Lindholm LH, Hansson L, et al. Morbidity and mortality in the Swedish trial in old patients with hypertension (STOP-hypertension). Lancet 1991; 338: 1281–5

    PubMed  Google Scholar 

  13. SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. JAMA 1991; 265: 3255–64

    Google Scholar 

  14. MRC Working Party. Medical Research Council trial of treatment of hypertension in older adults: principal results. BMJ 1992; 304: 405–12

    Google Scholar 

  15. Staessen JA, Fagard R, Thijs L, et al., Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. Lancet 1997; 350: 757–64

    PubMed  CAS  Google Scholar 

  16. Vasan RS, Levy D. The role of hypertension in the pathogenesis of heart failure: a clinical mechanistic overview. Arch Intern Med 1996; 156: 1789–96

    PubMed  CAS  Google Scholar 

  17. De Henauw S, De Bacquer D, Fonteyne W, et al. Trends in the prevalence, detection, treatment and control of arterial hypertension in the Belgian adult population. J Hypertens 1998; 16: 277–84

    PubMed  Google Scholar 

  18. Burt VL, Whelton P, Roccella EJ, et al. Prevalence of hypertension in the US adult population: results from the Third National Health and Nutrition Examination Survey, 1988–1991. Hypertension 1995; 25: 305–13

    PubMed  CAS  Google Scholar 

  19. Kannel WB. Blood pressure as a cardiovascular risk factor: prevention and treatment. JAMA 1996; 275: 1571–6

    PubMed  CAS  Google Scholar 

  20. Joint National Committee. The sixth report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Arch Intern Med 1997; 157(21): 2413–46

    Google Scholar 

  21. Wolf HK, Tuomilehto J, Kuulasmaa K, et al. Blood pressure levels in the 41 populations of the WHO MONICA Project. J Hum Hypertens 1997; 11: 733–42

    PubMed  CAS  Google Scholar 

  22. Mancia G, Sega R, Milesi C, et al. Blood-pressure control in the hypertensive population. Lancet 1997; 349: 454–7

    PubMed  CAS  Google Scholar 

  23. EUROASPIRE Study Group. A European society of cardiology survey of secondary prevention of coronary heart disease: principal results. Eur Heart J 1997; 18: 1569–82

    Google Scholar 

  24. Gustafsson F, Kober L, Torp-Pedersen C, et al. Long-term prognosis after acute myocardial infarction in patients with a history of arterial hypertension. Eur Heart J 1998; 19: 588–94

    PubMed  CAS  Google Scholar 

  25. Flack JM, Neaton J, Grimm R, et al. Blood pressure and mortality among men with prior myocardial infarction. Circulation 1995; 92: 2437–45

    PubMed  CAS  Google Scholar 

  26. Jackson R, Barham P, Bills J, et al. The management of raised blood pressure in New Zealand. BMJ 1993; 307: 107–10

    PubMed  CAS  Google Scholar 

  27. Mancilha Carvalho JJ, Baruzzi RG, Howard PF, et al. Blood pressure in four remote populations in the Intersalt study. Hypertension 1989; 14: 238–46

    Google Scholar 

  28. Dallas Hall W, Ferrario CM, Moore MA, et al. Hypertension-related morbidity and mortality in the Southeastern United States. Am J Med Sci 1997; 313: 195–209

    Google Scholar 

  29. Kornitzer M, Bara L, BIRNH Study. Clinical and anthropometric data, blood chemistry and nutritional patterns in the Belgian population according to age and sex. Acta Cardiol 1989; 44: 101–44

    PubMed  CAS  Google Scholar 

  30. Luft FC, Miller JZ, Grim CE, et al. Salt sensitivity and resistance of blood pressure: age and race as factors in physiological responses. Hypertension 1991; 17 Suppl. I: I102–I108

    PubMed  CAS  Google Scholar 

  31. Dahl LK, Heine M, Tassinari L. Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature 1962; 194: 480–2

    PubMed  CAS  Google Scholar 

  32. Pickering G. Position paper: dietary sodium and human hypertension. Cardiovasc Rev Rep 1980; 1: 13–7

    Google Scholar 

  33. Dahl LK, Heine M, Tassinari L. Effects of chronic excess salt ingestion: evidence that genetic factors play an important role in susceptibility to experimental hypertension. J Exp Med 1962; 11 Suppl. II: 1173–90

    Google Scholar 

  34. Rapp JP, Wang SM, Dene H. A genetic polymorphism in the renin gene of Dahl rats cosegregates with blood pressure. Science 1989; 234: 542–4

    Google Scholar 

  35. Albrecht FE, Drago J, Felder RA, et al. Role of the D1A dopamine receptor in the pathogenesis of genetic hypertension. J Clin Invest 1996; 97: 2283–8

    PubMed  CAS  Google Scholar 

  36. Lifton RP, Dluhy RG, Powers M, et al. A chimaeric 11β-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 1992; 355: 262–5

    PubMed  CAS  Google Scholar 

  37. Stewart PM, Krozowski ZS, Gupta A, et al. Hypertension in the syndrome of apparent mineralocorticoid excess due to mutation of the 11β-hydroxysteroid dehydrogenase type 2 gene. Lancet 1996; 347: 88–91

    PubMed  CAS  Google Scholar 

  38. Wu D-A, Bu X, Warden CH, et al. Quantitative trait locus mapping of human blood pressure to a genetic region at or near the lipoprotein lipase gene locus on chromosome 8p 22. J Clin Invest 1996; 97: 2111–8

    PubMed  CAS  Google Scholar 

  39. Jeunemaitre X, Lifton RP, Hunt SC, et al. Absence of linkage between the angiotensin converting enzyme locus and human essential hypertension. Nature Genet 1992; 1: 72–5

    PubMed  CAS  Google Scholar 

  40. Caulfield M, Lavender P, Farrall M, et al. Linkage of the angiotensinogen gene to essential hypertension. N Engl J Med 1994; 330: 1629–33

    PubMed  CAS  Google Scholar 

  41. Hata A, Namikawa C, Sasaki M, et al. Angiotensinogen as a risk factor for essential hypertension in Japan. J Clin Invest 1994; 93: 1285–7

    PubMed  CAS  Google Scholar 

  42. Soubrier F, Jeunemaitre X, Rigat B, et al. Similar frequencies of renin gene restriction fragment length polymorphisms in hypertensive and normotensive subjects. Hypertension 1990; 16: 712–7

    PubMed  CAS  Google Scholar 

  43. Schunkert H, Hense HW, Holmer SR, et al. Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med 1994; 330: 1634–8

    PubMed  CAS  Google Scholar 

  44. Nunez DJR, Clifford CP, Al-Mahdawi S, et al. Hypertensive cardiac hypertrophy: is genetic variance the missing link? Br J Clin Pharmacol 1996; 42: 107–17

    PubMed  CAS  Google Scholar 

  45. Hamon M, Amant C, Bauters C, et al. Association of angiotensin converting enzyme and angiotensin II type 1 receptor genotypes with left ventricular function and mass in patients with angiographically normal coronary arteries. Heart 1997; 77: 502–5

    PubMed  CAS  Google Scholar 

  46. Narkewicz K, Chrostowska M, Kuchta G, et al. Genetic influences on insulinemia in normotensive twins. Am J Hypertens 1997; 10: 467–70

    Google Scholar 

  47. Bloem LJ, Manatunga AK, Pratt JH. Racial difference in the relationship of an angiotensin I-converting enzyme gene polymorphism to serum angiotensin I-converting enzyme activity. Hypertension 1996; 27: 62–6

    PubMed  CAS  Google Scholar 

  48. Barker D, Bull A, Osmond L, et al. Fetal and placental size and risk of hypertension in adult life. BMJ 1990; 301: 259–62

    PubMed  CAS  Google Scholar 

  49. Barker DJR The fetal origins of hypertension. J Hypertens 1996; 14 Suppl 5: S117–20

    CAS  Google Scholar 

  50. Law CM, de Swiet M, Osmond C, et al. Initiation of hypertension in utero and its amplification throughout life. BMJ 1993; 306: 24–7

    PubMed  CAS  Google Scholar 

  51. Godfrey K, Robinson S, Barker DJP, et al. Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ 1996; 312: 410–4

    PubMed  CAS  Google Scholar 

  52. Martyn CN, Barker DJP, Jespersone S, et al. Growth in utero, adult blood pressure, and arterial compliance. Br Heart J 1995; 73: 116–21

    PubMed  CAS  Google Scholar 

  53. Dahl LW. Salt and hypertension. Am J Clin Nutr 1972; 25: 231–44

    PubMed  CAS  Google Scholar 

  54. Denton D, Weiseinger R, Mundy NI, et al. The effect of increased salt intake on blood pressure of chimpanzees. Nature Med 1995; 10: 1009–16

    Google Scholar 

  55. Joossens JV. The riddle of cancer mortality [in Dutch]. Verh K Vlaam Acad Geneeskd Belg 1965; 27: 489–95

    PubMed  CAS  Google Scholar 

  56. Joossens JV. Stroke, stomach cancer and salt: a possible clue to the prevention of hypertension. In:Kesteloot H, Joossens JV, editors. Epidemiology of arterial blood pressure. The Hague: Nijhoff, 1980: 489–508

    Google Scholar 

  57. Joossens JV, Geboers J. Nutrition and gastric cancer. Nutr Cancer 1981; 2: 250–61

    PubMed  CAS  Google Scholar 

  58. Joossens JV, Geboers J. Salt and hypertension. Prev Med 1983; 12: 53–9

    PubMed  CAS  Google Scholar 

  59. Intersalt Cooperative Research Group. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion.BMJ 1988; 297: 319–28

    Google Scholar 

  60. Stamler J, Rose G, Stamler R, et al. INTERSALT study findings: public health and medical care implications. Hypertension 1989; 14: 570–7

    PubMed  CAS  Google Scholar 

  61. Elliott P, Dyer A, Stamler R, INTERSALT Co-operative Research Group. The INTERSALT study: results of 24 hour sodium and potassium, by age and sex. J Human Hypertens 1989; 3: 323–30

    CAS  Google Scholar 

  62. Smith WCS, Crombie IK, Tavendale RT, et al. Urinary electrolyte excretion, alcohol consumption, and blood pressure in the Scottish heart health study. BMJ 1988; 297: 329–30

    PubMed  CAS  Google Scholar 

  63. Law MR, Frost CD, Wald NJ. By how much does dietary salt reduction lower blood pressure? I: analysis of observational data among populations. BMJ 1991; 302: 811–5

    PubMed  CAS  Google Scholar 

  64. Frost CD, Law MR, Wald NJ. By how much does dietary salt reduction lower blood pressure? II: analysis of observational data within populations. BMJ 1991; 302: 815–8

    PubMed  CAS  Google Scholar 

  65. Guyatt GH, Sackett DL, Sinclair JC, et al. Users’ guides to the medical literature: a method for grading health care recommendations. JAMA 1995; 274: 1800–4

    PubMed  CAS  Google Scholar 

  66. Law MR, Frost CD, Wald NJ. By how much does dietary salt reduction lower blood pressure? III: analysis of data from trials of salt reduction. BMJ 1991; 302: 819–24

    PubMed  CAS  Google Scholar 

  67. Cutler JA, Follmann D, Allender PS. Randomized trials of sodium reduction: an overview. Am J Clin Nutr 1997; 65 Suppl.: 643S–51S

    PubMed  CAS  Google Scholar 

  68. Midgley JP, Matthew AG, Greenwood CM, et al. Effect of reduced dietary sodium on blood pressure: a meta-analysis of randomized controlled trials. JAMA 1996; 275: 1590–7

    PubMed  CAS  Google Scholar 

  69. Graudal NA, Galloe AM, Garred P. Effects of sodium restriction on blood pressure, renin, aldosterone, catecholamines, cholesterols, and triglyceride: a meta-analysis. JAMA 1998; 279: 1383–91

    PubMed  CAS  Google Scholar 

  70. Hofman A, Hazebroek A, Hans A, et al. A randomized trial of sodium intake and blood pressure in newborn infants. JAMA 1983; 250: 370–3

    PubMed  CAS  Google Scholar 

  71. Geleijnse JM, Hofman A, Witteman JC, et al. Long-term effects of neonatal sodium restriction on blood pressure. Hypertension 1997; 29: 913–7

    PubMed  CAS  Google Scholar 

  72. Whelton PK, Appel LJ, Espeland MA, et al. Sodium reduction and weight loss in the treatment of hypertension in older persons: a randomized controlled trial of nonpharmacologic interventions in the elderly (TONE). JAMA 1998; 279: 839–46

    PubMed  CAS  Google Scholar 

  73. Wilson DK, Bayer L, Sica DA. Variability in salt sensitivity classifications in black male versus female adolescents. Hypertension 1996; 28: 250–5

    PubMed  CAS  Google Scholar 

  74. Weinberger MH. Salt sensitivity of blood pressure in humans. Hypertension 1996; 27(2): 481–90

    PubMed  CAS  Google Scholar 

  75. Koolen MI, Van Brummelen P. Adrenergic activity and peripheral hemodynamics in relation to sodium sensitivity in patients with essential hypertension. Hypertension 1984; 6: 820–5

    PubMed  CAS  Google Scholar 

  76. Gudmundsson O, Herlitz H, Jonsson O, et al. Blood pressure and intra-erythrocyte sodium during normal and high salt intake in middle-aged men: relationship to family history of hypertension, and neurogenic and hormonal variables. Clin Sci 1984; 66: 427–33

    PubMed  CAS  Google Scholar 

  77. Falkner B, Kushner H. Interaction of sodium sensitivity and stress in young adults. Hypertension 1991; 17 Suppl.I I162–5

    PubMed  CAS  Google Scholar 

  78. Staessen JA, Poulter NR, Fletcher AE, et al. Psycho-emotional stress and salt intake may interact to raise blood pressure. J Cardiovasc Risk 1994; 1: 45–51

    PubMed  CAS  Google Scholar 

  79. Bigazzi R, Bianchi S, Baldari G, et al. Clustering of cardiovascular risk factors in salt-sensitive patients with essential hypertension: role of insulin. Am J Hypertens 1995; 9: 24–32

    Google Scholar 

  80. Devine A, Criddle RA, Dick IM, et al. A longitudinal study of the effect of sodium and calcium intakes on regional bone density in postmenopausal women. Am J Clin Nutr 1995; 62: 740–5

    PubMed  CAS  Google Scholar 

  81. Messerli FH, Schmieder RE, Weir MR. Salt: a perpetrator of hypertensive target organ disease? Arch Intern Med 1997; 157: 2449–52

    PubMed  CAS  Google Scholar 

  82. Eliott P, Stamler J, Nichols R, et al., Intersalt Cooperative Research Group. Intersalt revisited: further analyses of 24 hour sodium excretion and blood pressure within and across populations. BMJ 1996; 312: 1249–53

    Google Scholar 

  83. Macnair A. Conclusions drawn in paper ‘revisiting’ Intersalt data are of questionable validity [letter]. BMJ 1997; 315: 485

    PubMed  CAS  Google Scholar 

  84. Davey Smith G, Phillips AN. Correction for regression dilution bias in Intersalt study was misleading [letter]. BMJ 1997; 315: 485–6

    PubMed  CAS  Google Scholar 

  85. Elliott P, Stamler J, Dyer AR, et al. Reply for Intersalt Steering and Editorial Committee [letter]. BMJ 1997; 315: 487

    Google Scholar 

  86. Swales JD. Dietary salt and blood pressure: the role of meta-analyses. J Hypertens 1991; 9 Suppl.: S42–6, discussion S47-9

    CAS  Google Scholar 

  87. Vitello MV, Prinz PN, Halter JB. Sodium-restricted diet increases nighttime plasma norepinephrine and impairs sleep patterns in man. J Clin Endocrinol Metab 1983; 56: 553–6

    Google Scholar 

  88. Kumanyika SK, Cutler JA. Dietary sodium reduction: is there cause for concern? J Am Coll Nutr 1997; 16: 192–203

    PubMed  CAS  Google Scholar 

  89. Coca A, De la Sierra A. Salt sensitivity and left ventricular hypertrophy. In: Zanchetti A, et al., editors. Hypertension and the heart. New York: Plenum Press, 1997: 91–101

    Google Scholar 

  90. Watt G, Tudor Hart J. Slow decremental change in dietary sodium load in whole populations is needed. BMJ 1997; 315: 486

    PubMed  CAS  Google Scholar 

  91. Staessen JA, Lijnen P, Thijs L, et al. Salt and blood pressure in community-based intervention trials. Am J Clin Nutr 1997; 65 Suppl.: 661S–70S

    PubMed  CAS  Google Scholar 

  92. Taubus G. The (political) science of salt. Science 1998; 281: 898–907

    Google Scholar 

  93. Frisancho AR, Leonard WR, Bollettino LA. Blood pressure in blacks and whites and its relationship to dietary sodium and potassium intake. J Chronic Dis 1984; 37: 515–9

    PubMed  CAS  Google Scholar 

  94. Stamler J, Caggiula AW, Grandits GA. Relation of body mass and alcohol, nutrients, fiber, and caffeine intakes to blood pressure in the special intervention and usual care groups in the multiple risk factor intervention trial. Am J Clin Nutr 1997; 65 Suppl.: 338S–65S

    PubMed  CAS  Google Scholar 

  95. Ascherio A, Hennekens C, Willett WC, et al. Prospective study of nutritional factors, blood pressure, and hypertension among US women. Hypertension 1996; 27: 1065–72

    PubMed  CAS  Google Scholar 

  96. Sacks FM, Willett WC, Smith A, et al. Effect on blood pressure of potassium, calcium, and magnesium in women with low habitual intake. Hypertension 1998; 31: 131–8

    PubMed  CAS  Google Scholar 

  97. Appel LJ, Moore TJ, Obarzanek E, et al. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med 1997; 336: 1117–24

    PubMed  CAS  Google Scholar 

  98. Whelton PK, He J, Cutler JA, et al. Effects of oral potassium on blood pressure: meta-analysis of randomized controlled clinical trials. JAMA 1997; 277: 1624–32

    PubMed  CAS  Google Scholar 

  99. Allender PS, Cutler JA, Follmann D, et al. Dietary calcium and blood pressure: a meta-analysis of randomized clinical trials. Ann Intern Med 1996; 124: 825–31

    PubMed  CAS  Google Scholar 

  100. Obarzanek E, Velletri PA, Cutler JA. Dietary protein and blood pressure. JAMA 1996; 275: 1598–603

    PubMed  CAS  Google Scholar 

  101. Margetts BM, Beilin LJ, Vandongen R, et al. A randomized controlled trial of the effect of dietary fibre on blood pressure. Clin Sci 1987; 72: 343–50

    PubMed  CAS  Google Scholar 

  102. MacMahon S. Alcohol consumption and hypertension. Hypertension 1987; 9: 111–21

    PubMed  CAS  Google Scholar 

  103. Beilin LJ, Puddey IB. Alcohol, hypertension and cardiovascular disease: implications for management. Clin Exp Hypertens 1993; 15: 1157–70

    PubMed  CAS  Google Scholar 

  104. Fortmann SP, Haskell WL, Vranizan K, et al. The association of blood pressure and dietary alcohol: differences by age, sex and estrogen use. Am J Epidemiol 1983; 118: 497–507

    PubMed  CAS  Google Scholar 

  105. Puddey IB, Beilin JL, Vandongen R. Regular alcohol use raises blood pressure in treated hypertensive subjects. Lancet 1987; I: 647–51

    Google Scholar 

  106. Cox KL, Puddey IB, Morton AR, et al. The combined effects of aerobic exercise and alcohol restriction on blood pressure and serum lipids: a two-way factorial study in sedentary men. J Hypertens 1993; 11(2): 191–201

    PubMed  CAS  Google Scholar 

  107. Eisenhofer G, Lambie DG, Johnson RH. Effects of ethanol on plasma catecholamines and norepinephrine clearance. Clin Pharmacol Ther 1983; 34(2): 143–7

    PubMed  CAS  Google Scholar 

  108. Criqui MH. Alcohol and hypertension: new insights from population studies. Eur Heart J 1987; 8 Suppl. B: 19–26

    PubMed  Google Scholar 

  109. Coca A, Aguilera MT, De-la-Sierra A, et al. Chronic alcohol intake induces reversible disturbances on cellular Na+ metabolism in humans: its relationship with changes in blood pressure. Alcohol Clin Exp Res 1992; 16: 714–20

    PubMed  CAS  Google Scholar 

  110. Ishizaki M, Teraoka K, Tsuritani I, et al. Erythrocyte Na+/K+-ATPase and membrane and serum lipid profiles as related to alcohol, body mass index and blood pressure. Clin Exp Hypertens 1994; 16(6): 741–59

    PubMed  CAS  Google Scholar 

  111. Kojima S, Kawano Y, Abe H, et al. Acute effects of alcohol ingestion on blood pressure and erythrocyte sodium concentration. J Hypertens 1993; 11: 185–90

    PubMed  CAS  Google Scholar 

  112. Boden G, Chen X, De Santis RA, et al. Ethanol inhibits insulin action on lipolysis and on insulin release in elderly men. Am J Physiol 1993; 265: E197–E202

    PubMed  CAS  Google Scholar 

  113. Knip M, Ekman AC, Ekman M, et al. Ethanol induces a paradoxical simultaneous increase in circulating concentrations of insulin-like growth factor binding protein-1 and insulin. Metabolism 1995; 44: 1356–9

    PubMed  CAS  Google Scholar 

  114. Klatsky AL. Alcohol, coronary disease, and hypertension. Annu Rev Med 1996; 47: 149–60

    PubMed  CAS  Google Scholar 

  115. Beilin LJ, Puddey IB, Burke V. Alcohol and hypertension: kill or cure? J Hum Hypertens 1996; 10 Suppl. 2: Sl–5

    Google Scholar 

  116. Frezza M, Di Padova C, Pozzato G, et al. High blood alcohol levels in women. The role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism. N Engl J Med 1990; 322: 95–9

    PubMed  CAS  Google Scholar 

  117. Kannel WB, Brand N, Skinner JJ, et al. The relation of adiposity to blood pressure and development of hypertension: the Framingham study. Ann Intern Med 1967; 67: 48–59

    PubMed  CAS  Google Scholar 

  118. Acheson RM, Fowler GB. On the inheritance of stature and blood pressure. J Chronic Dis 1967; 20: 731–45

    Google Scholar 

  119. Stamler J, Rhomberg P, Schoenberger JA, et al. Multivariate analysis of the relationship of seven variables to blood pressure: findings of the Chicago Heart Association detection project in industry. J Chronic Dis 1975; 28: 527–48

    PubMed  CAS  Google Scholar 

  120. Dyer AR, Elliott P,INTERSALT Co-operative Research Group. The INTERSALT study: relations of body mass index to blood pressure. J Hum Hypertens 1989; 3: 299–308

    PubMed  CAS  Google Scholar 

  121. Puddey IB, Parker M, Beilin LJ, et al. Effects of alcohol and caloric restrictions on blood pressure and serum lipids in overweight men. Hypertension 1992; 20: 533–41

    PubMed  CAS  Google Scholar 

  122. Trials of Hypertension Prevention Collaborative Research Group. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. Arch Intern Med 1997; 157: 657–67

    Google Scholar 

  123. Reaven GM, Lithell H, Landsberg L. Hypertension and associated metabolic abnormalities: the role of insulin resistance and the sympathoadrenal system. N Engl J Med 1996; 334: 374–81

    PubMed  CAS  Google Scholar 

  124. Galvan AQ, Haffner SM, Ferrannini E. Diabetes and hypertension: the scope of the problem. Blood Press 1996; 5 Suppl. 1: 7–9

    Google Scholar 

  125. Holmäng A, Yoshida N, Jennische E, et al. The effects of hyperinsulinaemia on myocardial mass, blood pressure regulation and central haemodynamics in rats. Eur J Clin Invest 1996; 26: 973–8

    PubMed  Google Scholar 

  126. Bursztyn M. Does insulin have a role in hypertension? Blood Press 1996; 5 Suppl. 1: 64–6

    Google Scholar 

  127. Sechi LA, Bartoli E. Mechanisms of insulin resistance leading to hypertension: what we can learn from experimental models. J Invest Med 1997; 45: 238–51

    CAS  Google Scholar 

  128. Sharma AM, Schorr U. Salt sensitivity and insulin resistance: is there a link? Blood Press 1996; 5 Suppl. 1: 59–63

    Google Scholar 

  129. Julius S, Jamerson K. Sympathetics, insulin resistance and coronary risk in hypertension: the ‘chicken-and-egg’ question. J Hypertens 1994; 12: 495–502

    PubMed  CAS  Google Scholar 

  130. Lembo G, Vecchione C, Iaccarino G, et al. The crosstalk between insulin and the sympathetic nervous system: possible implications in the pathogenesis of essential hypertension. Blood Press 1996; 5 Suppl. 1: 38–42

    Google Scholar 

  131. Yarnell JWG, Patterson CC, Bainton D, et al. Is metabolic syndrome a discrete entity in the general population? Evidence from the Caerphilly and Speedwell population studies. Heart 1998; 79: 248–52

    PubMed  CAS  Google Scholar 

  132. Hickey N, Mulcahy R, Bouske GJ, et al. Study of coronary risk factors related to physical activity in 15171 men. BMJ 1975; 3: 507–9

    PubMed  CAS  Google Scholar 

  133. Sobolski J. Contribution à l’étude des interrelations entre activité physique et aptitude physique et de l’influence de celles-ci sur l’incidence des cardiopathies ischémiques chez des travailleurs d’âge moyen [PhD dissertation]. Brussels: Université Libre de Bruxelles, 1988

    Google Scholar 

  134. Paffenbarger RS, Wing AL, Hyde RT. Physical activity and incidence of hypertension in college alumni. Am J Epidemiol 1983; 117: 245–57

    PubMed  Google Scholar 

  135. Haapanen N, Miilunpalo S, Vuori I, et al. Association of leisure time physical activity with the risk of coronary heart disease, hypertension and diabetes in middle-aged men and women. Int J Epidemiol 1997; 26: 739–47

    PubMed  CAS  Google Scholar 

  136. Cooper KH, Pollock ML, Martin RP, et al. Physical fitness vs selected coronary risk factors. JAMA 1976; 236: 166–9

    PubMed  CAS  Google Scholar 

  137. Blair SN, Goodyear NN, Gibbons LW, et al. Physical fitness and incidence of hypertension in healthy normotensive men and women. JAMA 1984; 252: 487–90

    PubMed  CAS  Google Scholar 

  138. Kokkinos PF, Narayan P, Colleran JA, et al. Effects of regular exercise on blood pressure and left ventricular hypertrophy in African-American men with severe hypertension. N Engl J Med 1995; 333: 1462–7

    PubMed  CAS  Google Scholar 

  139. Seals DR, Silverman HG, Reiling MJ, et al. Effect of regular aerobic exercise on elevated blood pressure in postmenopausal women. Am J Cardiol 1997; 80: 49–55

    PubMed  CAS  Google Scholar 

  140. James SA. Psychosocial precursors of hypertension: a review of the epidemiologic evidence. Circulation 1987; 76 Suppl. I: 160–6

    Google Scholar 

  141. He J, Klag MJ, Whelton PK, et al. Migration, blood pressure pattern, and hypertension: the Yi migrant study. Am J Epidemiol 1991, 134; 1085–101

    PubMed  CAS  Google Scholar 

  142. Henry JP, Cassel JC. Psychosocial factors in essential hypertension. Am J Epidemiol 1969; 90: 171–9

    PubMed  CAS  Google Scholar 

  143. Poulter NR, Khaw KT, Hopwood BEC, et al. The Kenyan Luo migration study: observations on the initiation of a rise in blood pressure. BMJ 1990; 300: 967–72

    PubMed  CAS  Google Scholar 

  144. Karasek RA. Job demands, job decisions latitude, and mental strain: implications for job redesign. Adm Sci Q 1979; 24: 285–308

    Google Scholar 

  145. Pieper C, Lacroix AZ, Karasek R. The relation of psychosocial dimensions of work with coronary heart disease risk factors: a meta-analysis of five United States data bases. Am J Epidemiol 1989; 129: 483–94

    PubMed  CAS  Google Scholar 

  146. Netterström B, Kristensen TS, Damsgaard MT, et al. Jobstrain and cardiovascular risk factors: a cross-sectional study of employed Danish men and women. Br J Ind Med 1991; 48: 684–9

    PubMed  Google Scholar 

  147. Albright CL, Winkleby MA, et al. Jobstrain and prevalence of hypertension in a biracial population of urban bus drivers. Am J Public Health 1992; 82: 984–9

    PubMed  CAS  Google Scholar 

  148. Beilin LJ. Stress, coping, lifestyle and hypertension: a paradigm for research, prevention and non-pharmacological management of hypertension. Clin Exp Hypertens 1997; 19(5–6): 739–52

    PubMed  CAS  Google Scholar 

  149. Van Eegeren LF. The relationship between job strain and blood pressure at work, at home and during sleep. Psychosom Med 1992; 54: 337–43

    Google Scholar 

  150. Theorell T, Ahlberg-Hulthen G, Jodko M, et al. Influence of job strain and emotion on blood pressure in female hospital personnel during working hours. Scand J Work Environ Health 1993; 19: 313–8

    PubMed  CAS  Google Scholar 

  151. Landsbergis PA, Schnall PL, Warren K, et al. Associations between ambulatory blood pressure and alternative formulations of job strain. Scand J Work Environ Health 1994; 20: 349–63

    PubMed  CAS  Google Scholar 

  152. Light KC, Turner JR, Hinderliter AL. Job strain and ambulatory work blood pressure in healthy young men and women. Hypertension 1992; 20: 214–8

    PubMed  CAS  Google Scholar 

  153. Pickering TG. The effects of occupational stress on blood pressure in men and women. Acta Physiol Scand 1997; 640 Suppl.: 125–8

    CAS  Google Scholar 

  154. Curtis AB, Sherman AJ, Raghunathan E, et al. Job strain and blood pressure in African Americans: the Pitt County Study. Am J Public Health 1997; 87: 1297–302

    PubMed  CAS  Google Scholar 

  155. Peter R, Siegrist J. Chronic work stress, sickness absence, and hypertension in middle managers: general or specific sociological explanations? Soc Sci Med 1997; 45: 1111–20

    PubMed  CAS  Google Scholar 

  156. Dustan HP. Biobehavioral factors in hypertension: overview. Circulation 1987; 76 Suppl. I: I57–9

    Google Scholar 

  157. Julius S. Effect of sympathetic overactivity on cardiovascular prognosis in hypertension. Eur Heart J 1998; 19 Suppl. F: F14–8

    PubMed  Google Scholar 

  158. Julius S. The defense reaction: a common denominator of coronary risk and blood pressure in neurogenic hypertension? Clin Exp Hypertens 1995; 17: 375–86

    PubMed  CAS  Google Scholar 

  159. Henry JH. Stress, salt and hypertension. Soc Sci Med 1988; 26: 293–302

    PubMed  CAS  Google Scholar 

  160. Light KC, Turner JR. Stress-induced changes in the rate of sodium excretion in healthy black and white men. J Psychosom Res 1992; 36(5): 497–508

    PubMed  CAS  Google Scholar 

  161. Blumenthal JA, Thyrum ET, Siegel WC. Contribution of job strain, job status and marital status to laboratory and ambulatory blood pressure in patients with mild hypertension. J Psychosom Res 1995; 39(2): 133–44

    PubMed  CAS  Google Scholar 

  162. Raikkonen K, Keltikangas-Jarvinen L, Adlercreutz H, et al. Psychosocial stress and the insulin resistance syndrome. Metabolism 1996; 45: 1533–8

    PubMed  CAS  Google Scholar 

  163. Levy D, Garison RJ, Savage DD, et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med 1990; 322: 1561–6

    PubMed  CAS  Google Scholar 

  164. Leenen FHH. Increased risk attributed to left ventricular hypertrophy in hypertension. Curr Opin Cardiol 1996; 11: 464–70

    PubMed  CAS  Google Scholar 

  165. Tingleff J, Munch M, Jakobsen TJ, et al. Prevalence of left ventricular hypertrophy in a hypertensive population. Eur Heart J 1996; 17: 143–9

    PubMed  CAS  Google Scholar 

  166. Koren MJ, Devereux RB, Casake PN, et al. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 1991; 114: 345–52

    PubMed  CAS  Google Scholar 

  167. Devereux RB, Pickering TG, Harsfield GA, et al. Left ventricular hypertrophy in patients with hypertension: importance of blood pressure response to regularly recurring stress. Circulation 1983; 68: 470–6

    PubMed  CAS  Google Scholar 

  168. Gardin JM, Arnold A, Gottdiener JS, et al. Left ventricular mass in the elderly: the cardiovascular health study. Hypertension 1997; 29: 1095–103

    PubMed  CAS  Google Scholar 

  169. Liebson PHR, Grandits GA, Dianzumba S, et al. Comparison of five antihypertensive monotherapies and placebo for change in left ventricular mass in patients receiving nutritional-hygienic therapy in the treatment of mild hypertension study (TOMHS). Circulation 1995; 91: 698–706

    PubMed  CAS  Google Scholar 

  170. Dahlöf B, Pennert K, Hansson L. Reversal of left ventricular hypertrophy in hypertensive patients: a meta-analysis of 109 treatment studies. Am J Hypertens 1992; 5: 95–110

    PubMed  Google Scholar 

  171. Schmieder RE, Martus P, Kingbeil A. Reversal of left ventricular hypertrophy in essential hypertension: a meta-analysis of randomized double-blind studies. JAMA 1996; 275: 1507–13

    PubMed  CAS  Google Scholar 

  172. Gottdiener JS, Reda DJ, Massie BM, et al., Department of Veterans Affairs Cooperative Study Group on Antihypertensive Agents. Effect of single-drug therapy on reduction of left ventricular mass in mild to moderate hypertension: comparison of six antihypertensive agents. Circulation 1997; 95: 2007–14

    PubMed  CAS  Google Scholar 

  173. Rose G, Day S. The population mean predicts the number of deviant individuals. BMJ 1990; 301: 1031–4

    PubMed  CAS  Google Scholar 

  174. Rose G. The strategy of preventive medicine. Oxford: Oxford University Press, 1992: 66–7

    Google Scholar 

  175. Stamler R, Stamler J, Gosch FC, et al. Primary prevention of hypertension by nutritional-hygienic means: final report of a randomized, controlled trial. JAMA 1989, 262: 1801–7

    PubMed  CAS  Google Scholar 

  176. Grimm RH, Flack JM, Grandits GA, et al.,TOMHS Research Group. Long-term effects on plasma lipids of diet and drugs to treat hypertension. JAMA 1996; 275: 1549–56

    PubMed  CAS  Google Scholar 

  177. Hoffman RP, Stumbo PJ, Janz KF, et al. Altered insulin resistance is associated with increased dietary weight loss in obese children. Horm Res 1995; 44(1): 17–22

    PubMed  CAS  Google Scholar 

  178. Wolpert HA, Steen SN, Istfan NW, et al. Disparate effects of weight loss on insulin sensitivity and erythrocyte sodium-lithium countertransport activity. Am J Hypertens 1992; 5(10): 754–7

    PubMed  CAS  Google Scholar 

  179. Muscelli E, Camastra S, Catalano C, et al. Metabolic and cardiovascular assessment in moderate obesity: effect of weight loss. J Clin Endocrinol Metab 1997; 82: 2937–43

    PubMed  CAS  Google Scholar 

  180. Grimm RH, Grandits GA, Cutler JA, et al. Relationships of quality-of-life measures to long-term lifestyle and drug treatment in the Treatment of Mild Hypertension Study. Arch Intern Med 1997; 157: 638–48

    PubMed  Google Scholar 

  181. Pryer J, Cappuccio FP, Elliott P. Dietary calcium and blood pressure: a review of the observational studies. J Hum Hypertens 1995; 9(8): 597–604

    PubMed  CAS  Google Scholar 

  182. Gueyffier F, Boutitie F, Boissel JP, et al. Effect of antihypertensive drug treatment on cardiovascular outcomes in women and men: a meta-analysis of individual patient data from randomized, controlled trials. Ann Intern Med 1997; 126: 761–7

    PubMed  CAS  Google Scholar 

  183. Materson BJ, Reda DJ, Cushman WC, et al., Department of Veterans Affairs Cooperative Study Group on Antihypertensive Agents. Single-drug therapy for hypertension in men: a comparison of six antihypertensive agents with placebo. N Engl J Med 1993; 328: 914–21

    PubMed  CAS  Google Scholar 

  184. Hansson L, Lindholm LH, Niskanen L, et al. Principle results of the Captopril Prevention Project (CAPPP). Lancet. In press

  185. Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the hypertension optimal treatment (HOT) randomised trial. Lancet 1998; 351: 1755–62

    PubMed  CAS  Google Scholar 

  186. Hennekens GH, Albert CM, Godfried SL, et al. Adjunctive drug therapy of acute myocardial infarction: evidence from clinical trials. N Engl J Med 1996; 22: 1660–7

    Google Scholar 

  187. Pfeffer MA, Braunwald E, Lemuel AM, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: results of the survival and ventricular enlargement trial. N Engl J Med 1992; 327: 669–77

    PubMed  CAS  Google Scholar 

  188. Kotchen TA. Attenuation of hypertension by insulin-sensitizing agents. Hypertension 1996; 28: 219–23

    PubMed  CAS  Google Scholar 

  189. Nolan JJ, Ludvik B, Beerdsen P, et al. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 1994; 331: 1188–93

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Kornitzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornitzer, M., Dramaix, M. & De Backer, G. Epidemiology of Risk Factors for Hypertension. Drugs 57, 695–712 (1999). https://doi.org/10.2165/00003495-199957050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199957050-00003

Keywords

Navigation