Drugs

, Volume 46, Issue 6, pp 947–960 | Cite as

Anti-HIV Vaccines

Current Status and Future Developments
  • Stephen G. Norley
  • Thorsten Vogel
  • Reinhard Kurth
Leading Article

Keywords

Human Immunodeficiency Virus Human Immunodeficiency Virus Type Acquire Immune Deficiency Syndrome Simian Immunodeficiency Virus Envelope Glycoprotein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboulker JP, Swart AM. Preliminary analysis of the Concorde trial. Lancet 341: 889–890, 1993PubMedCrossRefGoogle Scholar
  2. Achour A, Picard O, Zagury D, Sarin PS, Gallo RC, et al. HGP-30, a synthetic analogue of human immunodeficiency virus (HIV) p17, is a target for cytotoxic lymphocytes in HIV-infected individuals. Proceedings of the National Academy of Sciences of the United States of America 87: 7045–7049, 1990PubMedPubMedCentralCrossRefGoogle Scholar
  3. Agy MB, Frumkin LR, Corey L, Coombs RW, Wolinsky SM, et al. Infection of Macaca nemestrina by human immunodeficiency virus type-1. Science 257: 103–106, 1992PubMedCrossRefGoogle Scholar
  4. Akerblom L, Hinkula J, Broliden PA, Maekitalo B, Fridberger T, et al. Neutralizing cross-reactive and non-neutralizing monoclonal antibodies to HIV-1 gp120. AIDS 4: 953–960, 1990PubMedCrossRefGoogle Scholar
  5. Alizon M, Sonigo P, Barre-Sinoussi F, Chermann JC, Tiollais P, et al. Molecular cloning of lymphadenopathy-associated virus. Nature 312: 757–760, 1984PubMedCrossRefGoogle Scholar
  6. Arthur LO, Bess Jr JW, Waters DJ, Pyle SW, Kelliher JC, et al. Challenge of chimpanzees (Pan troglodytes) immunized with human immunodeficiency virus envelope glycoprotein gp120. Journal of Virology 63: 5046–5053, 1989PubMedPubMedCentralGoogle Scholar
  7. Barr PJ, Steimer KS, Sabin EA, Parkes D, George-Nascimento C, et al. Antigenicity and immunogenicity of domains of the human immunodeficiency virus (HIV) envelope polypeptide expressed in the yeast Saccharomyces cerevisiae. Vaccine 5: 90–101, 1987PubMedCrossRefGoogle Scholar
  8. Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220: 868–871, 1983PubMedCrossRefGoogle Scholar
  9. Barrett N, Mitterer A, Mundt W, Eibl J, Eibl M, et al. Large-scale production and purification of a vaccinia recombinant-derived HIV-1 gp160 and analysis of its immunogenicity. AIDS Research and Human Retroviruses 5: 159–171, 1989PubMedCrossRefGoogle Scholar
  10. Benichou S, Legrand R, Nakagawa N, Faure T, Traincard F, et al. Identification of a neutralizing domain in the external envelope glycoprotein of simian immunodeficiency virus. AIDS Research and Human Retroviruses 8: 1165–1170, 1992PubMedCrossRefGoogle Scholar
  11. Berman PW, Gregory TJ, Riddle L, Nakamura GR, Champe MA, et al. Protection of chimpanzees from infection by HIV-1 after vaccination with recombinant glycoprotein gp120 but not gp160. Nature 345: 622–625, 1990PubMedCrossRefGoogle Scholar
  12. Berman PW, Groopman JE, Gregory T, Clapham PR, Weiss RA, et al. Human immunodeficiency virus type 1 challenge of chimpanzees immunized with recombinant envelope glycoprotein gp120. Proceedings of the National Academy of Sciences of the United States of America 85: 5200–5204, 1988PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bourgault I, Venet A, Levy JP. Three epitopic peptides of the simian immunodeficiency virus Nef protein recognized by macaque cytolytic T lymphocytes. Journal of Virology 66: 750–756, 1992PubMedPubMedCentralGoogle Scholar
  14. Boyer V, Madaule P, Souche S, Zagury D, Desgranges C. Characterization of human monoclonal antibodies against HIV-1 with group specific neutralizing activities. Abstract T.C.P.59. Proceedings of the Fifth International Conference on AIDS, Montreal, Canada, 1989Google Scholar
  15. Broliden PA, Ljunggren K, Hinkula J, Norrby E, Akerblom L, et al. A monoclonal antibody to human immunodeficiency virus type 1 which mediates cellular cytotoxicity and neutralization Journal of Virology 64: 936–940, 1990PubMedPubMedCentralGoogle Scholar
  16. Broliden PA, Maekitalo B, Akerblom L, Rosen J, Broliden K, et al. Identification of amino acids in the V3 region of gp120 critical for virus neutralization by human HIV-1-specific antibodies. Immunology 73: 371–376, 1991PubMedPubMedCentralGoogle Scholar
  17. Broliden PA, von Gegerfelt A, Clapham P, Rosen J, Fenyoe EM, et al. Identification of human neutralization-inducing regions of the human immunodeficiency virus type 1 envelope glycoproteins. Proceedings of the National Academy of Sciences of the United States of America 89: 461–465, 1992PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chakrabarti S, Robert-Guroff M, Wong-Staal F, Gallo RC, Moss B. Expression of the HTLV-III envelope gene by a recombinant vaccinia virus. Nature 320: 535–537, 1986PubMedCrossRefGoogle Scholar
  19. Chalifoux LV, Ringler DJ, King NW, Sehgal PK, Desrosiers RC, et al. Lymphadenopathy in macaques experimentally infected with the simian immunodeficiency virus (SIV). American Journal of Pathology 128: 104–110, 1987PubMedPubMedCentralGoogle Scholar
  20. Chanh TC, Dreesman GR, Kanda P, Linette GP, Sparrow JT, et al. Induction of anti-HIV neutralizing antibodies by synthetic peptides. European Microbiology Organization Journal 5: 3065–3071, 1986Google Scholar
  21. Charbit A, Molla A, Ronco J, Clement JM, Favier V, et al. Immunogenicity and antigenicity of conserved peptides from the envelope of HIV-1 expressed at the surface of recombinant bacteria. AIDS 4: 545–551, 1990PubMedCrossRefGoogle Scholar
  22. Claverie JM, Kourilsky P, Langlade-Demoyen P, Chalufour-Prochnicka A, Dadaglio G, et al. T-immunogenic peptides are constituted of rare sequence patterns. Use in the identification of T epitopes in the human immunodeficiency virus gag protein. European Journal of Immunology 18: 1547–1553, 1988Google Scholar
  23. Clerici M, Lucey DR, Zajac RA, Boswell RN, Gebel HM, et al. Detection of cytotoxic T lymphocytes specific for synthetic peptides of gp 160 in HIV-seropositive individuals. Journal of Immunology 146: 2214–2219, 1991Google Scholar
  24. Culmann B, Gomard E, Kieny MP, Guy B, Dreyfus F, et al. An antigenic peptide of the HIV-1 NEF protein recognized by cytotoxic T lymphocytes of seropositive individuals in associati on with different HLA-B molecules. European Journal of Immunology 19: 2383–2386, 1989PubMedCrossRefGoogle Scholar
  25. Culmann B, Gomard E, Kieny MP, Guy B, Dreyfus F, et al. Six epitopes reacting with human cytotoxic CD8+ T cells in the central region of the HIV-1 NEF protein. Journal of Immunology 146: 1560–1565, 1991Google Scholar
  26. Dalgleish AG, Chanh TC, Kennedy RC, Kanda P, Clapham PR, et al. Neutralization of diverse HIV-1 strains by monoclonal antibodies raised against a gp41 synthetic peptide. Virology 165: 209–215, 1988PubMedCrossRefGoogle Scholar
  27. Daniel MD, Sehgal PK, Kodama T, Wyand MS, Ringler DJ, et al. Use of simian immunodeficiency virus for vaccine research. Journal of Medical Primatology 19: 395–399, 1990PubMedGoogle Scholar
  28. Davis D, Stephens DM, Willers C, Lachmann PJ. Glycosylation governs the binding of antipeptide antibodies to regions of hypervariable amino acid sequence within recombinant gp120 of human immunodeficiency virus type 1. Journal of General Virology 71: 2889–2898, 1990PubMedCrossRefGoogle Scholar
  29. Defoort JP, Nardelli B, Huang W, Ho DD, Tarn JP. Macromolecular assemblage in the design of a synthetic AIDS vaccine. Proceedings of the National Academy of Sciences of the United States of America 89: 3879–3883, 1992PubMedPubMedCentralCrossRefGoogle Scholar
  30. Deres K, Schild H, Wiesmueller KH, Jung G, Rammensee HG. In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccine. Nature 342: 561–564, 1989PubMedCrossRefGoogle Scholar
  31. Desrosiers RC. HIV with multiple gene deletions as a live attenuated vaccine for AIDS. AIDS Research and Human Retroviruses 8: 411–421, 1992PubMedCrossRefGoogle Scholar
  32. Desrosiers RC, Wyand MS, Kodama T, Ringler DJ, Arthur LO, et al. Vaccine protection against simian immunodeficiency virus infection. Proceedings of the National Academy of Sciences of the United States of America 86: 6353–6357, 1989PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dewar RL, Natarajan V, Vasudevachari MB, Salzman NP. Synthesis and processing of human immunodeficiency virus type 1 envelope proteins encoded by a recombinant human adenovirus. Journal of Virology 63: 129–136, 1989PubMedPubMedCentralGoogle Scholar
  34. Durda PJ, Bacheler L, Clapham P, Jenoski AM, Leece B, et al. HIV-1 neutralizing monoclonal antibodies induced by a synthetic peptide. AIDS Research and Human Retroviruses 6: 1115–1123, 1990PubMedCrossRefGoogle Scholar
  35. Emini EA, Schleif WA, Nunberg JH, Conley AJ, Eda Y, et al. Prevention of HIV-1 infection in chimpanzees by gp120 V3 domain-specific monoclonal antibody. Nature 355: 728–730, 1992PubMedCrossRefGoogle Scholar
  36. Evans DJ, McKeating J, Meredith JM, Burke KL, Katrak K, et al. An engineered poliovirus chimaera elicits broadly reactive HIV-1 neutralizing antibodies. Nature 339: 385–8, 1989aPubMedCrossRefGoogle Scholar
  37. Evans LA, Thomson-Honnebier G, Steimer K, Paoletti E, Perkus ME, et al. Antibody-dependent cellular cytotoxicity is directed against both the gp120 and gp 41 envelope proteins of HIV AIDS 3: 273–276, 1989bGoogle Scholar
  38. Fischinger PJ, Schäfer W, Bolognesi DP. Neutralization of homologous and heterologous oncornaviruses by antisera against the p15(E) and gp71 polypeptides of Friend murine leukemia virus. Virology 71: 169–184, 1976PubMedCrossRefGoogle Scholar
  39. Fung MS, Sun CR, Gordon WL, Liou RS, Chang TW, et al. Identification and characterization of a neutralization site within the second variable region of human immunodeficiency virus type 1 gp120. Journal of Virology 66: 848–856, 1992PubMedPubMedCentralGoogle Scholar
  40. Gallo RC, Salahuddin SZ, Popovic M, Shearer GM, Kaplan M, et al. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 224: 500–503, 1984PubMedCrossRefGoogle Scholar
  41. Gallo RC, Sarin PS, Gelmann EP, Robert-Guroff M, Richardson E, et al. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science 220: 865–867, 1983PubMedCrossRefGoogle Scholar
  42. Gardner MB. SIV infected rhesus macaques: an AIDS model for immunoprevention and immunotherapy. Advances in Experimental Medical Biology 251: 279–293, 1989Google Scholar
  43. Girard M, Kieny MP, Pinter A, Barre-Sinoussi F, Nara P, et al. Immunization of chimpanzees confers protection against challenge with human immunodeficiency virus. Proceedings of the National Academy of Sciences of the United States of America 88: 542–546, 1991PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gorny MK, Xu JY, Gianakakos V, Karwowska S, Williams C, et al. Production of site-selected neutralizing human monoclonal antibodies against the third variable domain of the human immunodeficiency virus type 1 envelope glycoprotein. Proceedings of the National Academy of Sciences of the United States of America 88: 3238–3242, 1991PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gotch FM, Hovell R, Delchambre M, Silvera P, McMichael AJ. Cytotoxic T-cell response to simian immunodeficiency virus by cynomolgus macaque monkeys immunized with recombinant vaccinia virus. AIDS 5: 317–320, 1991PubMedCrossRefGoogle Scholar
  46. Goudsmit J, Debouck C, Meloen RH, Smit L, Bakker M, et al. Human immunodeficiency virus type 1 neutralization epitope with conserved architecture elicits early type-specific antibodies in experimentally infected chimpanzees. Proceedings of the National Academy of Sciences of the United States of America 85: 4478–4482, 1988PubMedPubMedCentralCrossRefGoogle Scholar
  47. Graham BS, Belshe RB, Clements ML, Dolin R, Corey L, et al. Vaccination of vaccinia-naive adults with human immunodeficiency virus type 1 gp160 recombinant vaccinia virus in a blinded, controlled, randomized clinical trial. Journal of Infectious Diseases 166: 244–252, 1992PubMedCrossRefGoogle Scholar
  48. Hahn BH, Shaw GM, Arya SK, Popovic M, Gallo RC, et al. Molecular cloning and characterization of the HTLV-III virus associated with AIDS. Nature 312: 166–169, 1984PubMedCrossRefGoogle Scholar
  49. Hart MK, Palker TJ, Matthews TJ, Langlois AJ, Lerche NW, et al. Synthetic peptides containing T and B cell epitopes from human immunodeficiency virus envelope gp120 induce anti-HIV proliferative responses and high titers of neutralizing antibodies in rhesus monkeys. Journal of Immunology 145: 2677–2685, 1990Google Scholar
  50. Hart MK, Weinhold KJ, Scearce RM, Washburn EM, Clark CA, et al. Priming of anti-human immunodeficiency virus (HIV) CD8+ cytotoxic T cells in vivo by carrier-free HIV synthetic peptides. Proceedings of the National Academy of Sciences of the United States of America 88: 9448–9452, 1991PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hartung S, Norley SG, Ennen J, Cichutek K, Plesker R, et al. Vaccine protection against SIVmac infection by high- but not low-dose whole inactivated virus immunogen. Journal of Acquired Immune Deficiency Syndromes 5: 461–468, 1992PubMedCrossRefGoogle Scholar
  52. Hirsch VM, Olmsted RA, Murphey-Corb M, Purcell RH, Johnson PR. An African primate lentivirus (SIVsm) closely related to HIV-2. Nature 339: 389–392, 1989PubMedCrossRefGoogle Scholar
  53. Ho DD, Kaplan JC, Rackauskas IE, Gurney ME. Second conserved domain of gp120 is important for HIV infectivity and antibody neutralization. Science 239: 1021–1023, 1988PubMedCrossRefGoogle Scholar
  54. Ho DD, Sarngadharan MG, Hirsch MS, Schooley RT, Rota TR, et al. Human immunodeficiency virus neutralizing antibodies recognize several conserved domains on the envelope glycoproteins. Journal of Virology 61: 2024–2028, 1987PubMedPubMedCentralGoogle Scholar
  55. Hosmalin A, Clerici M, Houghten R, Pendleton CD, Flexner C, et al. An epitope in human immunodeficiency virus 1 reverse transcriptase recognized by both mouse and human cytotoxic T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America 87: 2344–2348, 1990PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hosmalin A, Kumar S, Barnd D, Houghten R, Smith GE, et al. Immunization with soluble protein-pulsed spleen cells induces class I-restricted cytotoxic T lymphocytes that recognize immunodominant epitopic peptides from Plasmodium falciparum and HIV-1. Journal of Immunology 149: 1311–1318, 1992Google Scholar
  57. Hu SL, Abrams K, Barber GN, Moran P, Zarling JM, et al. Protection of macaques against SIV infection by subunit vaccines of SIV envelope glycoprotein gp160. Science 255: 456–459, 1992PubMedCrossRefGoogle Scholar
  58. Hunsmann G, Moennig V, Pister L, Seifert E, Schaefer W. Properties of mouse leukemia viruses. VIII. The major viral glycoprotein of Friend leukemia virus. Seroimmunological, interfering and hemagglutinating capacities. Virology 62: 307–318, 1974PubMedGoogle Scholar
  59. Hunsmann G, Moennig V, Schaefer W. Properties of mouse leukemia viruses. IX. Active and passive immunization of mice against Friend leukemia with isolated viral GP71 glycoprotein and its corresponding antiserum. Virology 66: 327–329, 1975aPubMedGoogle Scholar
  60. Hunsmann G, Moennig V, Seifert E, Schaefer W. Protection of mice against Friend leukemia by active and passive immunization with isolated viral glycoprotein and its antiserum respectively. Zeitschrift für Naturforschung 30c: 309–310, 1975bGoogle Scholar
  61. Javaherian K, Langlois AJ, LaRosa GJ, Profy AT, Bolognesi DP, et al. Broadly neutralizing antibodies elicited by the hypervariable neutralizing determinant of HIV-1. Science 250: 1590–1593, 1990PubMedCrossRefGoogle Scholar
  62. Javaherian K, Langlois AJ, McDanal C, Ross KL, Eckler LI, et al. Principal neutralizing domain of the human immunodeficiency virus type 1 envelope protein. Proceedings of the National Academy of Sciences of the United States of America 86: 6768–6772, 1989PubMedPubMedCentralCrossRefGoogle Scholar
  63. Johnson PR, Montefiori DC, Goldstein S, Hamm TE, Zhou J, et al. Inactivated whole-virus vaccine derived from a proviral DNA clone of simian immunodeficiency virus induces high levels of neutralizing antibodies and confers protection against heterologous challenge. Proceedings of the National Academy of Sciences of the United States of America 89: 2175–2179, 1992PubMedPubMedCentralCrossRefGoogle Scholar
  64. Johnson RP, Trocha A, Earl P, Moss B, Buchanan TM, et al. Identification of a conserved CTL epitope in the gp41 envelope recognized by B8- and B14-restricted T lymphocyte clones Abstract W.A.1206. Proceedings of the Seventh International Conference on AIDS, Florence, Italy, 1991aGoogle Scholar
  65. Johnson RP, Trocha A, Yang L, Mazzara GP, Panicali DL, et al. HIV-1 gag-specific cytotoxic T lymphocytes recognize multiple highly conserved epitopes. Fine specificity of the gag-specific response defined by using unstimulated peripheral blood mononucl ear cells and cloned effector cells. Journal of Immunology 147: 1512–1521, 1991bGoogle Scholar
  66. Kenealy WR, Matthews TJ, Ganfield MC, Langlois AJ, Waselefsky DM, et al. Antibodies from human immunodeficiency virus-infected individuals bind to a short amino acid sequence that elicits neutralizing antibodies in animals. AIDS Research and Human Retroviruses 5: 173–182, 1989PubMedCrossRefGoogle Scholar
  67. Kent KA, Rud E, Corcoran T, Powell C, Thiriart C, et al. Identification of two neutralizing and 8 non-neutralizing epitopes on simian immunodeficiency virus envelope using monoclonal antibodies. AIDS Research and Human Retroviruses 8: 1147–1151, 1992PubMedCrossRefGoogle Scholar
  68. Koenig S, Fuerst TR, Wood LV, Woods RM, Suzich JA, et al. Mapping the fine specificity of a cytolytic T cell response to HIV-1 nef protein. Journal of Immunology 145: 127–135, 1990Google Scholar
  69. Kraus G, Werner A, Baier M, Binniger D, Ferdinand FJ, et al. Isolation of human immunodeficiency virus-related simian immunodeficiency viruses from African green monkeys. Proceedings of the National Academy of Sciences of the United States of America 86: 2892–2896, 1989PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kuller L, Morton WR, Benveniste RE, Tsai CC, Clark EA, et al. Inoculation of Macaca fascicularis with simian immunodeficiency virus, SIVmne: immunologic, serologic, and pathologic changes. Journal of Medical Primatology 19: 367–380, 1990PubMedGoogle Scholar
  71. Kurth R, Binninger D, Ennen J, Denner J, Hartung S, et al. The quest for an AIDS vaccine: the state of the art and current challenges. AIDS Research and Human Retroviruses 7: 425–433, 1991PubMedCrossRefGoogle Scholar
  72. Layton GT, Harris SJ, Gearing AJH, Hillperkins M, Cole JS, et al. Induction of HIV-specific cytotoxic-T lymphocytes in vivo with hybrid HIV-1 V3-Ty-virus-like particles. Journal of Immunology 151: 1097–1107, 1993Google Scholar
  73. Le Grand R, Vaslin B, Vogt G, Roques P, Humbert M, et al. AIDS vaccine developments. Nature 355: 684, 1992PubMedCrossRefGoogle Scholar
  74. Linsley PS, Ledbetter JA, Kinney-Thomas E, Hu SL. Effects of anti-gp120 monoclonal antibodies on CD4 receptor binding by the env protein of human immunodeficiency virus type 1. Journal of Virology 62: 3695–3702, 1988PubMedPubMedCentralGoogle Scholar
  75. Liou RS, Rosen EM, Fung MS, Sun WN, Sun C, et al. A chimeric mouse-human antibody that retains specificity for HIV gp120 and mediates the lysis of HIV-infected cells. Journal of Immunology 143: 3967–3975, 1989Google Scholar
  76. Littaua RA, Oldstone MB, Takeda A, Debouck C, Wong JT, et al. An HLA-C-restricted CD8+ cytotoxic T-lymphocyte clone recognizes a highly conserved epitope on human immunodeficiency virus type 1 gag. Journal of Virology 65: 4051–4056, 1991PubMedPubMedCentralGoogle Scholar
  77. Ljunggren K, Biberfeld G, Jondal M, Fenyoe EM. Antibody-dependent cellular cytotoxicity detects type- and strain-specific antigens among human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus SIVmac isolates. Journal of Virology 63: 3376–3381, 1989PubMedPubMedCentralGoogle Scholar
  78. Marciani DJ, Kensil CR, Beltz GA, Hung CH, Cronier J, et al. Genetically-engineered subunit vaccine against feline leukaemia virus: protective immune response in cats. Vaccine 9: 89–96, 1991PubMedCrossRefGoogle Scholar
  79. Martinon F, Krishnan S, Lenzen G, Magne R, Gomard E, et al. Induction of virus-specific cytotoxic T-lymphocytes in vivo by liposome-entrapped messenger RNA. European Journal of Immunology 23: 1719–1722, 1993PubMedCrossRefGoogle Scholar
  80. Matsushita S, Robert-Guroff M, Rusche J, Koito A, Hattori T, et al. Characterization of a human immunodeficiency virus neutralizing monoclonal antibody and mapping of the neutralizing epitope. Journal of Virology 62: 2107–2114, 1988PubMedPubMedCentralGoogle Scholar
  81. Miller MD, Yamamoto H, Hughes AL, Watkins DI, Letvin NL. Definition of an epitope and MHC class I molecule recognized by gag-specific cytotoxic T lymphocytes in SIVmac-infected rhesus monkeys. Journal of Immunology 147: 320–329, 1991Google Scholar
  82. Morikawa Y, Overton HA, Moore JP, Wilkinson AJ, Brady RL, et al. Expression of HIV-1 gp120 and human soluble CD4 by recombinant baculoviruses and their interaction in vitro. AIDS Research and Human Retroviruses 6: 765–773, 1990PubMedCrossRefGoogle Scholar
  83. Murphey-Corb M, Martin LN, Davison-Fairburn B, Montelaro RC, Miller M, et al. A formalin-inactivated whole SIV vaccine confers protection in macaques. Science 246: 1293–1297, 1989PubMedCrossRefGoogle Scholar
  84. Nardelli B, Lu YA, Shiu DR, Delpierre-Defoort C, Profy AT, et al. A chemically defined synthetic vaccine model for HIV-1. Journal of Immunology 148: 914–920, 1992Google Scholar
  85. Natuk RJ, Chanda PK, Lubeck MD, Davis AR, Wilhelm J, et al. Adenovirus-human immunodeficiency virus (HIV) envelope recombinant vaccines elicit high-titered HIV-neutralizing antibodies in the dog model. Proceedings of the National Academy of Sciences of the United States of America 89: 7777–7781, 1992PubMedPubMedCentralCrossRefGoogle Scholar
  86. Nixon DF, Huet S, Rothbard J, Kieny MP, Delchambre M, et al. An HIV-1 and HIV-2 cross-reactive cytotoxic T-cell epitope. AIDS 4: 841–845, 1990PubMedCrossRefGoogle Scholar
  87. Nixon DF, Townsend AR, Elvin JG, Rizza CR, Gallwey J, et al. HIV-1 gag-specific cytotoxic T lymphocytes defined with recombinant vaccinia virus and synthetic peptides. Nature 336:484–487, 1988PubMedCrossRefGoogle Scholar
  88. Norley SG, Mikschy U, Werner A, Staszewski S, Helm EB, et al. Demonstration of cross-reactive antibodies able to elicit lysis of both HIV-1- and HIV-2-infected cells. Journal of Immunology 145: 1700–1705, 1990Google Scholar
  89. Ohno T, Terada M, Yoneda Y, Shea KW, Chambers RF, et al. A broadly neutralizing monoclonal antibody that recognizes the V3 region of human immunodeficiency virus type 1 glycoprotein gp120. Proceedings of the National Academy of Sciences of the United States of America 88: 10726–10729, 1991PubMedPubMedCentralCrossRefGoogle Scholar
  90. Palker TJ, Clark ME, Langlois AJ, Matthews TJ, Weinhold KJ, et al. Type-specific neutralization of the human immunodeficiency virus with antibodies to env-encoded synthetic peptides. Proceedings of the National Academy of Sciences of the United States of America 85: 1932–1936, 1988PubMedPubMedCentralCrossRefGoogle Scholar
  91. Palker TJ, Matthews TJ, Langlois A, Tanner ME, Martin ME, et al. Polyvalent human immunodeficiency virus synthetic immunogen comprised of envelope gp120 T helper cell sites and B cell neutralization epitopes. Journal of Immunology 142: 3612–3619, 1989Google Scholar
  92. Papsidero LD, Sheu M, Ruscetti FW. Human immunodeficiency virus type 1-neutralizing monoclonal antibodies which react with p17 core protein: characterization and epitope mapping. Journal of Virology 63: 267–272, 1989PubMedPubMedCentralGoogle Scholar
  93. Prevec L, Christie BS, Laurie KE, Bailey MM, Graham FL, et al. Immune response to HIV-1 gag antigens induced by recombinant adenovirus vectors in mice and rhesus macaque monkeys. Journal of Acquired Immune Deficiency Syndromes 4: 568–576, 1991PubMedGoogle Scholar
  94. Profy AT, Salinas PA, Eckler LI, Dunlop NM, Nara PL, et al. Epitopes recognized by the neutralizing antibodies of an HIV-1-infected individual. Journal of Immunology 144: 4641–4647, 1990Google Scholar
  95. Putkonen P, Boettiger B, Warstedt K, Thorstensson R, Albert J, et al. Experimental infection of cynomolgus monkeys (Macaca fascicularis) with HIV-2. Journal of Acquired Immune Deficiency Syndromes 2: 366–373, 1989PubMedGoogle Scholar
  96. Putkonen P, Kaaya EE, Boettiger D, Li SL, Nilsson C, et al. Clinical features and predictive markers of disease progression in cynomolgus monkeys experimentally infected with simian immunodeficiency virus. AIDS 6: 257–263, 1992PubMedCrossRefGoogle Scholar
  97. Putkonen P, Thorstensson R, Ghavamzadeh L, Albert J, Hild K, et al. Prevention of HIV-2 and SIVsm infection by passive immunization in cynomolgus monkeys. Nature 352: 436–438, 1991aPubMedCrossRefGoogle Scholar
  98. Putkonen P, Thorstensson R, Walther L, Albert J, Akerblom L, et al. Vaccine protection against HIV-2 infection in cynomolgus monkeys. AIDS Research and Human Retroviruses 7: 271–277, 1991bPubMedCrossRefGoogle Scholar
  99. Putney SD, Matthews TJ, Robey WG, Lynn DL, Robert-Guroff M, et al. HTLV-III/LAV-neutralizing antibodies to an E. coli-produced fragment of the virus envelope. Science 234: 1392–1395, 1986PubMedGoogle Scholar
  100. Robinson WE, Gorny MK, Xu JY, Mitchell WM, Zolla-Pazner S. Two immunodominant domains of gp41 bind antibodies which enhance human immunodeficiency virus type 1 infection in vitro. Journal of Virology 65: 4169–4176, 1991PubMedPubMedCentralGoogle Scholar
  101. Rusche JR, Javaherian K, McDanal C, Petro J, Lynn DL, et al. Antibodies that inhibit fusion of human immunodeficiency virus-infected cells bind a 24-amino acid sequence of the viral envelope, gp120. Proceedings of the National Academy of Sciences of the United States of America 85: 3198–3202, 1988PubMedPubMedCentralCrossRefGoogle Scholar
  102. Safrit JT, Fung MS, Andrews CA, Braun DG, Sun WN, et al. Protection of Hu-PBL-SCID mice from infection with human immunodeficiency virus type 1 through passive transfer of a monoclonal antibody directed against the third variable region of the envelope gp120. Proceedings of the Fifth Annual Meeting of the National Cooperative Vaccine Development Groups for AIDS, Chantilly, Virginia, 1992Google Scholar
  103. Salk J. Prospects for the control of AIDS by immunizing seropositive individuals. Nature 327: 473–476, 1987PubMedCrossRefGoogle Scholar
  104. Sarin PS, Sun DK, Thornton AH, Naylor PH, Goldstein AL. Neutralization of HTLV-III/LAV replication by antiserum to thymosin alpha 1. Science 232: 1135–1137, 1986PubMedCrossRefGoogle Scholar
  105. Sastry KJ, Nehete PN, Venkatnarayanan S, Morkowski J, Platsoucas CD, et al. Rapid in vivo induction of HIV-specific CD8+ cytotoxic T lymphocytes by a 15-amino acid unmodified free peptide from the immunodominant V3-loop of GP120. Virology 188: 502–509, 1992PubMedCrossRefGoogle Scholar
  106. Schild H, Norda M, Deres K, Falk K, Roetzschke O, et al. Fine specificity of cytotoxic T lymphocytes primed in vivo either with virus or synthetic lipopeptide vaccine or primed in vitro with peptide. Journal of Experimental Medicine 174: 1665–1668, 1991PubMedCrossRefGoogle Scholar
  107. Schlier RD, Gnann Jr JW, Langlois AJ, Shriver K, Nelson JA, et al. B- and T-lymphocyte responses to an immunodominant epitope of human immunodeficiency virus. Journal of Virology 62: 2531–2536, 1988Google Scholar
  108. Scott CF, Silver S, Profy AT, Putney SD, Langlois A, et al. Human monoclonal antibody that recognizes the V3 region of human immunodeficiency virus gp120 and neutralizes the human T-lymphotropic virus type IIIMN strain. Proceedings of the National Academy of Sciences of the United States of America 87: 8597–8601, 1990PubMedPubMedCentralCrossRefGoogle Scholar
  109. Shafferman A, Jahrling PB, Benveniste RE, Lewis MG, Phipps TJ, et al. Protection of macaques with a simian immunodeficiency virus envelope peptide vaccine based on conserved human immunodeficiency virus type 1 sequences. Proceedings of the National Academy of Sciences of the United States of America 88: 7126–7130, 1991PubMedPubMedCentralCrossRefGoogle Scholar
  110. Shafferman A, Lewis MG, McCutchan FE, Benveniste RE, Jahrling PB, et al. Vaccination of macaques with SIV conserved envelope peptides suppressed infection and prevented disease progression and transmission. AIDS Research and Human Retroviruses 8: 1483–1487, 1992PubMedGoogle Scholar
  111. Shen L, Chen ZW, Miller MD, Stallard V, Mazzara GP, et al. Recombinant virus vaccine-induced SIV-specific CD8+ cytotoxic T lymphocytes. Science 252: 440–443, 1991PubMedCrossRefGoogle Scholar
  112. Skinner MA, Ting R, Langlois AJ, Weinhold KJ, Lyerly HK, et al. Characteristics of a neutralizing monoclonal antibody to the HIV envelope glycoprotein. AIDS Research and Human Retroviruses 4: 187–197, 1988PubMedCrossRefGoogle Scholar
  113. Stott EJ. Anti-cell antibody in macaques. Nature 353: 393, 1991PubMedCrossRefGoogle Scholar
  114. Stott EJ, Chan WL, Mills KH, Page M, Taffs F, et al. Preliminary report: protection of cynomolgus macaques against simian immunodeficiency virus by fixed infected-cell vaccine. Lancet 336: 1538–1541, 1990PubMedCrossRefGoogle Scholar
  115. Sun NC, Ho DD, Sun CR, Liou RS, Gordon W, et al. Generation and characterization of monoclonal antibodies to the putative CD4-binding domain of human immunodeficiency virus type 1 gp120. Journal of Virology 63: 3579–3585, 1989PubMedPubMedCentralGoogle Scholar
  116. Takahashi H, Cohen J, Hosmalin A, Cease KB, Houghten R, et al. An immunodominant epitope of the human immunodeficiency virus envelope glycoprotein gp160 recognized by class I major histocom patibility complex molecule-restricted murine cytotoxic T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America 85: 3105–3109, 1988PubMedPubMedCentralCrossRefGoogle Scholar
  117. Takahashi H, Takeshita T, Morein B, Putney S, Germain RN, et al. Induction of CD8+ cytotoxic T cells by immunization with purified HIV-1 envelope protein in ISCOMs. Nature 344: 873–875, 1990PubMedCrossRefGoogle Scholar
  118. Takahashi K, Dai L, Fuerst TR, Biddison WE, Earl P, et al. Definition of a conserved HLA-A3.1 restricted CTL epitope on HIV-1 gp41. Proceedings of the Seventh International Conference on AIDS. Abstract TU.A.79. Florence, Italy, 1991aGoogle Scholar
  119. Takahashi K, Dai LC, Fuerst TR, Biddison WE, Earl PL, et al. Specific lysis of human immunodeficiency virus type 1-infected cells by a HLA-A3.1-restricted CD8+ cytotoxic T-lymphocyte clone that recognizes a conserved peptide sequence within the gp41 sub-unit of the envelope protein. Proceedings of the National Academy of Sciences of the United States of America 88: 10277–10281, 1991bPubMedPubMedCentralCrossRefGoogle Scholar
  120. Takeda A, Robinson JE, Ho DD, Debouck C, Haigwood NL, et al. Distinction of human immunodeficiency virus type 1 neutralization and infection enhancement by human monoclonal antibodies to glycoprotein 120. Journal of Clinical Investigation 89: 1952–1957, 1992PubMedPubMedCentralCrossRefGoogle Scholar
  121. Tyler DS, Stanley SD, Zolla-Pazner S, Gorny MK, Shadduck PP, et al. Identification of sites within gp41 that serve as targets for antibody-dependent cellular cytotoxicity by using human monoclonal antibodies. Journal of Immunology 145: 3276–3282, 1990Google Scholar
  122. Ulmer JB, Donelly JJ, Parker SE, Rhodes GH, Feigner PL, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259: 1745–1749, 1993PubMedCrossRefGoogle Scholar
  123. Vogel M, Cichutek K, Norley S, Kurth R. Self-limiting infection by int/nef-double mutants of simian immunodeficiency virus. Virology 193: 115–123, 1993PubMedCrossRefGoogle Scholar
  124. Walker BD, Flexner C, Birch-Limberger K, Fisher L, Paradis TJ, et al. Long-term culture and fine specificity of human cytotoxic T-lymphocyte clones reactive with human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences of the United States of America 86: 9514–9518, 1989PubMedPubMedCentralCrossRefGoogle Scholar
  125. Walker BD, Plata F. Cytotoxic T lymphocytes against HIV. AIDS 4: 177–184, 1990PubMedCrossRefGoogle Scholar
  126. Wang CY, Looney DJ, Li ML, Walfield AM, Ye J, et al. Long-term high-titer neutralizing activity induced by octameric synthetic HIV-1 antigen. Science 254: 285–288, 1991PubMedCrossRefGoogle Scholar
  127. White-Scharf ME, Potts BJ, Smith LM, Sokolowski KA, Rusche JR, et al. Broadly neutralizing monoclonal antibodies to the V3 region of HIV-1 can be elicited by peptide immunization. Virology 192: 197–206, 1993PubMedCrossRefGoogle Scholar
  128. Wood L, Koenig S, Wood R, Fuerst T, Newell A, et al. Identificatio n of gp41 determinants recognized by antibodies in cytolytic assays. Abstract Th.A.79. Proceedings of the Sixth International Conference on AIDS, San Francisco, USA, 1990Google Scholar
  129. Yamamoto H, Miller MD, Tsubota H, Watkins DI, Mazzara GP, et al. Studies of cloned simian immunodeficiency virus-specific T lymphocytes, gag-specific cytotoxic T lymphocytes exhibit a restricted epitope specificity. Journal of Immunology 144: 3385–3391, 1990Google Scholar
  130. Yamamoto H, Ringler DJ, Miller MD, Yasutomi Y, Hasunuma T, et al. Simian immunodeficiency virus-specific cytotoxic T lymphocytes are present in the AIDS-associated skin rash in rhesus monkeys. Journal of Immunology 149: 728–734, 1992Google Scholar
  131. Zarling JM, Eichberg JW, Moran PA, McClure J, Sridhar P, et al. Proliferative and cytotoxic T cells to AIDS virus glycoproteins in chimpanzees immunized with a recombinant vaccinia virus expressing AIDS virus envelope glycoproteins. Journal of Immunology 139: 988–990, 1987Google Scholar

Copyright information

© Adis International Limited 1993

Authors and Affiliations

  • Stephen G. Norley
    • 1
  • Thorsten Vogel
    • 1
  • Reinhard Kurth
    • 1
  1. 1.A21, Paul-Ehrlich-InstitutLangenGermany

Personalised recommendations