, Volume 29, Supplement 5, pp 234–239 | Cite as

The Place of Temocillin in the Treatment of Hospital Infections

  • J. D. Williams
  • H. Y. Chen
Section 6: The Place of Temocillin in Clinical Practice


Infection due to Gram-negative bacteria continues to be a common problem in the hospital environment, for which a wide variety of antibiotics is available. Among Enterobacteria, resistance is expressed most commonly via β-lactamases. Temocillin is the first penicillin to show stability to β-lactamases of Gram-negative bacteria, therefore it is in this type of infection that the initial assessments of temocillin should be made.


Piperacillin Carbenicillin Cefoperazone Temocillin Hospital Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Breuer, H.; Cimarusti, CM.; Denszel, T.; Koster, W.H.; Slusarchyk, W.A. and Treuner, U.D.: Monobactams — structure-activity relationships leading to SQ 26,776. Journal of Antimicrobial Chemotherapy 8(Suppl. E): 21–28 (1981).PubMedGoogle Scholar
  2. Chen, H.Y. and Williams, J.D.: Temocillin compared to ampicillin against Haemophilus influenzae and with other penicillins against intestinal aerobic Gram-negative rods. Journal of Antimicrobial Chemotherapy 10: 279–287 (1982).PubMedCrossRefGoogle Scholar
  3. Duckworth, G.J. and Williams, J.D.: Frequency of appearance of resistant variants to norfloxacin and nalidixic acid. Journal of Antimicrobial Chemotherapy 13(Suppl. 13): 33–38 (1984).PubMedGoogle Scholar
  4. Ito, A.; Hirai, K.; Inoue, M.; Koga, H.; Suzue, S.; Irikura, T. and Mitsuhashi, S.: In vitro activity of AM-715, a new nalidixic acid analog. Antimicrobial Agents and Chemotherapy 17: 103–108 (1980).PubMedCrossRefGoogle Scholar
  5. Jules, K. and Neu, H.C.: Antibacterial activity and beta-lactamase stability of temocillin. Antimicrobial Agents and Chemotherapy 22: 453–460 (1982).PubMedCrossRefGoogle Scholar
  6. Kropp, K.; Sundelof, J.G.; Kahan, J.B.; Kahan, F.M. and Birnbaum, J.: MK0787 (N-formimidoyl thienamycin): Evaluation of in vitro and in vivo activities. Antimicrobial Agents and Chemotherapy 17: 993–1000 (1980).PubMedCrossRefGoogle Scholar
  7. Slocombe, B.; Basker, M.J.; Bentley, P.H.; Clayton, J.P.; Cole, M.; Comber, K.R.; Dixon, R.A.; Edmondson, R.A.; Jackson, D.; Mierrikin, D.J. and Sutherland, R.: BRL 17421, a novel beta-lactam antibiotic, highly resistant to beta-lactamases, giving high and prolonged serum levels in humans. Antimicrobial Agents and Chemotherapy 20: 38–46 (1981).PubMedCrossRefGoogle Scholar
  8. Sykes, R.B.; Cimarusti, CM.; Bonner, D.P.; Bush, K.; Floyd, D.M.; Georgopapadakou, N.H.; Koster, W.H.; Liu, W.C.; Parker, W.L.; Principe, P.A. and Rathnum, M.L.: Monocyclic beta-lactam antibiotics produced by bacteria. Nature 291: 489–491 (1981).PubMedCrossRefGoogle Scholar
  9. Whitaker, S.; Hajipieris, P. and Williams, J.D.: Distribution and type of beta-lactamase amongst 1,000 Gram-negative rod bacteria; in Spitzy et al. (Eds) Proceedings of the 13th International Congress of Chemotherapy, Vienna, Austria, 1983.Google Scholar
  10. Williams, R.J.; Lindridge, M.A.; Said, A.A.; Livermore, D.M. and Williams, J.D.: National survey of antibiotic resistance in Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy 14: 9–16 (1984b).PubMedCrossRefGoogle Scholar
  11. Williams, R.J.; Livermore, D.M.; Lindridge, M.A.; Said, A.A. and Williams, J.D.: Mechanism of beta-lactam resistance in British isolates of Pseudomonas aeruginosa. Journal of Medical Microbiology 17: 283–293 (1984a).PubMedCrossRefGoogle Scholar

Copyright information

© ADIS Press Limited 1985

Authors and Affiliations

  • J. D. Williams
    • 1
  • H. Y. Chen
    • 1
  1. 1.Department of Medical MicrobiologyThe London Hospital Medical CollegeLondonEngland

Personalised recommendations