Drugs

, Volume 56, Supplement 1, pp 15–23 | Cite as

Rational Assessment of the Interaction Profile of Cerivastatin Supports its Low Propensity for Drug Interactions

  • Wolfgang Mück
Review Article

Abstract

Pharmacokinetic drug-drug interactions influence drug efficacy, tolerability, and compliance. Such interactions are both more common and of more clinical relevance than often appreciated. The US Food and Drug Administration and the European Agency for the Evaluation of Medicinal Products have recently issued guidelines setting out in vitro and in vivo investigations to be conducted during drug development. These guidelines reflect the increasing interest of public health authorities in this topic.

Cerivastatin is a novel, potent HMG-CoA reductase inhibitor that effectively reduces serum cholesterol levels at low daily doses. It is completely absorbed after oral administration, undergoes moderate first-pass metabolism and high plasma protein binding, and is cleared exclusively via hepatic cytochrome P450 (CYP). Unlike other drugs of its class, cerivastatin has a dual metabolic pathway, with the involvement of more than one CYP isozyme. Metabolites are cleared via both biliary and renal excretion.

On the basis of this pharmacokinetic profile and a knowledge of the target population, the formal in vivo interaction programme for cerivastatin investigated many important potential cerivastatin drug-drug interactions. Cerivastatin appears to lack clinically relevant interactions with digoxin, warfarin, antacid, cimetidine, nifedipine, omeprazole, erythromycin and itraconazole.

Keywords

Adis International Limited Cimetidine Itraconazole Lovastatin Cerivastatin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    European Agency for the Evaluation of Medicinal Products (EMEA), Human Medicines Evaluation Unit. CPMP note for guidance on the investigation of drug interactions: CPMP/EWP/560/ 95. London: EMEA, Jun 1998Google Scholar
  2. 2.
    Grönroos PE, Irjala KM, Huupponen RK, et al. A medication database — a tool for detecting drug interactions in hospital. Eur J Clin Pharmacol 1997; 53: 13–7PubMedCrossRefGoogle Scholar
  3. 3.
    Stockley IH. Drug interactions. 2nd ed. Oxford: Blackwell Scientific Publications, 1991Google Scholar
  4. 4.
    Garnett WR. Interactions with hydroxymethylglutaryl-coenzmye A reductase inhibitors. Am J Health Syst Pharm 1995; 52: 1639–45PubMedGoogle Scholar
  5. 5.
    Desager JP, Horsmans Y. Clinical pharmacokinetics of 3-hydroxy-3-methylglutaryl-coenzmye A reductase inhibitors. Clin Pharmacokinet 1996; 31: 348–71PubMedCrossRefGoogle Scholar
  6. 6.
    Lennernäs H, Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors — similarities and differences. Clin Pharmacokinet 1997; 32: 403–25PubMedCrossRefGoogle Scholar
  7. 7.
    US Food and Drug Administration (FDA). Guidance for industry: drug metabolism/drug interaction studies in the drug development process: studies in vitro. Rockville; FDA, Apr 1997Google Scholar
  8. 8.
    Angerbauer R, Bischoff H, Steinke W, et al. BAYw 6228. Drugs Future 1994; 19: 537–41Google Scholar
  9. 9.
    Bischoff H, Angerbauer R, Bender J, et al. Cerivastatin: pharmacology of a novel synthetic and highly active HMG-CoA reductase inhibitor. Atherosclerosis 1997; 135: 119–30PubMedCrossRefGoogle Scholar
  10. 10.
    Stein E, Sprecher D, Allenby KS, et al. Cerivastatin, a new potent synthetic HMG-CoA reductase inhibitor: effect of 0.2mg daily in subjects with primary hypercholesterolemia. J Cardiovasc Pharmacol Ther 1997; 2: 7–16PubMedCrossRefGoogle Scholar
  11. 11.
    Stein EA. Extending therapy options in treating lipid disorders: a clinical review of cerivastatin, a novel HMG-CoA reductase inhibitor. Drugs 1998; 56 Suppl. 1: 25–32CrossRefGoogle Scholar
  12. 12.
    Mück W, Ritter W, Dietrich H, et al. Influence of the antacid Maalox® and the Fb-antagonist cimetidine on the pharmaco-kinetics of cerivastatin. Int J Clin Pharmacol Ther 1997; 35: 261–4PubMedGoogle Scholar
  13. 13.
    Ritter W, Frey R, Krol G, et al. Single dose pharmacokinetics of rivastatin, a novel HMG-CoA redcutase inhibitor. Naunyn Schmiedebergs Arch Pharmacol 1993; 347 Suppl.: R39Google Scholar
  14. 14.
    Ritter W, Frey R, Krol G, et al. Rivastatin single dose pharmacokinetics. Clin Pharmacol Ther 1993; 53: 210Google Scholar
  15. 15.
    Mazzu A, Lettieri J, Kaiser L, et al. Ascending multiple dose safety, tolerability and pharmacokinetics of rivastatin in humans. Clin Pharmacol Ther 1993; 53: 230Google Scholar
  16. 16.
    Mazzu A, Lettieri J, Heller AH. Pharmacokinetics of cerivastatin administration with and without food in the morning and evening. Atherosclerosis 1997; 130 Suppl.: S29Google Scholar
  17. 17.
    Mück W, Ochmann K, Mazzu A, et al. Biopharmaceutical profile of cerivastatin, a novel HMG-CoA reductase inhibitor. Atherosclerosis 1997; 134: 130CrossRefGoogle Scholar
  18. 18.
    Lettieri J, Krol G, Mazzu A, et al. Effect of age and gender on steady-state pharmacokinetics of rivastatin. Pharm Res 1993; 10 Suppl.: S338Google Scholar
  19. 19.
    Azuma J. A clinical trial of pharmacokinetics of BAY w 6228 in elderly volunteers. Jpn Pharmacol Ther 1996; 24 Suppl. 9: 55–66Google Scholar
  20. 20.
    Stein EA, Isaacsohn J, Zinny M, et al. Pharmacokinetics, safety and tolerability of multiple-dose cerivastatin in males and females: a double-blind study. Atherosclerosis 1997; 130 Suppl.: S33CrossRefGoogle Scholar
  21. 21.
    Mazzu A, Lettieri J, Kaiser L, et al. A multiple-dose study on the safety and pharmacokinetics of cerivastatin in young and elderly male volunteers. Atherosclerosis 1997; 130 Suppl.: S29Google Scholar
  22. 22.
    Mück W, Kawano K, Unger S, et al. Interethnic comparisons of the pharmacokinetics of the HMG-CoA reductase inhibitor cerivastatin. Br J Clin Pharmacol 1998. In pressGoogle Scholar
  23. 23.
    Vormfelde SV, Gleiter CH, Freudenthaler S, et al. Pharmacokinetics of single dose cerivastatin in subjects with normal and impaired renal function. Atherosclerosis 1997; 130 Suppl.: S33CrossRefGoogle Scholar
  24. 24.
    Vormfelde SV, Freudenthaler S, Mück W, et al. Cerivastatin, an inhibitor of the HMG-CoA reductase, has no need for dose adjustment in renal dysfunction. Eur J Clin Pharmacol 1997; 52 Suppl.: A163CrossRefGoogle Scholar
  25. 25.
    Steinke W, Yamashita S, Tabei M, et al. Cerivastatin, a new inhibitor of HMG-CoA reductase. Pharmacokinetics in rats and dogs. Jpn Pharmacol Ther 1996; 24 Suppl. 9: 1217–37Google Scholar
  26. 26.
    Mück W, Ritter W, Ochmann K, et al. Absolute and relative bioavailability of the HMG-CoA reductase inhibitor cerivastatin. Int J Clin Pharmacol 1997; 35: 255–60Google Scholar
  27. 27.
    Boberg M, Angerbauer R, Kanhai W, et al. [14C]BAY w 6228: Biotransformation in human liver microsomes in vitro. Characterization of primary metabolite pathways and of cytochrome P450 isozymes involved. Drug Metab Dispos 1997; 25: 321–31PubMedGoogle Scholar
  28. 28.
    Radtke M, Boberg M, Kanhai W, et al. Cerivastatin: identification of human cytochrome P-450 isozymes involved in the biotransformation of the drug and two active metabolites [abstract no. 217]. Proceedings of the 8th North American ISSX Meeting; 1997 Oct 26–30; Hilton Head, South Carolina: 109Google Scholar
  29. 29.
    Bischoff H, Angerbauer R, Boberg M, et al. Cerivastatin: high enzyme affinity and active metabolites contribute to its high pharmacological activity. Atherosclerosis 1997; 130 Suppl.: S25CrossRefGoogle Scholar
  30. 30.
    Mück W, Ochmann K, Rohde G, et al. No drug-drug interaction between cerivastatin and omeprazole. Naunyn-Schmie-debergs Arch Pharmacol 1998; 357 Suppl.: R175Google Scholar
  31. 31.
    Mück W, Ritter W, Frey R, et al. Influence of cholestyramine on the pharmacokinetics of cerivastatin. Int J Clin Pharmacol Ther 1997; 35: 250–4PubMedGoogle Scholar
  32. 32.
    Schall R, Mueller FO, Hundt HK, et al. No pharmacokinetic or pharmacodynamic interaction between rivastatin and warfarin. J Clin Pharmacol 1995; 35: 306–13PubMedGoogle Scholar
  33. 33.
    Lettieri J, Krol G, Mazzu A, et al. Lack of pharmacokinetic interaction between cerivastatin, a new HMG-CoA reductase inhibitor, and digoxin. Atherosclerosis 1997; 130 Suppl.: S29CrossRefGoogle Scholar
  34. 34.
    Mück W, Ochmann K, Rohde G, et al. Influence of erythromycin pre- and co-treatment on single-dose pharmacokinetics of the HMG-CoA reductase inhibitor cerivastatin. Eur J Clin Pharmacol 1998; 53: 469–73PubMedCrossRefGoogle Scholar
  35. 35.
    Sachse R, Brendel E, Mück W, et al. No drug-drug interaction between cerivastatin and nifedipine. Naunyn-Schmiedebergs Arch Pharmacol 1998; 357 Suppl.: R174Google Scholar
  36. 36.
    Mai I, Bauer S, Fritsche J, et al. Clinical pharmacokinetics of a new HMG-CoA reductase inhibitor in renal transplant patients treated with cyclosporine A (CSA) [abstract no. 419]. Eur J Clin Pharmacol 1997; 52 Suppl.: A137Google Scholar
  37. 37.
    Steinjans VW, Hartmann M, Huber R, et al. Lack of pharmacokinetic interaction as an equivalence problem. J Clin Pharmacol Ther 1991; 29: 323–8Google Scholar
  38. 38.
    Mück W, Ochmann K, Kuhlmann J. Rationale for pharmacokinetic drug-drug interaction programme within clinical development — case history: cerivastatin, a new HMG-CoA reductase inhibitor. Eur J Clin Pharmacol 1997; 52 Suppl.: A 138.Google Scholar
  39. 39.
    Spach DH, Bauwens JE, Clark CD, et al. Rhabdomyolysis associated with lovastatin and erythromycin use. West J Med 1991; 154: 213–5PubMedGoogle Scholar
  40. 40.
    Lees RS, Lees AM. Rhabdomyolysis from the coadministration of lovastatin and the antifungal agent itraconazole. N Engl J Med 1995; 333: 664–5PubMedCrossRefGoogle Scholar
  41. 41.
    Neuvonen PJ, Jalava KM. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1996; 60: 54–61PubMedCrossRefGoogle Scholar
  42. 42.
    Neuvonen PJ, Kantola T, Kivistö KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 1998; 63: 332–41PubMedCrossRefGoogle Scholar
  43. 43.
    Kantola T, Kivistö KT, Neuvonen PJ. Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1998; 63: 397–402PubMedCrossRefGoogle Scholar
  44. 44.
    Wang RW, Kari PH, Lu AY, et al. Biotransformation of lovastatin. IV. Identification of cytochrome P450 3A proteins as the major enzymes responsible for the oxidative metabolism of lovastatin in rat and human liver microsomes. Arch Biochem Biophys 1991; 290: 355–61Google Scholar
  45. 45.
    Prueksaritanont T, Gorham LM, Ma B, et al. In vitro metabolism of simvastatin in humans [SBT] identification of metabolizing enzymes and effect of the drug on hepatic P450S. Drug Metab Dispos 1997; 25: 1191–99PubMedGoogle Scholar
  46. 46.
    von Rosenstiel NA, Adam D. Macrolide antibacterials — drug interactions of clinical significance. Drug Saf 1995; 13: 105–22CrossRefGoogle Scholar
  47. 47.
    Krol GJ, Beck GW, Ritter W, et al. LC separation and induced fluorometric detection of rivastatin in blood plasma. J Pharm Biomed Anal 1993; 11: 1269–75PubMedCrossRefGoogle Scholar
  48. 48.
    Ikeda T, Ishigami M, Yamazoe Y. Inhibition of hepatic cytochrome P450 isoform, CYP3A, by 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors. Atherosclerosis 1997; 134: 135CrossRefGoogle Scholar
  49. 49.
    Ulbricht C, Wanner C, Eisenhauer T, et al. Accumulation of lovastatin, but not pravastatin, in the blood of cyclosporine-treated kidney graft patients after multiple doses. Clin Pharmacol Ther 1998; 62: 311–21CrossRefGoogle Scholar

Copyright information

© Adis International Limited 1998

Authors and Affiliations

  • Wolfgang Mück
    • 1
  1. 1.Bayer AG, Institute of Clinical PharmacologyBayer AG WuppertalGermany

Personalised recommendations