Drugs

, Volume 30, Supplement 1, pp 49–58 | Cite as

Natriuretic Effect and Changes in Renal Haemodynamics Induced by Enalapril in Essential Hypertension

  • R. A. Sánchez
  • E. Marcó
  • H. B. Gilbert
  • P. Raffaele
  • M. Brito
  • M. Giménez
  • L. I. Moledo
Section 2: Enalapril: Pharmacodynamic Findings and Therapeutic Efficacy in Hypertension and Heart Failure

Summary

The purpose of this study was to evaluate the natriuretic effect and renal haemodynamic changes induced by enalapril in patients with essential hypertension. In a group of 11 patients with mild to moderate hypertension with normal renal function, and on a controlled sodium intake (80 mmol/day), a decrease in systolic and diastolic blood pressure was observed (p <0.001) after 16 weeks of enalapril treatment (20 mg/day), without a change in heart rate. An increase in plasma renin activity (p <0.05) without changes in serum aldosterone, and a decrease in exchangeable sodium (p <0.001) were present at the end of the treatment period.

In 10 hypertensive patients also taking a dietary sodium of 80 mmol/day, the renal haemodynamics, humoral changes, and urinary sodium excretion were measured during 4 days of enalapril treatment (20 mg/day). There was an increase in urinary sodium excretion on the 3rd and 4th days of treatment (p < 0.01). The effective renal plasma flow and fractional sodium excretion increased 72 hours after the beginning of treatment (p < 0.01); the glomerular filtration rate did not change, and filtration fraction decreased at 72 hours. Mean blood pressure fell 2 hours after the first dose (p <0.01), and the maximum drop in intrarenal vascular resistance occurred after 72 hours of treatment (p <0.01). Plasma renin activity increased (p < 0.05) and serum aldosterone decreased (p <0.01) 2 hours after the first dose. Thereafter, serum aldosterone increased progressively until it reached values similar to those with placebo at 48 and 72 hours of treatment. Urinary kallikrein fell during the 2nd and 3rd day of treatment (p <0.01). It was concluded that the decrease in exchangeable sodium was due to a natriuretic effect of enalapril. This effect presumably results from renal haemodynamic changes due to the reduction of angiotensin II. Other mechanisms, such as the reduction of aldosterone and accumulation of kinins, could be contributory factors.

Keywords

Aldosterone Captopril Enalapril Plasma Renin Activity Renal Artery Stenosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, G.H.; Springer, J.; Tivnan, E.; Kearney, H. and Streeten, D.H.P.: Hypotensive mechanism of captopril. Clinical Research 28: 328A(1980).Google Scholar
  2. Atkinson, A.B.; Brown, J.J.; Fraser, R.; Leckie, B.; Lever, A.F.; Morton, J.J. and Robertson, J.I.S.: Captopril, angiotensin II and sodium in blood pressure regulation. Lancet 1: 1140 (1979).PubMedCrossRefGoogle Scholar
  3. Atkinson, A.B. and Robertson, J.I.S.: Captopril in the treatment of clinical hypertension and cardiac failure. Lancet 2: 836–839 (1979).PubMedCrossRefGoogle Scholar
  4. Atkinson, A.B.; Morton, J.J.; Brown, J.J.; Davies, D.L.; Kelly, P.; Leckie, B.; Lever, A.F. and Robertson, J.I.S.: Captopril in clinical hypertension. Changes in components of the renin-angiotensin system and in body composition in relation to fall in blood pressure with a note on measurement of angiotensin II during converting enzyme inhibition. British Heart Journal 44: 290–296 (1980).PubMedCrossRefGoogle Scholar
  5. Atlas, S.A.; Case, D.B.; Sealey, J.E.; Laragh, J.H. and McKinstry, D.N.: Interruption of the renin-angiotensin system in hypertensive patients by captopril induces sustained reduction in aldosterone secretion, potassium retention and natriuresis. Hypertension 1: 274–280 (1979).PubMedCrossRefGoogle Scholar
  6. Biollaz, J.; Brunner, H.R.; Gavras, I.; Waeber, B. and Gavras, H.: Antihypertensive therapy with MK 421: Angiotensin II-renin relationships to evaluate efficacy of converting enzyme blockade. Journal of Cardiovascular Pharmacology 4: 966–972 (1982).PubMedCrossRefGoogle Scholar
  7. Brown, J.J.; Casals-Stenzel, J.; Cumming, A.M.M.; Davies, D.L.; Fraser, R.; Lever, A.F.; Morton, J.J.; Semple, P.F.; Tree, M. and Robertson, J.I.S.: Angiotensin II, aldosterone and arterial pressure: A quantitative approach. Hypertension 1: 159–179 (1979).PubMedCrossRefGoogle Scholar
  8. Brunner, D.B.; Desponds, G.; Biollaz, J.; Keller, I.; Ferber, F.; Gavras, H.; Brunner, H.R. and Schelling, J.L.: Effect of a new angiotensin converting enzyme inhibitor MK-421 and its lysine analogue on the components of the renin system in healthy subjects. Journal of Cardiovascular Pharmacology 11: 461–467 (1981).Google Scholar
  9. Brunner, H.R.; Gavras, H.; Waeber, B.; Korshow, G.R.; Turini, G.A.; Vukovich, R.A.; McKinstry, D.N. and Gavras, I.: Oral angiotensin converting inhibitor in long-term treatment of hypertensive patients. Annals of Internal Medicine 90: 19–23 (1979).PubMedGoogle Scholar
  10. Brunner, H.R.; Gavras, H.; Waeber, B.; Textor, S.G.; Turini, G.A. and Wanters, J.P.: Clinical use of an orally acting converting enzyme inhibitor: Captopril. Hypertension 2: 558–564 (1980).PubMedCrossRefGoogle Scholar
  11. Brunner, H.R.; Waeber, B.; Nussberg, J.; Schaller, M.D. and Gomez, H.J.: Long-term clinical experience with enalapril in essential hypertension. Journal of Hypertension 1 (Suppl. 1): 103–107(1983).PubMedCrossRefGoogle Scholar
  12. Case, D.B.; Atlas, S.A.; Laragh, J.H.; Sealey, J.E.; Sullivan, P.A. and McKinstry, D.M.: Clinical experience with blockade of the renin-angiotensin-aldosterone system by an oral converting enzyme inhibitor (S.Q. 14224, captopril) in hypertensive patients. Progress in Cardiovascular Diseases 21: 195–206 (1978).PubMedCrossRefGoogle Scholar
  13. Claeson, G.; Friberger, E.; Knos, O. and Eriksson, E.: Methods for determinations of prekallikrein in plasma, glandular kallikrein and urokinase. Haemostasis 7: 76–78 (1978).PubMedGoogle Scholar
  14. Cody, R.J.; Laragh, J.H.; Atlas, S.A. and Case, D.B.: Converting enzyme inhibition to identify and treat renin-mediated or sodium volume related forms of increased peripheral resistance in hypertension and in congestive heart failure. Journal of Hypertension 1 (Suppl. 1): 77–84(1983).PubMedGoogle Scholar
  15. Davies, D.L.; Beevers, D.G.; Brown, J.J.; Cumming, A.M.M.; Fraser, R.; Lever, A.F.; Mason, P.A.; Morton, J.J.; Robertson, J.I.S.; Titterington, M. and Tree, M.: Aldosterone and its stimuli in normal and hypertensive man: Are essential hypertension and primary hyperaldosteronism without tumour the same condition? Journal of Endocrinology 81: 79P-91P (1979Google Scholar
  16. de Leeuw, P.W.; Hoogma, R.P.L.M.; van Soest, G.A.W.; van Es, P.N. and Birkenhäger, W.H.: Physiological effects of short-term treatment with enalapril in hypertensive patients. Journal of Hypertension 1 (Suppl. 1): 87–91 (1983).PubMedGoogle Scholar
  17. de Zeeuw, D.; Navis, G.J.; Donker, A.J.M. and deJong, P.E.: The angiotensin converting enzyme inhibitor enalapril and its effects on renal function. Journal of Hypertension 1 (Suppl. 1): 93–97 (1983).PubMedGoogle Scholar
  18. Edwards, R.M.: Response of isolated renal microvessels to inraluminal pressure, norepinephrine and angiotensin II. Abstracts of the 15th Annual Meeting of the American Society of Nephrology, Chicago p. 150 (1982).Google Scholar
  19. Fitzpatrick, D.; Nicholls, M.G.; Ikram, H. and Espiner, E.A.: Acute haemodynamic, hormonal and electrolyte effects and short-term clinical response to enalapril in heart failure. Jourrraf of Hypertension 1 (Suppl. 1): 147–153 (1983).Google Scholar
  20. Fraser, R.; Brown, J.J.; Lever, A.F.; Mason, P.A. and Robertson, J.I.S.: Control of aldosterone secretion. Clinical Science 56: 389–392 (1979).PubMedGoogle Scholar
  21. Gavras, H.; Gavras, I.; Textor, S.; Volices, L.; Brunner, H.R. and Rolieska, E.J.: Effect of angiotensin converting enzyme inhibition on blood pressure, plasma renin activity and plasma aldosterone in essential hypertension. Journal of Clinical Endocrinology and Metabolism 46: 220–226 (1978).PubMedCrossRefGoogle Scholar
  22. Gavras, H.; Biollaz, J.; Waeber, B.; Brunner, H.R.; Gavras, I. and Davies, R.D.: Antihypertensive effect of the new oral angiotensin converting enzyme inhibitor ‘MK-421’. Lancet 2: 543–547 (1981).PubMedCrossRefGoogle Scholar
  23. Giménez, M.; Grunfeld, B.; Simsolo, R.; Mendilharzu, F.; Barontini, M. and Becú, L.: Kalicreína urinaria en distintas formas de hipertensión en pediatria. Medicina (Buenos Aires) 42: 736–737 (1982).Google Scholar
  24. Hall, J.E.; Guyton, A.C.; Trippodo, N.C.; Lohmeier, T.E.; McCaa, R.E. and Cowley, A.W.: Intrarenal control of electrolyte excretion by angiotensin II. American Journal of Physiology 233: F538–F544 (1977).Google Scholar
  25. Hall, J.E.; Coleman, T.G.; Guyton, A.C.; Balfe, J.W. and Salgado, H.C.: Intrarenal role of angiotensin II and (des-Asp1) angiotensin II. American Journal of Physiology 236: F252–F259 (1979).PubMedGoogle Scholar
  26. Hodsman, G.P.; Brown, J.J.; Cumming, A.M.M.; Davies, D.L.; East, B.W.; Lever, A.F.; Morton, J.J.; Murray, G.D. and Robertson, J.I.S.: Enalapril (MK-421) in the treatment of hypertension with renal artery stenosis. Journal of Hypertension 1 (Suppl. 1): 109–117 (1983).PubMedGoogle Scholar
  27. Hollenberg, N.K.; Swartz, J.L.; Passan, D.R. and Williams, G.H.: Increased glomerular filtration rate after converting enzyme inhibition. New England Journal of Medicine 301: 9–12 (1979).PubMedCrossRefGoogle Scholar
  28. Hollenberg, N.K.; Meggs, L.G.; Williams, G.H.; Katz, J.; Garnic, J.D. and Harrington, D.P.: Sodium intake and renal responses to captopril in normal man and in essential hypertension. Kidney International 20: 240–245 (1981).PubMedCrossRefGoogle Scholar
  29. Hollenberg, N.K. and Williams, G.H.: Volume control and altered renal and adrenal responsiveness to angiotensin in essential hypertension: Implications for treatment with converting enzyme inhibition. Journal of Hypertension 1 (Suppl. 1): 119–128 (1983).PubMedGoogle Scholar
  30. Hricik, D.E.; Browning, P.J.; Kopeleman, R.; Goormo, W.E.; Madias, N.E. and Dzau, V.J.: Captopril induced functional renal insufficiency in patients with bilateral renal artery stenosis or renal artery stenosis in a solitary kidney. New England Journal of Medicine 308: 373–376 (1983).PubMedCrossRefGoogle Scholar
  31. Johnston, C.I.; McGrath, B.P.; Millar, J.A. and Matthews, P.G.: Long-term effects of captopril (SQ 14225) on blood pressure and hormone levels in essential hypertension. Lancet 2: 493–495 (1979).PubMedCrossRefGoogle Scholar
  32. Johnston, C.I.; McGrath, B.P.; Matthews, P.G. and Jackson, B.: Treatment of hypertension with angiotensin converting enzyme inhibitors. Clinical and Experimental Pharmacology and Physiology 7 (Suppl.): 135–144 (1982).Google Scholar
  33. Karlberg, B.E.; Ohman, K.P.; Nilsson, O.R. and Wettre, S.: Captopril lowers urinary kallikrein in hypertensive patients. Lancet 1: 150–151 (1980).PubMedCrossRefGoogle Scholar
  34. Kjekshus, J.K.; Syland, E.; Dickstein, K.; Abrahamsen, A.M. and Gundersen, T.: Sustained haemodynamic effects of enalapril in left ventricular failure. Journal of Hypertension 1 (Suppl. 1): 143–145(1983).PubMedGoogle Scholar
  35. Levens, N.R.; Peach, M.J. and Casey, R.M.: Role of the intrarenal renin-angiotensin system in the control of renal function. Circulation Research 48: 157–167 (1981).PubMedCrossRefGoogle Scholar
  36. MacGregor, G.A.; Markandu, N.D.; Bayliss, J.; Roulston, J.E.; Squires, M. and Morton, J.J.: Non sulphydryl containing angiotensin converting enzyme inhibitor (MK-421); evidence for a role of renin system in normotensive subjects. British Medical Journal 23: 401–403 (1981).CrossRefGoogle Scholar
  37. McCaa, R.E.; Hall, J.E. and McCaa, C.S.: The effects of angiotensin I converting enzyme inhibitors on arterial blood pressure and urinary sodium excretion. Role of renal renin-angiotensin and kallikrein-kinin systems. Circulation Research 43 (Suppl. 1): 32–39(1978).Google Scholar
  38. Meggs, L.G. and Hollenberg, N.K.: Converting enzyme inhibition and the kidney. Hypertension 2: 551–557 (1980).PubMedCrossRefGoogle Scholar
  39. Morganti, A.; Pickering, T.G.; Lopez Ovejero, J.A. and Laragh, J.H.: Endocrine and cardiovascular influences of converting enzyme inhibition with SQ 14225 in hypertensive patients in the supine position and during head-up tilt before and after sodium depletion. Journal of Clinical Endocrinology and Metabolism 50: 748–754(1980).PubMedCrossRefGoogle Scholar
  40. Ondetti, M.A.; Rubin, B. and Cushman, D.W.: Design of specific inhibitors of angiotensin converting enzyme. Science 196: 441–444 (1977).PubMedCrossRefGoogle Scholar
  41. Osgood, R.W.; Reineck, H.J. and Stein, J.H.: Effect of volume expansion on sodium transport in the proximal tubule of juxtamedullary nephrons. Clinical Research 25: 444A-450A (1977).Google Scholar
  42. Romankiewicz, J.A.; Brogden, R.N.; Heel, R.C.; Speight, T.M. and Avery, G.S.: Captopril: An update review of its pharmacological properties and therapeutic efficacy in congestive heart failure. Drugs 25: 6–40 (1983).PubMedCrossRefGoogle Scholar
  43. Sánchez, R.A.; Cavarra, O.; Brea, S.A.; Marcó, E.J.; Ravera, M. and Moledo, L.I.: Actividad renínica plasmática en la hipertensión esencial. Medicina (Buenos Aires) 39: 171–177 (1979).Google Scholar
  44. Sánchez, R.A.; Marco, E.J.; Brea, S.A.; Bourges, M.M.; Gilbert, B.H. and Moledo, L.I.: Sodio total intercambiable en la hipertensión esencial e hipertensión con insuficiencia renal crónica. Medicina (Buenos Aires) 41: 153–156 (1981).Google Scholar
  45. Schnurr, E.; Lahme, W. and Kuppers, H.: Measurement of renal clearance of inulin and PAH in the steady state without urine collection. Clinical Nephrology 13: 26–29 (1980).PubMedGoogle Scholar
  46. Shoback, D.M.; Williams, G.H.; Swartz, S.L.; Davies, R.O. and Hollenberg, N.K.: Time course and effect of sodium intake on vascular and hormonal responses to enalapril (MK-421) in normal subjects. Journal of Cardiovascular Pharmacology 5: 1010–1018 (1983).PubMedCrossRefGoogle Scholar
  47. Simon, G.; Morioka, S.; Snyder, D.K. and Cohn, J.N.: Increased renal plasma flow during long-term treatment of essential hypertension with MK-421. (Abstract 660.) Circulation 66: 166 (1982).CrossRefGoogle Scholar
  48. Smith, H.W.; Goldring, W. and Chasis, H.: The measurement of the tubular excretory mass, effective blood flow and filtration rate in the normal human kidney. Journal of Clinical Investigation 17: 263–278 (1938).PubMedCrossRefGoogle Scholar
  49. Staessen, J.; Lijnen, P.; Fagard, R.; Verschueren, L.J. and Amery, A.: Rise of plasma aldosterone during long-term captopril treatment. New England Journal of Medicine 304: 1110 (1981).PubMedGoogle Scholar
  50. Stein, J.H.; Osgood, R.W. and Kunau, R.T.: Direct measurement of papillary collecting duct sodium transport in the rat: Evidence for heterogeneity of nephron function during Ringer’s loading. Journal of Clinical Investigation 58: 767–773 (1976).PubMedCrossRefGoogle Scholar
  51. Swartz, S.L.; Williams, G.H.; Hollenberg, N.F.; Grantz, F.R.; Moore, T.J.; Levine, L.; Sadahra, A.A. and Dluhy, R.G.: Endocrine profile in the long-term phase of converting enzyme inhibition. Clin. Pharmacol, and Ther. 28: 499–504 (1980).CrossRefGoogle Scholar
  52. Sweet, C.S.; Gaul, S.L.; Reitz, P.M.; Blaine, E.H. and Ribeiro, L.T.: Mechanism of action of enalapril in experimental hypertension and acute left ventricular failure. Journal of Hypertension 1 (Suppl. 1): 53–63 (1983).PubMedGoogle Scholar
  53. Taylor, T.; Moore, T.J.; Hollenberg,N.K. and Williams, G.H.: Converting-enzyme inhibition corrects the altered adrenal response to angiotensin II in essential hypertension. Hypertension 6: 92–99 (1984).PubMedCrossRefGoogle Scholar
  54. Underwood, R.H. and Williams, G.H.: The simultaneous measurement of aldosterone cortisol and corticosterone in human peripheral plasma by displacement analysis. Journal of Laboratory and Clinical Medicine 79: 848–862 (1972).PubMedGoogle Scholar
  55. Waeber, B.; Brunner, H.R.; Brunner, D.B.; Curtet, A.; Turini, G.A. and Gavras, H.: Discrepancy between antihypertensive effect and angiotensin converting enzyme inhibition by captopril. Hypertension 2: 236–242 (1980).PubMedCrossRefGoogle Scholar
  56. Wenting, G.J.; Man Int’Veld, A.J.; Woitteuz, A.J.; Boomsma, F.; Laird-Meeter, K.; Simoons, M.L.; Hugenholtz, P.G. and Schalekamp, M.A.D.: Effects of captopril in acute and chronic heart failure. Correlations with plasma levels of noradrenaline, renin and aldosterone. British Heart Journal 49: 65–73 (1983).PubMedCrossRefGoogle Scholar
  57. Zimmerman, B.G. and Wong, P.C.: Alterations in renal function produced by angiotensin converting enzyme inhibitors; in Horovitz (Ed.) Angiotensin Converting Enzyme Inhibitors, pp. 239–253 (Urban and Schwarzenberg, Baltimore 1981).Google Scholar

Copyright information

© ADIS Press Limited 1985

Authors and Affiliations

  • R. A. Sánchez
    • 1
  • E. Marcó
    • 1
  • H. B. Gilbert
    • 1
  • P. Raffaele
    • 1
  • M. Brito
    • 1
  • M. Giménez
    • 1
  • L. I. Moledo
    • 1
  1. 1.Academia Nacional de Medicina and Hospital de Ninos Ricardo GutierrezHospital Instituto de CardiologiaBuenosArgentina

Personalised recommendations