Skip to main content
Log in

Quinolone Mode of Action — New Aspects

  • State-of-The-Art Presentations
  • Published:
Drugs Aims and scope Submit manuscript

Summary

The interactions of quinolones with the complex of DNA gyrase and DNA have been elucidated by the sequencing of additional mutant gyrA and gyrB genes that produce altered quinolone susceptibility. Strong patterns have emerged in Escherichia coli in which amino acids between positions 67 and 106 of the gyrase A subunit (GyrA) and at positions 426 and 447 of the gyrase B subunit (GyrB) have been consistently identified as important for quinolone action. The susceptibility patterns and changes in amino acids 426 and 447 in mutant resistant GyrB proteins suggest direct electrostatic interactions with quinolones at these positions. The small size and the polar nature of the serine at position 83 of the E. coli GyrA protein are particularly important for determining enzyme sensitivity and bacterial susceptibility to quinolones. Norfloxacin and ciprofloxacin bind most stably to a complex of DNA gyrase and DNA rather than to either component alone, and reduction of norfloxacin binding to complexes containing resistant GyrA proteins confirms the biological relevance of this direct measure of quinolone interaction with the gyrase-DNA complex. Although recent crystallographic studies have expanded and refined information about gyrase structure at the atomic level, direct determination of the sites of quinolone binding within the gyrase-DNA complex awaits further studies.

Although quinolones have little activity against E. coli topoisomerases I and III, topoisomerase IV, a recently described enzyme thought to be involved in chromosome segregation into daughter cells, has homology with GyrA and GyrB, particularly in regions important for quinolone action, and is inhibited by some quinolones in vitro. The role of topoisomerase IV in quinolone action on bacteria, however, remains to be determined. Many antibacterial quinolones are selective in their antagonism of bacterial DNA gyrase relative to its eukaryotic homologue topoisomerase II. Recently, new quinolone structures, in particular those with a 7-hydroxyphenyl or an isothiazolo ring bridging positions 2 and 3, have been shown to have enhanced activity against topoisomerase II, approaching that of other antitumour agents known to target this enzyme. Limited structure-activity relationships are emerging.

The events within the bacterial cell that determine or occur after the interaction of quinolones with the gyrase-DNA complex and that are important for bacterial killing remain elusive. In chemostat cultures, increasing growth rates result in an increasing loss of viability after exposure to quinolones. Newly divided cells appear to be particularly susceptible to quinolone killing regardless of growth rate, suggesting that killing may be maximal at certain stages of the cell cycle. Cell lysis after quinolone exposure has been associated with peptidoglycan degradation and changes in peptidoglycan composition, suggesting a role for autolysins. These findings and the concordant effects of some mutants in reducing killing by both β-lactams and quinolones suggest that for both classes of drugs there may be Some overlap in the final pathways leading to cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrett JF, Gootz TD, McGuirk PD, Farrell CA, Sokolowski SA. Use of in vitro topoisomerase II assays for studying quinolone antibacterial agents. Antimicrobial Agents and Chemotherapy 33: 1697–1703, 1989

    Article  PubMed  CAS  Google Scholar 

  • Brown PO, Peebles CL, Cozzarelli NR. A topoisomerase from Escherichia coli related to DNA gyrase. Proceedings of the National Academy of Sciences of the United States of America 76: 6110–6114, 1979

    Article  PubMed  CAS  Google Scholar 

  • Cozens RM, Markiewicz Z, Tuomanen E. Role of autolysins in the activities of imipenem and CGP 31608, a novel penem, against slowly growing bacteria. Antimicrobial Agents and Chemotherapy 33: 1819–1821, 1989

    Article  PubMed  CAS  Google Scholar 

  • Cullen ME, Wyke AW, Kuroda R, Fisher LM. Cloning and characterization of a DNA gyrase A gene from Escherichia coli that confers clinical resistance to 4-quinolones. Antimicrobial Agents and Chemotherapy 33: 886–894, 1989

    Article  PubMed  CAS  Google Scholar 

  • DiGate RJ, Marians KJ. Identification of a potent decatenating enzyme from Escherichia coli. Journal of Biological Chemistry 263: 13366–13373, 1988

    PubMed  CAS  Google Scholar 

  • Evans DJ, Allison DG, Brown MRW, Gilbert P. Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: effect of specific growth rates. Journal of Antimicrobial Chemotherapy 27: 177–184, 1991

    Article  PubMed  CAS  Google Scholar 

  • Fisher LM, Austin CA, Hopewell R, Margerrison EEC, Oram M, et al. DNA supercoiling and relaxation by ATP-dependent DNA topoisomerases. Philosophical Transactions of the Royal Society of London Series B. Biological Sciences 336: 83–91, 1992

    Article  CAS  Google Scholar 

  • Furet YX, Lucain C, Pechère J-C. Relative β-lactamase- and transpeptidase-inhibitory activities of the new quinolone WIN-57273 in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 36: 894–897, 1992

    Article  PubMed  CAS  Google Scholar 

  • Georgopapadakou NH, Bertasso A. Effects of quinolone on nucleoid segregation in Escherichia coli. Antimicrobial Agents and Chemotherapy 35: 2645–2648, 1991

    Article  PubMed  CAS  Google Scholar 

  • Hallett P, Maxwell A. Novel quinolone resistance mutations of the Escherichia coli DNA gyrase A protein: enzymatic analysis of mutant proteins. Antimicrobial Agents and Chemotherapy 35: 335, 1991

    Article  PubMed  CAS  Google Scholar 

  • Holden HE, Barrett JF, Huntington CM, Nuehlbauer PA, Wahrenburg MG. Genetic profile of a nalidixic acid analog: a model for the mechanism of sister chromatid exchange induction. Environmental and Molecular Mutagenesis 13: 238–252, 1989

    Article  PubMed  CAS  Google Scholar 

  • Hooper DC, Wolfson JS. Mode of action of the new quinolones: new data. European Journal of Clinical Microbiology and Infectious Diseases 10: 223–231, 1991

    Article  CAS  Google Scholar 

  • Hoshino K, Sato K, Akahane K, Yoshida A, Hayakawa I, et al. Significance of the methyl group on the oxazine ring of ofloxacin derivatives in the inhibition of bacterial and mammalian type II topoisomerases. Antimicrobial Agents and Chemotherapy 35: 309–312, 1991

    Article  PubMed  CAS  Google Scholar 

  • Hoshino K, Sato K, Une T, Osada Y. Inhibitory effects of quinolones on DNA gyrase of Escherichia coli and topoisomerase II of fetal calf thymus. Antimicrobial Agents and Chemotherapy 33: 1816–1818, 1989

    Article  PubMed  CAS  Google Scholar 

  • Hussain K, Elliott EJ, Salmond GPC. The ParD mutant of Escherichia coli also carries a gyrA am mutation. The complete sequence of gyrA. Molecular Microbiology 1: 259–273, 1987

    CAS  Google Scholar 

  • Hussy P, Maass G, Tummler B, Grosse F, Schomburg U. Effect of 4-quinolones and novobiocin on calf thymus DNA polymerase α primase, topoisomerases I and II, and growth of mammalian lymphoblasts. Antimicrobial Agents and Chemotherapy 29: 1073–1078, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kato J-I, Nishimura Y, Imamura R, Niki H, Hiraga S, et al. New topoisomerase essential for chromosome segregation in E. coli. Cell 63: 393–404, 1990

    CAS  Google Scholar 

  • Kato J-I, Nishimura Y, Suzuki H. Escherichia coli parA is an allele of the gyrB gene. Molecular and General Genetics 217: 178–181, 1989

    Article  PubMed  CAS  Google Scholar 

  • Kato J-I, Nishimura Y, Yamada M, Suzuki H, Hirota Y. Gene organization in the region containing a new gene involved in chromosome partition in Escherichia coli. Journal of Bacteriology 170: 3967–3977, 1988

    PubMed  CAS  Google Scholar 

  • Kato J-I, Suzuki H, Ikeda H. Purification and characterization of DNA topoisomerase IV in Escherichia coli. Journal of Biological Chemistry 267: 25676–25684, 1992

    PubMed  CAS  Google Scholar 

  • Kirchhausen T, Wang JC, Harrison SC. DNA gyrase and its complexes with DNA: direct observation by electron microscopy. Cell 41: 933–943, 1985

    Article  PubMed  CAS  Google Scholar 

  • Kitano K, Tuomanen E, Tomasz A. Transglycosylase and endopeptidase participate in the degradation of murein during autolysis of Escherichia coli. Journal of Bacteriology 167: 759–765, 1986

    PubMed  CAS  Google Scholar 

  • Klevan L, Wang JC. A DNA-DNA gyrase complex containing 140 base pairs of DNA and an α2β2 protein core. Biochemistry 19: 5229–5234, 1980

    Article  PubMed  CAS  Google Scholar 

  • Kohlbrenner WE, Wideburg N, Weigl D, Saldivar A, Chu DTW. Induction of calf thymus topoisomerase II-mediated DNA breakage by the antibacterial isothiazoloquinolones A-65281 and A-65282. Antimicrobial Agents and Chemotherapy 36: 81–86, 1992

    Article  PubMed  CAS  Google Scholar 

  • Lewin CS, Howard BMA, Smith JT. Protein- and RNA-synthesis independent bactericidal activity of ciprofloxacin that involves the A subunit of DNA gyrase. Journal of Medical Microbiology 34: 19–22, 1991a

    Article  PubMed  CAS  Google Scholar 

  • Lewin CS, Morrissey I, Smith JT. The mode of action of quinolones: the paradox in activity of low and high concentrations and activity in the anaerobic environment. European Journal of Clinical Microbiology and Infectious Diseases 10: 240–248, 1991b

    Article  CAS  Google Scholar 

  • Lynn R, Giaever G, Swanberg SL, Wang JC. Tandem regions of yeast DNA topoisomerase II share homology with different subunits of bacterial gyrase. Science 233: 647–649, 1986

    Article  PubMed  CAS  Google Scholar 

  • Marians KJ. DNA gyrase-catalyzed decatenation of multiply linked DNA dimers. Journal of Biological Chemistry 262: 10362–10368, 1987

    PubMed  CAS  Google Scholar 

  • Maxwell A. The molecular basis of quinolone action. Journal of Antimicrobial Chemotherapy 30: 409–414, 1992

    Article  PubMed  CAS  Google Scholar 

  • Moyed HS, Bertrand KP. hipA, a newly recognised gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. Journal of Bacteriology 155: 768–775, 1983

    PubMed  CAS  Google Scholar 

  • Oram M, Fisher LM. 4-quinolone resistance mutations in the DNA gyrase of Escherichia coli clinical isolates identified by using the polymerase chain reaction. Antimicrobial Agents and Chemotherapy 35: 387–389, 1991

    Article  PubMed  CAS  Google Scholar 

  • Reece RJ, Dauter Z, Wilson KS, Maxwell A, Wigley DB. Preliminary crystallographic analysis of the breakage-reunion domain of the Escherichia coli DNA gyrase A protein. Journal of Molecular Biology 215: 493–495, 1990

    Article  PubMed  CAS  Google Scholar 

  • Reece RJ, Maxwell A. DNA gyrase: structure and function. Critical Reviews in Biochemistry and Molecular Biology 26: 335–375, 1991a

    Article  PubMed  CAS  Google Scholar 

  • Reece RJ, Maxwell A. Probing the limits of the DNA breakage-reunion domain of Escherichia coli DNA gyrase A protein. Journal of Biological Chemistry 266: 3540–3546, 1991b

    PubMed  CAS  Google Scholar 

  • Robinson MJ, Martin BA, Gootz TD, McGuirk PR, Moynihan M, et al. Effects of quinolone derivatives on eukaryotic topoisomerase II. A novel mechanism for enhancement of enzyme-mediated DNA cleavage. Journal of Biological Chemistry 266: 14585–14592, 1991

    CAS  Google Scholar 

  • Robinson MJ, Martin BA, Gootz TD, McGuirk PR, Osheroff N. Effects of novel fluoroquinolones on the catalytic activities of eukaryotic topoisomerase II: influence of the C-8 fluorine group. Antimicrobial Agents and Chemotherapy 36: 751–756, 1992

    Article  PubMed  CAS  Google Scholar 

  • Ronda C, Garcia JL, Garcia E, Sanchez-Puelles JM, Lopez R. Biological role of pneumococcal amidase. Cloning of the lytA gene in Streptococcus pneumoniae. European Journal of Biochemistry 164: 621–624, 1987

    CAS  Google Scholar 

  • Shen LL, Kohlbrenner WE, Weigl D, Baranowski J. Mechanism of quinolone inhibition of DNA gyrase. Journal of Biological Chemistry 264: 2973–2978, 1989

    PubMed  CAS  Google Scholar 

  • Smith JT. Mutational resistance to 4-quinolone antibacterial agents. European Journal of Clinical Microbiology 3: 347–350, 1984

    Article  PubMed  CAS  Google Scholar 

  • Steck TR, Drlica K. Bacterial chromosome segregation: evidence for DNA gyrase involvement in decatenation. Cell 36: 1081–1088, 1984

    Article  PubMed  CAS  Google Scholar 

  • Tabary X, Moreau N, Dureuil C, LeGoffic F. Effect of DNA gyrase inhibitors pefloxacin, five other quinolones, novobiocin and clorobiocin on Escherichia coli topoisomerase I. Antimicrobial Agents and Chemotherapy 31: 1925–1928, 1987

    Article  PubMed  CAS  Google Scholar 

  • Turner FJ, Ringel SM, Martin JF, Storino PJ, Daly JM, et al. Oxolinic acid, a new synthetic antimicrobial agent. I. In vitro and in vivo activity. Antimicrobial Agents and Chemotherapy 7: 475–479, 1968

    Google Scholar 

  • Uemura T, Morikawa K, Yanagida M. The nucleotide sequence of the fission yeast DNA topoisomerase II gene: structural and functional relationships to other DNA topoisomerases. EMBO Journal 5: 2355–2361, 1986

    PubMed  CAS  Google Scholar 

  • Vincent S, Glauner B, Gutmann L. Lytic effect of two fluoroquinolones, ofloxacin and pefloxacin, on Escherichia coli W7 and its consequences on peptidoglycan composition. Antimicrobial Agents and Chemotherapy 35: 1381–1385, 1991

    Article  PubMed  CAS  Google Scholar 

  • Wigley DB, Davies GJ, Dodson EJ, Maxwell A, Dodson G. Crystal structure of an N-terminal fragment of the DNA gyrase B protein. Nature 351: 624–629, 1991

    Article  PubMed  CAS  Google Scholar 

  • Willmott CJR, Hallett P, Maxwell P. The interaction of quinolones with wild-type and quinolone-resistant DNA gyrase. Abstract 25, p. 27. 3rd Conference on DNA Topoisomerases in Therapy, New York, October 15–18, 1990

    Google Scholar 

  • Willmott CJR, Maxwell A. A single point mutation in the DNA gyrase A protein greatly reduces binding of fluoroquinolones to the gyrase-DNA complex. Antimicrobial Agents and Chemotherapy 37: 126–127, 1993

    Article  PubMed  CAS  Google Scholar 

  • Wolfson JS, Hooper DC, McHugh GL, Bozza MA, Swartz MN. Mutants of Escherichia coli K-12 exhibiting reduced killing by both quinolone and β-lactam antimicrobial agents. Antimicrobial Agents and Chemotherapy 34: 1938–1943, 1990

    Article  PubMed  CAS  Google Scholar 

  • Wolfson JS, Hooper DC, Shih DJ, McHugh GL, Swartz MN. Isolation and characterization of an Escherichia coli strain exhibiting partial tolerance to quinolones. Antimicrobial Agents and Chemotherapy 33: 705–709, 1989

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi J, Yoshida H, Yamayoshi M, Nakamura S. Nalidixic acid-resistant mutations of the gyrB gene of Escherichia coli. Molecular General Genetics 204: 367–373, 1986

    Article  PubMed  CAS  Google Scholar 

  • Yamashita Y, Ashizawa T, Morimoto M, Hosomi J, Nakano H. Antitumor quinolones with mammalian topoisomerase II mediated DNA cleavage activity. Cancer Research 52: 2818–2822, 1992

    PubMed  CAS  Google Scholar 

  • Yoshida H, Bogaki M, Nakamura M, Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrobial Agents and Chemotherapy 34: 1271–1272, 1990

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Bogaki M, Nakamura M, Yamanaka LM, Nakamura S. Quinolone resistance-determining region of the DNA gyrase gyrB gene of Escherichia coli. Antimicrobial Agents and Chemotherapy 35: 1647–1650, 1991

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Kojima T, Yamagishi J, Nakamura S. Quinolone-resistant mutations of the gyrA gene of Escherichia coli. Molecular General Genetics 211: 1–7, 1988

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This review is dedicated to the memory of John S. Wolfson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hooper, D.C. Quinolone Mode of Action — New Aspects. Drugs 45 (Suppl 3), 8–14 (1993). https://doi.org/10.2165/00003495-199300453-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199300453-00004

Keywords

Navigation