Advertisement

Drugs

, Volume 41, Issue 1, pp 1–10 | Cite as

Where Are We in the Quest for Vaccines for Malaria?

  • Wasim A. Siddiqui
Leading Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison AC, Eugui EM. The role of cell-mediated immune responses in resistance to malaria, with special reference to oxidant stress. Annual Review of Immunology 1: 361, 1983PubMedCrossRefGoogle Scholar
  2. Anders RF. Multiple cross-reactivities amongst antigens of Plasmodium falciparum impair the development of protective immunity against malaria. Parasite Immunology 8: 529–539, 1986PubMedCrossRefGoogle Scholar
  3. Anders RF, Smythe JA, Barzaga NG, Forsyth KP, Brown HJ, et al. Antigenic diversity of the asexual blood stages of Plasmodium falciparum. In McAdam (Ed.) New strategies in parasitology, pp. 19–36, 1989Google Scholar
  4. Arnon R. Synthetic vaccines. In Roit IM (Ed.) New trends in vaccines, Vol. 93, Academic Press, London, 1984Google Scholar
  5. Audibert F, Jolivet M, Chedid L, Arnon R, Sela M. Successful immunization with a totally synthetic diphtheria vaccine. Proceedings of the National Academy of Sciences of the USA 79: 5042–5046, 1982PubMedCrossRefGoogle Scholar
  6. Ballou WR, Rothbard J, Wirz RA, Gordon DM, Williams JS, et al. Immunogenicity of synthetic peptides from the circumsporozoite protein of Plasmodium falciparum.Science 228: 996–999, 1985PubMedCrossRefGoogle Scholar
  7. Ballou WR, Hoffman SL, Sherwood JA, Hollingdale MR, Neva FA, et al. Safety and efficacy of recombinant DNA Plasmodium falciparumsporozoite vaccine. Lancet 1: 1277–1280, 1987PubMedCrossRefGoogle Scholar
  8. Bomford R. The comparative selectivity of adjuvants for humoral and cell-mediated immunity. I. Effect on the antibody response to bovine serum albumin and sheep red blood cells of Freund’s complete and incomplete adjuvants, alhydrogel, Cornybacterium parvum, Bordetella pertussis, muramyl dipeptide and saponin. Clinical and Experimental Immunology 39: 435–441, 1980PubMedGoogle Scholar
  9. Bomford R. Adjuvants for anti-parasitic vaccines. Parasitology Today 5: 41–46, 1989PubMedCrossRefGoogle Scholar
  10. Brake DA, Weidanz WP, Long CA. Antigen-specific, Interleukin 2-propagated T lymphocytes confer resistance to a murine malarial parasite, Plasmodium chabaudi adami.Journal of Immunology 137: 347–352, 1986Google Scholar
  11. Brake DA, Goldring JPD, Weidanz WP, Long CA. Characterization of cellular and humoral responses of T lymphocytes reconstituted athymic mice infected with Plasmodium chabaudi adami.Federation Proceedings 46: 618–621, 1987Google Scholar
  12. Brown IN. Immunological aspects of malaria infection. Advances in Immunology 11: 267–349, 1969PubMedCrossRefGoogle Scholar
  13. Brown GV, Culvenor IG, Crewther PE, Bianco AE, Coppel RL, et al. Localization of the ring infected erythrocyte surface antigen (RESA) of Plasmodium falciparumin merozoites and ring infected erythrocytes. Journal of Experimental Medicine 162: 774–779, 1985PubMedCrossRefGoogle Scholar
  14. Camus D, Hadley TJ. A Plasmodium falciparumantigen that binds to host erythrocytes and merozoites. Science 230: 553–556, 1985PubMedCrossRefGoogle Scholar
  15. Carter R, Gwadz RW. Infectiousness and gamete immunization in malaria. In Kreier JP (Ed.) Malaria, Vol. 3, Academic Press, New York, 1980Google Scholar
  16. Carter R, Graves PM, Quakyi IA, Good MF. Restricted or absent immune responses in human populations to Plasmodium falciparum gamete antigens that are targets of malaria transmission-blocking antibodies. Journal of Experimental Medicine 169: 135–147, 1989PubMedCrossRefGoogle Scholar
  17. Chang SP, Kramer KJ, Yamaga KM, Kato A, Case SE, Siddiqui WA. Plasmodium falciparum: gene structure and hydropathy profile of the major merozoite surface antigen (gp195) of the Uganda-Palo Alto isolate. Experimental Parasitology 67: 1–11, 1988PubMedCrossRefGoogle Scholar
  18. Chang SP, Hui GSN, Kato A, Siddiqui WA. Generalized immunological recognition of the major merozoite surface antigen (gp195) of Plasmodium falciparum.Proceedings of the National Academy of Science 86: 6343–6347, 1989CrossRefGoogle Scholar
  19. Cheung A, Leban J, Shaw AR, Merkli B, Stocken J, et al. Immunization with synthetic peptides of a Plasmodium falciparumsurface antigen induced antimerozoite antibodies. Proceedings of the National Academy of Science (USA) 83: 8328–8332, 1986CrossRefGoogle Scholar
  20. Chizzolini C, Dupont A, Akue JP, Kaufmann MH, Verdini As, et al. Natural antibodies against three distinct and defined antigens of Plasmodium falciparumin residents of a mesoendemic area in Gabon. American Journal of Tropical Medicine and Hygiene 39: 150–156, 1988PubMedGoogle Scholar
  21. Clark IA, Chaudhri G, Cowden WB. Roles of tumor necrosis factor in the illness and pathology of malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 83: 436–440, 1989PubMedCrossRefGoogle Scholar
  22. Clyde DF, Most H, McCarthy V, Vanderberg JP. Immunization of man against sporozoite-induced falciparum malaria. American Journal of Medical Science 266: 169–177, 1973CrossRefGoogle Scholar
  23. Cochrane AH, Nussenzweig RS, Nardin EH. Immunization against sporozoites. In Kreier JP (Ed.) Malaria, Vol. 3, Academic Press, New York, 1980Google Scholar
  24. Cohen S, McGregor IA, Carrington SC. Gammaglobulin and acquired immunity to human malaria. Nature 192: 733–735, 1961PubMedCrossRefGoogle Scholar
  25. Cohen S, Mitchell GH. Prospects for immunisation against malaria. Current Topics in Microbiology and Immunology 80: 97–137, 1978PubMedCrossRefGoogle Scholar
  26. Collins WE, Anders RF, Pappaioanou M, Brown GV, Kemp DJ, et al. Immunization of Aotusmonkeys with recombinant proteins of an erythrocyte surface antigen of P. falciparum.Nature 323: 259–262, 1986PubMedCrossRefGoogle Scholar
  27. Crisanti A, Muller H, Hilbich C, Sinigaglia F, Matile H, et al. Epitopes recognized by human T cells map within the conserved part of the GP190 of P. falciparum.Science 240: 1324–1326, 1988PubMedCrossRefGoogle Scholar
  28. Dame JB, Williams JL, McCutchan TF, Weber JL, Wirtz RA, et al. Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum.Science 225: 593–599, 1984PubMedCrossRefGoogle Scholar
  29. Del Giudice G, Copper JA, Merino J, Verdini AS, Pessi A, et al. The antibody response in mice to carrier free synthetic polymers of Plasmodium falciparumcircumsporozoite repetitive epitope is I-Abrestricted: possible implications for malaria vaccines. Journal of Immunology 137: 2952–2955, 1986Google Scholar
  30. Del Giudice G, Engers HD, Tougne C, Biro SS, Weiss N, et al. Antibodies to the repetitive epitope of Plasmodium falciparumcircumsporozoite protein in a rural Tanzanian community: a longitudinal study. American Journal of Tropical Medicine and Hygiene 36: 203–212, 1987PubMedGoogle Scholar
  31. Delplace P, Dubremetz JF, Fortner B, Vernes A. A 50 kilodalton exoantigen specific to the merozoite release reinvasion stage of Plasmodium falciparum.Molecular and Biochemical Parasitology 17: 239–251, 1985PubMedCrossRefGoogle Scholar
  32. Edelman T. Vaccine adjuvants. Review of Infections Research 2: 370–383, 1980Google Scholar
  33. Enea V, Ellis J, Zavala F, Arnot DE, Asanavich A, et al. DNA cloning of Plasmodium falciparumcircumsporozoite gene: amino-acid sequence of repetitive epitope. Science 225: 628–629, 1984PubMedCrossRefGoogle Scholar
  34. Favaloro JM, Coppel RL, Corcoran LM, Foote SJ, Brown GV, et al. Structure of the RESA gene of Plasmodium falciparum.Nucleic Acid Research 14: 8265–8277, 1986CrossRefGoogle Scholar
  35. Gabra MS, Grossiord D, Perrin LH, Shaw A, Cheung A, et al. Defined Plasmodium falciparumantigens in malaria serology. Bulletin World Health Organization 64: 889–896, 1986Google Scholar
  36. Good MF, Berzofsky JA, Maloy WL, Hayashi Y, Fujii N, et al. Genetic control of the immune response in mice to a Plasmodium falciparumsporozoite vaccine: widespread non-responsiveness to single malaria T epitope in highly repetitive vaccine. Journal of Experimental Medicine 164: 655–660, 1986PubMedCrossRefGoogle Scholar
  37. Good MF, Maloy WL, Lunde MN, Margalit H, Cornette JL, et al. Construction of synthetic immunogen: use of new T-helper epitope on malaria circumsporozoite protein. Science 235: 1059–1062, 1987PubMedCrossRefGoogle Scholar
  38. Good MF, Pombo D, Quakyi I, Riley EM, Houghten RA, et al. Human T-cell recognition of the circumsporozoite protein of Plasmodium falciparum: immunodominant T-cell domains map to the polymorphic regions of the molecule. Proceedings of the National Academy of Sciences of the USA 85: 1199–1203, 1988aPubMedCrossRefGoogle Scholar
  39. Good MF, Miller LH, Kumar S, Quakyi IA, Keister D, et al. Limited immunological recognition of critical malaria vaccine candidate antigens. Science 242: 574–577, 1988bPubMedCrossRefGoogle Scholar
  40. Good MF, Rombo D, Lunde MN, Maloy WL, Halenbeck R, et al. Recombinant human IL-2 overcomes genetic non-responsiveness to malaria sporozoite peptides. Journal of Immunology 141: 972–977, 1988cGoogle Scholar
  41. Grau GE, Fajardo LF, Piquet PF, Allet B, Lamberst PH, Vassali P. Tumor necrosis factor (cachectin) as an essential mediator in m urine cerebral malaria. Science 237: 1210–1212, 1987PubMedCrossRefGoogle Scholar
  42. Graves PM, Carter R, Burkot TR, Rener J, Kaushal DC, et al. Effects of transmission-blocking monoclonal antibodies on different isolates of Plasmodium falciparum.Infection and Immunity 48: 611–616, 1985PubMedGoogle Scholar
  43. Graves PM, Carter R, Burkot TR, Quakyi IA, Kumar N. Antibodies to Plasmodium falciparumgamete surface antigens in Papua New Guinea sera. Parasite Immunology 10: 209–218, 1988PubMedCrossRefGoogle Scholar
  44. Hall R, Hyde JE, Goman D, Simmons DL, Hope IA, et al. Major surface antigen gene of a human malaria parasite cloned and expressed in bacteria. Nature 311: 379–382, 1984PubMedCrossRefGoogle Scholar
  45. Heidrich HG. Plasmodium falciparumantigens as target molecules for a protective immunization against malaria: an up-to-date review. Zeitschrift für Parasitenkunde 72: 1–11, 1986PubMedCrossRefGoogle Scholar
  46. Herrera S, Herrera MA, Perlaza BL, Burki Y, Caspers P, et al. Immunization of Aotusmonkeys with Plasmodium falciparumblood-stage recombinant proteins. Proceedings of the National Academy of Science (USA) 87: 4017–4021, 1990CrossRefGoogle Scholar
  47. Herrington DA, Clyde DF, Losonsky G, Cortesia M, Murphy JR, et al. Safety and immunogenicity in man of a synthetic peptide malaria vaccine against Plasmodium falciparumsporozoites. Nature 328: 257–259, 1987PubMedCrossRefGoogle Scholar
  48. Holder AA, Freeman RR. Biosynthesis and processing of a Plasmodium falciparumschizont antigen recognized by immune serum and monoclonal antibody. Journal of Experimental Medicine 156: 1528–1538, 1982PubMedCrossRefGoogle Scholar
  49. Holder AA, Lockyer MJ, Odink KG, Sandhu JS, Riveros-Moreno V, et al. Primary structure of the precursor to the three major surface antigens of Plasmodiumfalciparummerozoites. Nature 317: 270–273, 1985PubMedCrossRefGoogle Scholar
  50. Holder AA, Freeman RF, Uni S, Aikawa M. Isolation of a Plasmodiumfalciparumrhoptry protein. Molecular and Biochemical Parasitology 14: 293–303, 1985PubMedCrossRefGoogle Scholar
  51. Holder AA, Freeman RR, Nicholls SC. Immunization against Plasmodiumfalciparumwith recombinant polypeptides produced in Escherichiacoli.Parasite Immunology 10: 607–617, 1988PubMedCrossRefGoogle Scholar
  52. Hommel M, Semoff S. Expression and function of erythrocyte-associated surface antigens in malaria. Biology of the Cell 64: 183–208, 1988PubMedCrossRefGoogle Scholar
  53. Hui GSN, Chang SP, Tarn LQ, Case WE, Hashiro C, et al. Characterization of antibody responses induced by different synthetic adjuvants to the Plasmodiumfalciparummajor merozoite surface precursor protein, gp195. In Chanock TM et al. (Eds) Vaccine 90, pp. 477–484, Cold Spring Laboratory, New York, 1990Google Scholar
  54. Kaslow DC, Quakyi IA, Syin C, Raum MG, Keister DB, et al. A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains. Nature 333: 74–76, 1988PubMedCrossRefGoogle Scholar
  55. Kemp DJ, Coppel RL, Anders RF. Repetitive proteins and genes of malaria. Annual Review of Microbiology 41: 181–208, 1987PubMedCrossRefGoogle Scholar
  56. Klotz FW, Hudson DE, Coon HG, Miller LH. Vaccination induced variation in the 140KD merozoite surface antigen of Plasmodiumknowlesimalaria. Journal of Experimental Medicine 165: 359–367, 1987PubMedCrossRefGoogle Scholar
  57. Leech JH, Barnwell JW, Miller LH, Howard RJ. Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. Journal of Experimental Medicine 159: 1567–1575, 1PubMedCrossRefGoogle Scholar
  58. Lew AM, Anders RF, Edwards SJ, Langford CJ. Comparison of antibody avidity and titer elicited by peptide as a protein conjugate or as expressed in vaccinia. Immunology 65: 311–314, 1988PubMedGoogle Scholar
  59. Lew AM, Langford CJ, Pye D, Edwards S, Corcoran L, et al. Class II restriction in mice to the malaria candidate vaccine ring infected erythrocyte surface antigen (RESA) as synthetic peptides or as expressed in recombinant vaccinia. Journal of Immunology 142: 4012–4016, 1989Google Scholar
  60. Lockyer MJ, Schwarz RT. Strain variation in the circumsporozoite protein gene of Plasmodiumfalciparum.Molecular and Biochemical Parasitology 22: 101–108, 1987PubMedCrossRefGoogle Scholar
  61. Lyon JA, Geller RH, Haynes JD, Chulay JD, Weber JL. Epitope map and processing scheme for the 195,000-dalton surface glycoprotein of Plasmodiumfalciparummerozoite deduced from cloned overlapping segments of the gene. Proceedings of the National Academy of Science (USA) 83: 2989–2993, 1986CrossRefGoogle Scholar
  62. Mackay M, Goman M, Bone N, Hyde JE, Scaife J, et al. Polymorphism of the precursor for the major surface antigens of Plasmodiumfalciparummerozoites: studies at the genetic level. European Molecular Biology Journal 4: 3823–3829, 1985Google Scholar
  63. Majarian WM, Daly TM, Weidanz WP, Long CA. Passive immunization against murine malaria with an IgG3monoclonal antibody. Journal of Immunology 132: 3131–3137, 1984Google Scholar
  64. Marsh K, Howard RJ. Antigens induced on erythrocytes by Plasmodiumfalciparum: expression of diverse and conserved determinants. Science 231: 150–153, 1986PubMedCrossRefGoogle Scholar
  65. McBride JS, Newbold CI, Anand R. Polymorphism of a high molecular weight schizont antigen of the human malaria parasite Plasmodiumfalciparum.Journal of Experimental Medicine 161: 160–180, 1985PubMedCrossRefGoogle Scholar
  66. McPherson GG, Warrell MJ, White NJ, Looaresuwan S, Warrell D. Human cerebral malaria: a quantitative ultrastructural analysis of parasitized erythrocyte sequestration. American Journal of Pathology 119: 385–401, 1985Google Scholar
  67. Mendis KN, Munesinghe YD, Silva NY, Keragalla I, Carter R. Malaria transmision-blocking immunity induced by natural infections of Plasmodiumvivaxin humans. Infection and Immunity 55: 369–372, 1987PubMedGoogle Scholar
  68. Miller LH, David PH, Hadley TJ. Perspectives for malaria vaccination. Philosophical Transactions of the Royal Society, B, 307: 99–115, 1984CrossRefGoogle Scholar
  69. Miller L, Good MF. The main obstacle to a malaria vaccine: the malaria parasite. Vaccine 6: 104–106, 1988PubMedCrossRefGoogle Scholar
  70. Mitchell GH, Butcher GA, Richards WHG, Cohen S. Merozoite vaccination of douroucouli monkeys against falciparum malaria. Lancet 1: 1335–1338, 1977PubMedCrossRefGoogle Scholar
  71. Mitchell GH. Vaccination against malaria: its plausibility and the present state of research. Vaccine 2: 115–123, 1984PubMedCrossRefGoogle Scholar
  72. Mitchell GH. An update on candidate malaria vaccines. Parasitology 98 (Suppl.): 29–47, 1989CrossRefGoogle Scholar
  73. Nardin EH, Nussenzweig RS, McGregor IA, Bryan JH. Antibodies to sporozoites: their frequent occurrence in individuals living in an area of hyperendemic malaria. Science 206: 597–599, 1979PubMedCrossRefGoogle Scholar
  74. Nardin EH, Barr PJ, Heimer E, Etlinger HM. Genetic restriction of the murine humoral response to a recombinant Plasmodiumvivaxcircumsporozoite protein. European Journal of Immunology 18: 1119–1122, 1988PubMedCrossRefGoogle Scholar
  75. Nussenzweig RS, Vanderberg J, Most H, Orton, C. Specificity of protective immunity induced by x-irradiated .Pbergheisporozoites. Nature 222: 488–489, 1969PubMedCrossRefGoogle Scholar
  76. Nussenzweig RS, Nussenzweig V. Development of sporozoite vaccine. Philosophical Transactions of the Royal Society, B, 307: 117–128,1984CrossRefGoogle Scholar
  77. Nussenzweig V, Nussenzweig RS. Development of a sporozoite malaria vaccine. American Journal of Tropical Medicine and Hygiene 35: 678–688, 1986PubMedGoogle Scholar
  78. Patarroyo ME, Romero P, Torres ML, Clavijo P, Moreno A, et al. Induction of protective immunity against experimental infection with malaria using synthetic peptides. Nature 328: 629–632, 1987PubMedCrossRefGoogle Scholar
  79. Patarroyo ME, Amador R, Clavijo P, Moreno A, Guzman F, et al. A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodiumfalciparummalaria. Nature 332: 158–160, 1988PubMedCrossRefGoogle Scholar
  80. Perlmann H, Berzins K, Wahlgren M, Carlsson J, Bjorkman A, et al. Antibodies in malarial sera to parasite antigens in the membrane of erythrocytes infected with early stages of Plasmodiumfalciparum.Journal of Experimental Medicine 159: 1686–1704, 1984PubMedCrossRefGoogle Scholar
  81. Perlmann P, Wigzell H. Malaria immunology, progress in allergy, Vol. 41, Karger, Basel, 1988Google Scholar
  82. Perlmann P, Berzins K, Perlmann H, Troye-Blomberg M, Wahlgren M, et al. Malaria vaccines: immunogen selection and epitope mapping. Vaccine 6: 183–187, 1988PubMedCrossRefGoogle Scholar
  83. Perrin L, Dayal R. Immunity to asexual erythrocytic stages of Plasmodiumfalciparum: role of defined antigens in humoral response. Immunological Review 61: 245–270, 1982CrossRefGoogle Scholar
  84. Perrin LH, Merkli B, Loche M, Chizzolini C, Smart J, et al. Antimalarial immunity in Saimirimonkeys: immunization with surface components of asexual blood stages. Journal of Experimental Medicine 160: 441–446, 1984PubMedCrossRefGoogle Scholar
  85. Perrin LH, Simitsek PH, Srivastava I. Development of malaria vaccines. Tropical and Geographical Medicine 40 (Suppl.): 6–21, 1988Google Scholar
  86. Peters W. Malaria vaccination: two steps forward, one backward. British Medical Journal 287: 1089–1090, 1983PubMedCrossRefGoogle Scholar
  87. Playfair JHL, Taverne J, Bate CAW, DeSouza JB. The malaria vaccine: anti-parasitic or anti-disease? Immunology Today 11: 25–27, 1990PubMedCrossRefGoogle Scholar
  88. Quakyi IA, Carter R, Rener J, Kumar N, Good MF, et al. The 230-kDa gamete surface protein of Plasmodiumfalciparumis also a target for transmission-blocking antibodies. Journal of Immunology 139: 4213–4217, 1987Google Scholar
  89. Quakyi IA, Otoo LN, Pombo D, Sugars LVY, Menon A, et al. Differential non-responsiveness in humans of candidate Plasmodiumfalciparumvaccine antigens. American Journal of Tropical Medicine and Hygiene 41: 125–134, 1989PubMedGoogle Scholar
  90. Ravetch JV, Kochan J, Perkins M. Isolation of the gene for a glycophorin-binding protein implicated in erythrocyte invasion by a malaria parasite. Science 227: 1593–1597, 1985PubMedCrossRefGoogle Scholar
  91. Rener J, Graves PM, Carter R, Williams JL, Burkot TR. Target antigens of transmission blocking immunity or gametes of Plasmodiumfalciparum.Journal of Experimental Medicine 158: 976–981, 1983PubMedCrossRefGoogle Scholar
  92. Richards RL, Hayre MD, Hockmeyer WT, Alving CR. Liposomes, Lipid A, and aluminum hydroxide enhance the immune response to a synthetic malaria sporozoite antigen. Infection and Immunity 56: 682–686, 1988PubMedGoogle Scholar
  93. Roberts DW, Rank RG, Weidanz WP, Finerty JF. Prevention of recrudescent malaria in nude mice by thymic grafting or by treatment with hyperimmune serum. Infection and Immunity 16: 821–826, 1977PubMedGoogle Scholar
  94. Rodriguez MH, Jungery M. A protein on Plasmodiumfalciparwm-infected erythrocytes functions as a transferrin receptor. Nature 324: 388–391, 1986PubMedCrossRefGoogle Scholar
  95. Romero PJ, Tarn JP, Schlesinger D, Clavijo P, Barr J, et al. Multiple T-helper cell epitopes of the circumsporozoite protein of Plasmodiumberghei.European Journal of Immunology 18: 1951, 1988PubMedCrossRefGoogle Scholar
  96. Romero P, Maryanski JL, Corradin G, Nussenzweig RS, Nussenzweig V, et al. Cloned cytotoxic T-cells recognize an epitope in the circumsporozoite (CS) protein and protect against malaria. Nature 341: 323–326, 1989PubMedCrossRefGoogle Scholar
  97. Rosenberg R, Wirtz RA, Lanar DE, Sattabongkot J, Hall T, et al. Circumsporozoite protein heterogeneity in the human malaria parasite Plasmodiumvivax.Science 245: 973–976, 1989PubMedCrossRefGoogle Scholar
  98. Siddiqui WA. An effective immunization of experimental monkeys against a human malaria parasite, Plasmodiumfalciparum.Science 197: 388–389, 1977PubMedCrossRefGoogle Scholar
  99. Siddiqui WA. Immunization against asexual blood-inhabiting stages of Plasmodia In Kreier JP (Ed.) Malaria, Vol. 3, Academic Press, New York, 1980Google Scholar
  100. Siddiqui WA, Tarn LQ, Kramer KJ, Hui GSN, Case SE, et al. Merozoite surface coat precursor protein completely protects Aotusmonkeys against Plasmodiumfalciparummalaria. Proceedings of the National Academy of Science (USA) 84: 3014–3018, 1987CrossRefGoogle Scholar
  101. Siddiqui WA, Tarn LQ. Role of adjuvants in malaria vaccines. In Masihi KN & Lange W (Eds) Advances in the biosciences, Vol. 68, pp. 293–298, Pergamon Press, 1988Google Scholar
  102. Singh B, Ho M, Looareesuwan S, Mathai E, Warrell DA, Hommel M. Plasmodiumfalciparum: inhibition/ reversal of cytoadherence of Thai isolates to melanoma cells by local immune sera. Clinical and Experimental Immunology 72: 145–150, 1988PubMedGoogle Scholar
  103. Sinigaglia F, Takacs B, Jacot H, Matile H, Pink JRL, et al. Non-polymorphic region of p190, a protein of the Plasmodiumfalciparumerythrocyte stage, contain both T and B cell epitopes. Journal of Immunology 140: 3568–3572, 1988Google Scholar
  104. Tarn JP, Clavijo P, Lu Y, Nussenzweig V, Nussenzweig RS, et al. Incorporation of T and B epitopes of the circumsporozoite protein in a chemically defined synthetic vaccines against malaria. Journal of Experimental Medicine 171: 299–306, 1990CrossRefGoogle Scholar
  105. Trager W, Jensen JB. Human malaria parasites in continuous culture. Science 193: 673–675, 1976PubMedCrossRefGoogle Scholar
  106. Troye-Blomberg M, Perlmann P. T-cell functions in Pfalciparumand other malarias. Progress in Allergy 41: 253, 1988PubMedGoogle Scholar
  107. Udeinya IJ, Miller LH, McGregor IA, Jensen JB. Plasmodiumfalciparumstrain specific antibodies block binding of infected erythrocytes to amelanomic melanoma cells. Nature 303: 429–431, 1983PubMedCrossRefGoogle Scholar
  108. Vermeulen AN, Ponnudurai T, Beckers PJA, Verhave JP, Smits MA, et al. Sequential expression of antigens on sexual stages of Plasmodiumfalciparumaccessible to transmission-blocking antibodies in the mosquito. Journal of Experimental Medicine 162: 1460–1476, 1985PubMedCrossRefGoogle Scholar
  109. Vosika GJ, Barr C, Gilbertson D. Phase-I study of intravenous modified lipid A. Cancer Immunology and Immunotherapy 18: 107–112, 1984PubMedGoogle Scholar
  110. Walliker D. The genetic basis of diversity in malaria parasites. Advances in Parasitology 22: 217–259, 1983PubMedCrossRefGoogle Scholar
  111. Walliker D. Genetic recombination in malaria parasites. Experimental Parasitology 69: 303–309, 1989PubMedCrossRefGoogle Scholar
  112. Warrell DA, Looareesuwan S, Warrell MJ, Kasemsarn P, Intar-aprasert R, et al. Dexamethasone proves deleterious in cerebral malaria: a double-blind trial in 1000 comatose patients. New England Journal of Medicine 306: 313, 1982PubMedCrossRefGoogle Scholar
  113. Weber JL, Leininger WM, Lyon JA. Variation in the gene encoding a major merozoite surface antigen of the human malaria parasite Plasmodium falciparum. Nucleic Acids Research 14: 3311–3323, 1986PubMedCrossRefGoogle Scholar
  114. Weidanz WP, Long CA. The role of T cells in immunity to malaria. In Perlmann P & Wigzell H (Eds) Malaria immunology, progress in allergy, Vol. 41, pp. 215–252, 1988Google Scholar
  115. Weinbaum FI, Evans CB, Tigelaar RE. An in-vitro assay for T-cell immunity to malaria. Journal of Immunology 116: 1280–1283, 1976Google Scholar
  116. Weiss WR, Sedegah M, Beaudoin RL, Miller LH, Good MF. CD8+ T cells (cytotoxic/suppressors) are required for protection in mice immunized with malaria sporozoites. Proceedings of the National Academy of Science (USA) 85: 573–576, 1988CrossRefGoogle Scholar
  117. Zavala F, Cochrane AH, Nardin EH, Nussenzweig RS, Nussenzweig V. Circumsporozoite proteins of malaria parasites contain a single immunodominant region with two or more identified epitopes. Journal of Experimental Medicine 157: 1947–1957, 1983PubMedCrossRefGoogle Scholar
  118. Zavala F, Tarn JP, Hollingdale MR, Cochrane AH, Quakyi I, et al. Rationale for the development of a synthetic vaccine against Plasmodium falciparum sporozoites. Science 228: 1436–1440, 1985PubMedCrossRefGoogle Scholar
  119. Zavala F, Tarn JP, Masuda A. Synthetic peptide for the detection of humoral immunity to Plasmodium falciparum sporozoites. Journal of Immunological Methods 93: 55–61, 1986PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 1991

Authors and Affiliations

  • Wasim A. Siddiqui
    • 1
  1. 1.Department of Tropical Medicine and Medical MicrobiologyUniversity of Hawaii, Leahi HospitalHonoluluUSA

Personalised recommendations