Advertisement

Drugs

, Volume 31, Supplement 3, pp 55–63 | Cite as

Plasmid-Mediated β-Lactamase in Branhamella catarrhalis

  • Carl Kamme
  • Ingvar Eliasson
  • Barbro Kahl Knutson
  • Martin Vang
Section 2: β-Lactamases of Branhamella catarrhalis

Summary

The plasmid-mediated β-lactamase in Branhamella catarrhalis (BRO-1), also occurring in Moraxella nonliquefaciens, differs from other known plasmid-mediated β-lactamases in Gram-negative bacteria regarding substrate profile and isoelectric point.

B. catarrhalis strains previously reported to produce β-lactamases deviating from BRO-1 were tested, and the β-lactamases did not differ significantly from BRO-1 in substrate profile, isoelectric point or relative substrate affinity index (RSAI). Further investigations of strains of various geographic origin should be undertaken. RSAI seems to be a useful tool for screening of β-lactamases in B. catarrhalis since values for a large number of strains can easily be determined.

The previously reported conjugational transfer of BRO-1 production within species B. catarrhalis and from M. nonliquefaciens to B. catarrhalis was confirmed. Four bands of extrachromosomal DNA were regularly detected by agarose gel electrophoresis in β-lactamase-producing as well as in β-lactamase-negative strains of B. catarrhalis and M. non-liquefaciens, provided that the excessive nuclease activity in the preparations was inhibited.

Keywords

Antimicrobial Chemotherapy Sulbactam Sodium Perchlorate Large Plasmid Mecillinam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambler RP, Scott GK. Partial amino acid sequence of penicillinase coded by Escherichia coli plasmid R6K. Proceedings of the National Academy of Sciences, USA 75: 3732–3736, 1978CrossRefGoogle Scholar
  2. Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acid Research 7: 1513–1523, 1979CrossRefGoogle Scholar
  3. Buu Hoi-Dang Van A, Brive-Le Bouguenec C, Barthelemy M, Labia R. Novel beta-lactamase from Branhamella catarrhalis. Annales de Microbiologie 129B: 397–406, 1978Google Scholar
  4. Eliasson I, Kamme C. Characterization of the plasmid-mediated β-lactamase in Branhamella catarrhalis, with special reference to substrate affinity. Journal of Antimicrobial Chemotherapy 15: 139–149, 1985CrossRefPubMedGoogle Scholar
  5. Eliasson I, Kamme C, Prellner K. Prevalence and transfer of β-lactamase production in the upper respiratory tract flora. A study of fifty children undergoing adenoidectomy. In press, 1986Google Scholar
  6. Elwell LP, De Graaff J, Seibert D, Falkow S. Plasmid-linked ampicillin resistance in Haemophilus influenzae type b. Infection and Immunity 12: 404–410, 1975PubMedGoogle Scholar
  7. van Embden JDA, van Klingeren B, Dessens-Kroon M, van Wijngaarden LJ. Penicillinase-producing Neisseria gonorrhoeae in the Netherlands: Epidemiology and genetic and molecular characterization of their plasmids. Antimicrobial Agents and Chemotherapy 18: 789–797, 1980CrossRefPubMedGoogle Scholar
  8. Farmer T, Reading C. Beta-lactamases of Branhamella catarrhalis and their inhibition by clavulanic acid. Antimicrobial Agents and Chemotherapy 21: 506–508, 1982CrossRefPubMedGoogle Scholar
  9. Kamme C, Vang M, Ståhl S. Transfer of beta-lactamase production in Branhamella catarrhalis. Scandinavian Journal of Infectious Diseases 15: 225–226, 1983PubMedGoogle Scholar
  10. Kamme C, Vang M, Ståhl S. Intrageneric and intergeneric transfer of Branhamella catarrhalis β-lactamase production. Scandinavian Journal of Infectious Diseases 16: 153–155, 1984CrossRefPubMedGoogle Scholar
  11. Labia R, Guionie M, Barthélémy M, Philippon A. Properties of three carbenicillin-hydrolysing β-lactamases (CARB) from Pseudomonas aeruginosa: identification of a new enzyme. Journal of Antimicrobial Chemotherapy 7: 49–56, 1981CrossRefPubMedGoogle Scholar
  12. Levesque R, Roy P, Letarte R, Pechere J-C. A plasmid-mediated cephalosporinase from Achromobacter species. Journal of Infectious Diseases 145: 753–761, 1982CrossRefPubMedGoogle Scholar
  13. Matthew M, Hedges RW, Smith JT. Types of beta-lactamase determined by plasmid in gram-negative bacteria. Journal of Bacteriology 138: 657–662, 1979PubMedGoogle Scholar
  14. Medeiros AA. β-Lactamases. British Medical Bulletin 40: 18–27, 1984PubMedGoogle Scholar
  15. Medeiros AA, Cohenfors M, Jacoby GA. Five novel plasmid-de-termined β-lactamases. Antimicrobial Agents and Chemotherapy 27: 715–719, 1985CrossRefPubMedGoogle Scholar
  16. Meyers JA, Sanchez D, Elwell LP, Falkow S. Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. Journal of Bacteriology 127: 1529–1537, 1976PubMedGoogle Scholar
  17. Percival A, Corkill JE, Rowlands J, Sykes RB. Pathogenicity of and beta-lactamase production by Branhamella (Neisseria) catarrhalis. Lancet 2: 1175, 1977CrossRefPubMedGoogle Scholar
  18. Pintado C, Salvador C, Rotger R, Nombela C. Multiresistance plasmid from commensal Neisseria strains. Antimicrobial Agents and Chemotherapy 1: 120–124, 1985CrossRefGoogle Scholar
  19. Piot P, Roberts M. Beta-lactamase production in commensal Neisseriaceae. Lancet 1: 619, 1979CrossRefPubMedGoogle Scholar
  20. Rubin LG, Medeiros AA, Yolken RH, Moxon ER. Ampicillin treatment failure of apparently β-lactamase-negative Haemophilus influenzae type b meningitis due to novel β-lactamase. Lancet 2: 1008–1010, 1981CrossRefPubMedGoogle Scholar
  21. Simpson IN, Plested SJ. The origin and properties of beta-lactamase satellite bands seen in isoelectric focusing. Journal of Antimicrobial Chemotherapy 12: 127–131, 1983CrossRefPubMedGoogle Scholar
  22. Simpson IN, Plested SJ, Budin-Jones MJ, Lees J, Hedges RW, et al. Characterization of a novel plasm id-mediated β-lactamase and its contribution to β-lactam resistance in Pseudomonas aeruginosa. FEMS Microbiology Letters 19: 23–27, 1983Google Scholar
  23. Stobberingh EE, Davies BI, van Boven CPA. Branhamella catarrhalis: antibiotic sensitivities and β-lactamases. Journal of Antimicrobial Chemotherapy 13: 55–64, 1984CrossRefPubMedGoogle Scholar
  24. Takahashi I, Tsukamoto K, Harada M, Sawai T. Carbenicillinhydrolysing penicillinases of Proteus mirabilis and the PSE-type penicillinases of Pseudomonas aeruginosa. Microbiology and Immunology 27: 995–1004, 1983PubMedGoogle Scholar
  25. Thorne G, Farrar Jr EF. Transfer of ampicillin resistance between strains of Haemophilus influenzae type B. Journal of Infectious Diseases 132: 276–281, 1975CrossRefPubMedGoogle Scholar

Copyright information

© ADIS Press Limited 1986

Authors and Affiliations

  • Carl Kamme
    • 1
  • Ingvar Eliasson
    • 1
  • Barbro Kahl Knutson
    • 1
  • Martin Vang
    • 1
  1. 1.Departments of Medical Microbiology and MicrobiologyUniversity of LundLundSweden

Personalised recommendations