Skip to main content
Log in

Psychotherapeutic Drugs and Biogenic Amines

Current Concepts and Therapeutic Implications

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Over the last 2 decades evidence has continued to accumulate from studies in various model systems that drugs effective in the treatment of major psychiatric disorders alter biogenic amines which function as neurotransmitters. As a result of these findings, various hypotheses have been formulated that there is a fundamental abnormality of one or another of the biogenic amine systems (i.e. the serotonergic, noradrenergic and dopaminergic systems) in the affective disorders and schizophrenia. Numerous attempts have been made to assess these biogenic amine hypotheses, primarily through quantitation of the major metabolites of the amines and recently by assessment of receptor sensitivity or density. The combination of basic pharmacological and clinical research has shown that there are biochemical subtypes, especially among those with affective illness, which might show a preferential response to biochemically specific drugs. If verified, such research constitutes a significant therapeutic advance. The status of these investigations is critically assessed in this review.

Finally, many new techniques, challenge tests and biochemically distinct drugs are being introduced. Promising approaches that are likely to produce refinements of the biogenic amine hypotheses, as well as suggesting alternative formulations, are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Abert-Wistedt, A.; Ross, S.B.; Josteil, K.G. and Sjöqvist, B.: A double-blind study of zimelidine, a serotonin uptake inhibitor, and desipramine, a noradrenaline uptake inhibitor, in endogenous depression: Clinical and biochemical findings. Submitted for publication (1984).

    Google Scholar 

  • Asberg, ML; Bertilsson, L.; Tuck, D.; Cronholm, B. and Sjöqvist, F.: Indoleamine metabolites in the cerebrospinal fluid of depressed patients before and during treatment with nortriptyline. Clinical Pharmacology and Therapeutics 14: 277–286 (1973).

    PubMed  CAS  Google Scholar 

  • Asberg, M.; Bertilsson, L; Rydin, E.; Shalling, D.; Thoren, P. and Traskman-Bendz, L.: Monoamine metabolites in cerebrospinal fluid in relation to depressive illness, suicidal behaviour and personality. Recent Advances in Neuro-Pharmacology: Advances in the Biosciences 13: 257–271 (1981).

    Google Scholar 

  • Asberg, M.; Traskman, L. and Thoren, P.: 5-HIAA in the cerebrospinal fluid — a biochemical suicide predictor. Archives of General Psychiatry 33: 1193–1197 (1976).

    PubMed  CAS  Google Scholar 

  • Asberg, M.; Bertilsson, L.; Thoren, P. and Traskman, L.: CSF monoamine metabolites in depressive illness; in Garattini (Ed.) Depressive Disorders, pp. 293–235 (F.K. Schattaner, Stuttgart 1978).

    Google Scholar 

  • Ashcroft, G.W.; Eccleston, O.; Murray, L.G.; Glen, A.I.M.; Crawford, T.B.B.; Pullar, I.A.; Shields, P.J.; Walter, D.S.; Blackburn, I.M.; Connechan, J. and Lonergan, M.: Modified amine hypothesis for the aetiology of affective illness. Lancet 2: 573–577 (1972).

    Google Scholar 

  • Ashcroft, G.W. and Sharman, D.F.: 5-hydroxy-indoles in human cerebrospinal fluids. Nature 186: 1050–1051 (1960).

    PubMed  CAS  Google Scholar 

  • Axelrod, J.: Noradrenaline: Fate and control of its biosynthesis. Science 173: 598–606 (1971).

    PubMed  CAS  Google Scholar 

  • Baraban, J.M. and Aghajanian, G.K.: Noradrenergic innervation of serotonergic neurons in the dorsal raphe: Demonstration by electron microscopic autoradiography. Brain Research 204: 1–11 (1981).

    PubMed  CAS  Google Scholar 

  • Beckmann, A. and Goodwin, F.K.: Antidepressant response to tricyclics and urinary MHPG in unipolar patients. Archives of General Psychiatry 32: 17–22 (1975).

    PubMed  CAS  Google Scholar 

  • Beckman, H. and Goodwin, F.K.: Urinary MHPG in subgroups of depressed patients and normal controls. Neuropsychobiology 6: 91–100 (1980).

    Google Scholar 

  • Bertilsson, L.; Tuck, J.R. and Siwers, B.: Biochemical effects of zimelidine in man. European Journal of Clinical Pharmacology 18: 483–487 (1980).

    PubMed  CAS  Google Scholar 

  • Bond, P.A. and Howlett, D.K.: Measurement of the two conjugates of 3-methoxy-4-hydroxyphenylglycol in urine. Biochemical Medicine 10: 219–228 (1974).

    PubMed  CAS  Google Scholar 

  • Bond, P.A.; Jenner, J.A. and Sampson, D.A.: Daily variation of the urine content of 3-methoxy-4-hydroxyphenylglycol in two manic-depressive patients. Psychological Medicine 2: 81–85 (1972).

    PubMed  CAS  Google Scholar 

  • Bowers Jr, M.B.: 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) following probenecid in acute psychotic patients treated with phenothiazines. Psychopharmacologia 28: 309–318 (1973).

    PubMed  Google Scholar 

  • Bowers Jr, M.B.: Central dopamine turnover in schizophrenic syndromes. Archives of General Psychiatry 31: 50–57 (1974).

    PubMed  Google Scholar 

  • Briley, M.S.; Langer, S.Z.; Raisman, R. and Zarifan, E.: 3H-imipramine binding sites are decreased in platelets of untreated depressed patients. Science 209: 303–305 (1980).

    PubMed  CAS  Google Scholar 

  • Brown, G.L.; Goodwin, F.K.; Ballenger, J.C.; Goyer, P.F. and Major, L.F.: Aggression in humans correlates with cerebrospinalfluid amine metabolites. Psychiatry Research 1: 131–139 (1979).

    PubMed  CAS  Google Scholar 

  • Brunello, N.; Chuang, D.M. and Costa, E.: Use of specific brain lesions to study the site of action of antidepressants. Advances in Biosciences 40: 141–145 (1982).

    CAS  Google Scholar 

  • Bunney, W.E.: Psychopharmacology of the switch process in affective illness, in Lipton et al. (Eds) Psychopharmacology: A Generation of Progress, pp. 1249–1259 (Raven Press, New York 1978).

    Google Scholar 

  • Bunney, W.E. and Davis, J.M.: Norepinephrine in depressive reactions. A review. Archives of General Psychiatry 13: 483–494 (1965).

    PubMed  CAS  Google Scholar 

  • Carlsson, A.: Drugs which block the storage of 5-hydroxytryptamine and related amines; in Erspamor (Ed.) 5-Hydroxytryptamine and Related Indolealkylamines, pp. 529–592 (Springer-Verlag, Berlin 1965).

    Google Scholar 

  • Carlsson, A.: Mechanism of action of neuroleptic drugs; in Lipton et al. (Eds) Psychopharmacology: A Generation of Progress, pp. 1057–1070 (Raven Press, New York 1978).

    Google Scholar 

  • Carlsson, A.; Corrodi, H.; Fuxe, K. and Hokfelt, T.: Effect of some antidepressant drugs on the depletion of intraneural brain catecholamine stores caused by 4-alpha-dimethyl-meta-tyramine. European Journal of Pharmacology 5: 367–373 (1969).

    PubMed  CAS  Google Scholar 

  • Carlsson, A.; Rosengren, E.; Bertler, A. and Nilsson, J.: Effect of reserpine on the metabolism of catecholamines; in Garrattini and Ghetti (Eds) Psychotropic Drugs, pp. 363–372 (Elsevier, Amsterdam 1957).

    Google Scholar 

  • Charney, D.S.; Heninger, G.R.; Redmond Jr, D.E.: Yohimbine induced anxiety and increased noradrenergic function in humans: Effects of diazepam and clonidine. Life Sciences 33: 19–29 (1983).

    PubMed  CAS  Google Scholar 

  • Charney, D.S.; Menkes, D.B. and Heninger, G.R.: Receptor sensitivity and the mechanism of action of antidepressant treatment: Implications for the etiology and therapy of depression. Archives of General Psychiatry 38: 1160–1180 (1981).

    PubMed  CAS  Google Scholar 

  • Chiodo, L.A. and Antelman, S.A.: Repeated tricyclics induced a progressive dopamine autoreceptor subsensitivity independent of daily drug treatment. Nature 287: 451–454 (1980a).

    PubMed  CAS  Google Scholar 

  • Chiodo, L.A. and Antelman, S.A.: Electroconvulsive shock: Progressive dopamine auto-receptor subsensitivity independent of repeated treatment. Science 210: 799–801 (1980b).

    PubMed  CAS  Google Scholar 

  • Cobbin, D.M.; Requin-Blow, B.; Williams, L.R. and Williams, W.O.: Urinary MHPG levels and tricyclic antidepressant drug selection. Archives of General Psychiatry 36: 1111–1115 (1979).

    PubMed  CAS  Google Scholar 

  • Coppen, A.: The biochemistry of affective disorders. British Journal of Psychiatry 113: 1237–1264 (1967).

    PubMed  CAS  Google Scholar 

  • Coppen, A.; Rama Rao, V.A.; Ruthuen, C.R.J.; Goodwin, B.L. and Sandler, M.: Urinary 4-hydroxy-3-methoxyphenylglycol is not a predictor for clinical response to amitriptyline in depressive illness. Psychopharmacology 64: 95–97 (1979a).

    PubMed  CAS  Google Scholar 

  • Coppen, A.; Rama Rao, V.A.; Swade, C. and Wood, K.: Zimelidine: A therapeutic and pharmacokinetic study in depression. Psychopharmacology 63: 199–202 (1979b).

    PubMed  CAS  Google Scholar 

  • Coppen, A.; Swade, C. and Wood, K.: Lithium restores abnormal platelet 5-HT transport in patients with affective disorders. British Journal of Psychiatry 136: 235–238 (1980).

    PubMed  CAS  Google Scholar 

  • Cowdry, R.W. and Goodwin, F.K.: Biological and physiological predictors of drug response; in Van Praag et al. (Eds) Handbook of Biological Psychiatry, Vol. IV, pp. 263–308 (Marcel Dekker, New York 1981).

    Google Scholar 

  • Cowen, P.J.; Grahame-Smith, D.G.; Green, A.R. and Heal, D.J.: Beta-adrenoceptor agonists enhance 5-hydroxytryptaminemediated behavioural responses. British Journal of Pharmacology 76: 265–270 (1982).

    PubMed  CAS  Google Scholar 

  • Crow, T.J.: Positive and negative schizophrenic symptoms and the role of dopamine. British Journal of Psychiatry 139: 251–254 (1981).

    PubMed  CAS  Google Scholar 

  • Dekirmenjian, H. and Maas, J.W.: An improved procedure of 3-methoxy-4-hydroxyphenylethylene glycol determination by gas-liquid chromatography. Annals of Biochemistry 35: 113–121 (1970).

    CAS  Google Scholar 

  • DeLeon-Jones, F.D.; Maas, J.W.; Dekirmenjian, J. and Sanchez, J.: Diagnostic subgroups of affective disorders and their urinary excretion of catecholamine metabolites. American Journal of Psychiatry 132: 1141–1148 (1975).

    PubMed  CAS  Google Scholar 

  • DeMontigny, C: Electroconvulsive shock treatment increases re-sponsiveness of forebrain neurons to serotonin: A microiontophoretic study in the rat. (Abstract.) Neuroscience 6: 453 (1980).

    Google Scholar 

  • DeMontigny, C. and Aghajanian, G.K.: Tricyclic antidepressants: Long term treatment increases responsivity of rat forebrain neurons to serotonin. Science 202: 1303–1306 (1978).

    CAS  Google Scholar 

  • DeMontigny, C; Grunberg, F.; Mayer, A. and Deschenes, J.-P.: Lithium induces rapid relief of depression in tricyclic antidepressant drug non-responders. British Journal of Psychiatry 138: 252–256 (1981).

    CAS  Google Scholar 

  • Fawcett, J.; Maas, J.W. and Dekirmenjian, J.: Depression and MHPG excretion. Archives of General Psychiatry 26: 246–251 (1972).

    PubMed  CAS  Google Scholar 

  • Garfinkel, P.E.; Warsh, J.J.; Stancer, H.C. and Goelse, D.D.: CNS monoamine metabolism in bipolar affective disorder. Archives of General Psychiatry 34: 735–739 (1977).

    PubMed  CAS  Google Scholar 

  • Glowinski, J. and Axelrod, J.: Inhibition of uptake of tritiated noradrenaline in the intact rat brain by imipramine and structurally related compounds. Nature 204: 1318–1319 (1964).

    PubMed  CAS  Google Scholar 

  • Goodwin, F.K. and Beckmann, H.: Urinary MHPG in unipolar and bipolar affective disorders. Proceedings of the American Psychiatry Association 128: 96–97 (1975).

    Google Scholar 

  • Goodwin, F.K. and Post, R.M.: Studies of amine metabolites in affective illness and in schizophrenia: A comparative analysis; in Freedman (Ed.) Biology of the Major Psychoses, Vol. 54, pp. 299–332 (Raven Press, New York 1975).

    Google Scholar 

  • Goodwin, F.K. and Potter, W.Z.: Noradrenergic function in affective illness; in Saletu (Ed.) Neuropharmacology, pp. 127–137: Proceedings of the 11th CINP Congress (Pergamon Press, New York 1979).

    Google Scholar 

  • Halaris, A.E.: Plasma 3-methoxy-4-hydroxyphenylglycol in manic psychosis. American Journal of Psychiatry 135: 493–494 (1978).

    PubMed  CAS  Google Scholar 

  • Hallberg, H.; Almgren, O. and Svensson, T.H.: Reduced brain monoamine synthesis by systemic treatment with terbutaline, a beta-receptor agonist. Journal of Neural Transmission 48: 167–175 (1980).

    PubMed  CAS  Google Scholar 

  • Hallberg, H.; Almgren, O. and Svensson, T.H.: Reduced brain serotonergic activity after repeated treatment with beta-adrenoceptor antagonists. Psychopharmacology 76: 114–117 (1982).

    PubMed  CAS  Google Scholar 

  • Hollister, L.E.; Davis, K.L. and Berger, P.A.: Subtypes of depression based on excretion of MHPG and response to nortriptyline. Archives of General Psychiatry 37: 1107–1110 (1980).

    PubMed  CAS  Google Scholar 

  • Hollister, L.E.; Davis, K.L.; Overall, J.E. and Anderson, T.: Excretion of MHPG in normal subjects. Archives of General Psychiatry 35: 1410–1415 (1978).

    PubMed  CAS  Google Scholar 

  • Janowsky, A.; Okada, F.; Mahler, D.H.; Applegate, CD.; Sulser, F. and Steranka, L.R.: Role of serotonergic input in the regulation of the beta-adrenergic receptor-coupled adenylate update system. Science 218: 900–901 (1982).

    PubMed  CAS  Google Scholar 

  • Janowsky, D.S.; Davis, J.M.; El-Yousef, M.K. and Sekerke, H.J.: A cholinergic-adrenergic hypothesis of mania and depression. Lancet 2: 632–635 (1972).

    PubMed  CAS  Google Scholar 

  • Jimerson, D.C.; Nürnberger, J.I.; Post, R.M.; Gershon, E.S. and Kopin, I.J.: Plasma MHPG in rapid-cyclers and healthy twins. Archives of General Psychiatry 38: 1287–1290 (1981).

    PubMed  CAS  Google Scholar 

  • Jones, F.D.; Maas, F.J.; Dekirmenjian, M. and Fawcett, J.A.: Urinary catecholamine metabolites, during behavioral changes in a patient with manic-depressive cycles. Science 179: 300–302 (1973).

    PubMed  CAS  Google Scholar 

  • Jones, R.S.G.: Enhancement of 5-hydroxytryptamine-induced behavioral effects following chronic administration of anti-depressant drugs. Psychopharmacology 69: 307–311 (1980).

    PubMed  CAS  Google Scholar 

  • Joseph, M.H.; Baker, H.F.; Johnstone, E.L. and Crow, T.J.: Determination of 3-methoxy-4-hydroxyphenylglycol conjugates in urine. Application to the study of central noradrenaline metabolism in unmedicated chronic schizophrenic patients. Psychopharmacology 51: 47–51 (1976).

    PubMed  CAS  Google Scholar 

  • Kopin, I.J.: in Lipton et al. (Eds) Psychopharmacology: A Generation of Progress, pp. 933–942 (Raven Press, New York 1978).

  • Kopin, I.J. and Gordon, E.K.: Metabolism of administered and drug-released norepinephrine 7-H3 in rat. Journal of Pharmacological Experimental Therapeutics 140: 207–219 (1963).

    CAS  Google Scholar 

  • Lake, C.R.; Ziegler, M.G. and Kopin, I.J.: Use of plasma norepinephrine for evaluation of sympathetic neuronal function in man. Life Sciences 18: 1315–1326 (1976).

    PubMed  CAS  Google Scholar 

  • Lapin, I.P. and Oxenkrug, G.F.: Intensification of the central serotoninergic processes as a possible determinant of the thymoleptic effect. Lancet 1: 132–136 (1969).

    PubMed  CAS  Google Scholar 

  • Lee, T.; Seeman, P.; Tourtelothe, W.W.; Farley, LJ. and Horny kiewicz, O.: Binding of 3H-neuroleptic and 3H-apomorphine in schizophrenic brains. Nature 274: 897–900 (1978).

    PubMed  CAS  Google Scholar 

  • Linnoila, M.; Karoum, F.; Calil, H.M.; Kopin, I.J. and Potter, W.Z.: Alteration of norepinephrine metabolism with desipramine and zimelidine in depressed patients. Archives of General Psychiatry 39: 1025–1028 (1982a).

    PubMed  CAS  Google Scholar 

  • Linnoila, M.; Karoum, F. and Potter, W.Z.: High correlation of norepinephrine and its major metabolite excretion rates. Archives of General Psychiatry 39: 521–523 (1982b).

    PubMed  CAS  Google Scholar 

  • Linnoila, M.; Karoum, F.; Rosenthal, N. and Potter, W.Z.: Electroconvulsive treatment and lithium carbonate: Their effect on norepinephrine metabolism in patients with primary, major depressions. Archives of General Psychiatry 40: 677–680 (1983).

    PubMed  CAS  Google Scholar 

  • Maas, J.W.: Biogenic amines and depression. Archives of General Psychiatry 32: 1357–1361 (1976).

    Google Scholar 

  • Maas, J.W.; Dekirmenjian, H. and Jones, F.: The identification of depressed patients who have a disorder of NE metabolism and/or disposition; in Usdin and Snyder (Eds) Frontiers in Catecholamine Research, pp. 1091–1096 (Pergamon Press, New York 1973).

    Google Scholar 

  • Maas, J.W.; Fawcett, J.A. and Dekirmenjian, H.: Catecholamine metabolism, depressive illness, and drug response. Archives of General Psychiatry 26: 252–262 (1972).

    PubMed  CAS  Google Scholar 

  • Maas, J.W.; Fawcett,, J.A. and Dekirmenjian, H.: 3-methoxy-4-hydroxyphenylglycol (MHPG) excretion in depressive states: A pilot study. Arch. Gen. Psych. 19: 129–134 (1968).

    CAS  Google Scholar 

  • Maas, J.W.; Kocsis, J.H.; Bowden, C.L.; Davis, J.M.; Redmon, D.E.; Hannin, I. and Robins, E.: Pretreatment neurotransmitter metabolites and response to imipramine or amitriptyline treatment. Psychological Medicine 12: 37–43 (1982).

    PubMed  CAS  Google Scholar 

  • Mackay, A.V.P.; Iversen, L.L.; Rossor, M.; Spokes, E.; Arregui, I.; Creese, I. and Snyder, S.H.: Increased brain dopamine and dopamine receptors in schizophrenia. Archives of General Psychiatry 39: 991–997 (1982).

    PubMed  CAS  Google Scholar 

  • Maj, J.; Mogilnicka, E. and Klimek, V.: The effect of repeated administration of antidepressant drugs on responsiveness of rats to catecholamine agonists. Journal of Neural Transmission 44: 221–235 (1979).

    PubMed  CAS  Google Scholar 

  • Maj, J.; Mogilnicka, E. and Kordecka-Magiera, A.: Effects of chronic administration of antidepressant drugs on aggressive behavior induced by clonidine in mice. Pharmacology and Biochemical Behavior 13: 153–154 (1980).

    CAS  Google Scholar 

  • Meltzer, H.Y. and Stahl, M.: The dopamine hypothesis of schizophrenia: A review. Schizophrenia Bulletin 2(1): 10–18 (1976).

    PubMed  CAS  Google Scholar 

  • Mishra, R.; Janowsky, A. and Sulser, F.: Action of mianserin and zimelidine on NE receptor coupled adenylate cyclase system in brain: Subsensitivity without reduction in beta-adrenergic receptor binding. Neuropharmacology 19: 983–987 (1980).

    PubMed  CAS  Google Scholar 

  • Mogilnicka, E. and Klimek, V.: Mianserin, danitracen and amitriptyline withdrawal increases the behavioural responses of rats to L-5HTP. Journal of Pharmacy and Pharmacology 31: 704–705 (1979).

    PubMed  CAS  Google Scholar 

  • Muscettola, G.; Potter, W.Z.; Gordon, E.K. and Goodwin, F.K.: Methodological issues in the measurement of urinary MHPG. Psychiatry Research 4: 267–276 (1981).

    PubMed  CAS  Google Scholar 

  • Muscettola, G., Potter, W.Z.; Pickar, D. and Goodwin, F.K.: Urinary MHPG and major affective disorders: A replication and new findings. Archives of General Psychiatry (In press, 1984).

  • Olpe, H.R.: Differential effects of chlorimipramine and clorgyline on the sensitivity of cortical neurons to serotonin: Effect of chronic treatment. European Journal of Pharmacology 69: 375–377 (1981).

    PubMed  CAS  Google Scholar 

  • Owen, F.; Crow, T.J.; Powlter, M.; Cross, A.J.;. Longden, A. and Kiley, G.J.: Increased dopamine receptor sensitivity in schizophrenia. Lancet 2: 223–225 (1978).

    PubMed  CAS  Google Scholar 

  • Paul, S.M.; Rehan, M.; Skolnick, P.; Ballenger, J.C. and Goodwin, F.K.: Depressed patients have decreased binding of tritiated imipramine to platelet serotonin “transporter”. Archives of General Psychiatry 38: 1315–1317 (1981).

    PubMed  CAS  Google Scholar 

  • Paul, S.M.; Rehavi, M.; Skolnick, P. and Goodwin, F.K.: Demonstration of specific "high affinity" binding sites for [3H] imipramine on human platelets. Life Sciences 26: 953–959 (1980).

    PubMed  CAS  Google Scholar 

  • Peroutka, S.J. and Snyder, S.H.: Chronic antidepressant treatment decreases spiroperidol-labeled serotonin receptor binding. Science 210: 88–90 (1980).

    PubMed  CAS  Google Scholar 

  • Post, R.M.; Fink, E.; Carpenter, W.T. and Goodwin, F.K.: Cerebrospinal fluid amine metabolites in acute schizophrenia. Archives of General Psychiatry 32: 1063–1069 (1975).

    PubMed  CAS  Google Scholar 

  • Post, R.M.; Ballenger, J.C. and Goodwin, F.K.: Cerebrospinal fluid studies of neurotransmitter function in manic depressive illness; in Wood (Ed.) Neurobiology of Cerebrospinal Fluid, Vol. I, pp. 685–717 (Plenum Press, New York 1980).

    Google Scholar 

  • Post, R.M.; Stoddard, F.J.; Gillin, J.C.; Buchsbaum, M.S.; Runkle, D.C.; Black, K.E. and Bunney, W.E.: Alterations in motor activity, sleep, and biochemistry in a cycling manic-depressive patient. Archives of General Psychiatry 34:470–477 (1977).

    PubMed  CAS  Google Scholar 

  • Potter, W.Z. and Calil, H.M.: Metabolites of tricyclic antidepressants — biological activity and clinical implications; in Usdin (Ed.) Clinical Pharmacology in Psychiatry, pp. 311–324 (Elsevier North Holland, New York 1981).

    Google Scholar 

  • Potter, W.Z., Calil, H.M.; Extein, I.; Gold, P.W.; Wehr, T.A. and Goodwin, F.K.: Specific norepinephrine and serotonin uptake inhibition in man: A crossover study with pharmacokinetic, neuroendocrine and biochemical parameters. Acta Psychiatrica Scandinavica Suppl. 290: 63: 152–165 (1981).

    Google Scholar 

  • Potter, W.Z.; Murphy, D.L.; Wehr, T.A.; Linnoila, M. and Goodwin, F.K.: Clorgyline: A new treatment for refractory rapid cycling patients. Archives of General Psychiatry 39: 505–510 (1982).

    PubMed  CAS  Google Scholar 

  • Potter, W.Z.; Muscettola, G. and Goodwin, F.K.: Sources of variance in clinical studies of MHPG; in Maas (Ed.) MHPG: Basic Mechanisms and Psychopathology, pp. 145–165 (Academic Press, New York 1983).

    Google Scholar 

  • Potter, W.Z.; Ross, R.J. and Zavadil, A.P.: Norepinephrine in the Affective Disorders: Classic biochemical approaches in the catecholamine; in Lake and Ziegler (Eds) The Catecholamines in Psychiatric and Neurologic Disorders (Butterworth, in press, 1984).

  • Prange, A.J.: The pharmacology and biochemistry of depression. Diseases of the Nervous System 25: 217–221 (1965).

    Google Scholar 

  • Prange, A.J.; Wilson, I.C.; Lynn, C.W.; Alltop, L.B. and Strike-leather, R.A.: L-Tryptophan in mania. Archives of General Psychiatry 30: 56–62 (1974).

    PubMed  Google Scholar 

  • Prange, A.J.; Wilson, J.C.; Rabon, A.M. and Lipton, M.A.: Enhancement of imipramine antidepressant activity by thyroid hormone. American Journal of Psychiatry 126: 457–469 (1969).

    PubMed  CAS  Google Scholar 

  • Quitkin, F.M.; McGrath, P.; Liebowitz, M.R.; Stewart, J. and Howard, A.: Monamine oxidase inhibitors in bipolar endogenous depressives. Journal of Clinical Psychopharmacology 1: 70–74 (1981).

    PubMed  CAS  Google Scholar 

  • Randrup, A. and Braestrup, C: Uptake inhibition of biogenic amines by newer antidepressant drugs: Relevance to the dopamine hypothesis of depression. Psychopharmacology 53: 309–314 (1977).

    PubMed  CAS  Google Scholar 

  • Rosenbaum, A.H.; Schatzberg, A.F.; Maruta, T.; Orsulak, P.J.; Cole, J.O.; Grab, E.L. and Schildkraut, J.J.: MHPG as a predictor of antidepressant response to imipramine and maprotiline. American Journal of Psychiatry 137: 1090–1092 (1980).

    PubMed  CAS  Google Scholar 

  • Ross, R.J.; Zavadil, A.P.; Calil, H.M.; Linnoila, M.; Kitanaka, I.; Blombery, P.; Kopin, I.J. and Potter, W.Z.: The effects of des-methylimipramine on norepinephrine, pulse and blood pressure in volunteers. Clinical Pharmacology and Therapeutics 33:429–437 (1983).

    PubMed  CAS  Google Scholar 

  • Ross, S.B. and Aberg-Wistedt, A.: Inhibitors of the serotonin and noradrenaline uptake in human plasma after withdrawal of zimelidine and desipramine treatment. Psychopharmacology 79: 298–303 (1982).

    Google Scholar 

  • Rudorfer, M.V.; Lesieur, P.; Ross, R.J.; Linnoila, M. and Potter, W.Z.: Norepinephrine in depression: Up or down? New research Opit #46: American Psychiatric Association Annual Meeting, New York (May, 1983).

  • Sachetti, E.; Smeraldi, E., Cagnasso, M.; Biondi, P.A. and Bellodi, L.: MHPG, amitriptyline and affective disorders: A longitudinal study. International Pharmacopsychiatry 11: 157–162 (1976).

    Google Scholar 

  • Schatzberg, A.F.; Rosenbaum, A.H.; Orsulak, P.J.; Rohde, W.A.; Maruta, T.; Kruger, E.R.; Cole, J.O. and Schildkraut, J.J.: Toward a biochemical classification of 75 depressive disorders. III: Pretreatment urinary MHPG levels as predictors of response to treatment with maprotiline. Psychopharmacology 75: 34–38 (1981).

    PubMed  CAS  Google Scholar 

  • Schildkraut, J.J.: The catecholamine hypothesis of affective disorders: A review of supporting evidence. American Journal of Psychiatry 122: 509–522 (1965).

    PubMed  CAS  Google Scholar 

  • Schildkraut, J.J.; Green, R.; Gordon, E.K. and Darrell, J.: Normetanephrine excretion and affective state in depressed patients treated with imipramine. American Journal of Psychiatry 123: 690–700 (1966).

    PubMed  CAS  Google Scholar 

  • Schildkraut, J.J.; Keeler, B.A.; Grab, E.L.; Kantrowich, J. and Hartmann, E.: MHPG excretion and clinical classification in depressive disorders. Lancet 1: 1251–1252 (1973).

    PubMed  CAS  Google Scholar 

  • Schildkraut, J.J.; Keeler, B.A.; Papousek, M. and Hartmann, E.: MHPG excretion in depressive disorders: Relation to clinical subtypes and desynchronized sleep. Science 181: 762–764 (1973b).

    PubMed  CAS  Google Scholar 

  • Schildkraut, J.J.; Orsulak, P.J.; Schatzberg, A.F.; Gudeman, J.E.; Cole, J.O.; Rohde, W.A. and LaBrie, R.A.: Toward a biochemical classification of depressive disorders. Archives of General Psychiatry 35: 1427–1433 (1978).

    PubMed  CAS  Google Scholar 

  • Schildkraut, J.J.; Watson, R.; Draskoczy, P.R. and Hartmann, E.: Amphetamine withdrawal: Depression and MHPG excretion. Lancet 2: 485–486 (1971).

    PubMed  CAS  Google Scholar 

  • Seeman, P. and Lee, T.: Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188: 1217–1219 (1975).

    PubMed  CAS  Google Scholar 

  • Sethna, E.: A study of refractory cases of depressive illnesses and their response to combined antidepressant treatment. British Journal of Psychiatry 124: 265–272 (1974).

    PubMed  CAS  Google Scholar 

  • Sharpless, N.S.: Determination of 3-methoxy-4-hydroxyphenylglycol in urine and the effect of diet on its excretion. Research Communications in Chemical Pathology and Pharmacology 18(2): 257–273 (1977).

    PubMed  CAS  Google Scholar 

  • Shaw, D.M.; O’Keebe, R.; MacSweeney, D.A.; Brooksbane, B.W.L.; Noguera, R. and Coppen, A.: 3-Methoxy-4-hydroxyphenyl-glycol in depression. Psychological Medicine 3: 333–336 (1973).

    PubMed  CAS  Google Scholar 

  • Shopsin, B.; Cassano, G.B. and Conti, L.: An overview of ldsecond generation” antidepressant compounds; in Enna (Ed.) Research and Treatment Implications in Antidepressants: Neurochemical, Behavioral, and Clinical Perspectives, pp. 219–251 (Raven Press, New York 1981).

    Google Scholar 

  • Snyder, S.H.: The dopamine hypothesis of schizophrenia: Focus on the dopamine receptor. American Journal of Psychiatry 133: 197–202 (1976).

    PubMed  CAS  Google Scholar 

  • Sweeney, D.R., Leckman, J.F.; Maas, J.W.; Hattox, S. and Heninger, G.R.: Plasma free and conjugated MHPG in psychiatric patients. A pilot study. Archives of General Psychiatry 37: 1100–1103 (1980).

    PubMed  CAS  Google Scholar 

  • Sweeney, D.R.; Maas, J.W. and Heninger, G.R.: State anxiety, physical activity, and urinary 3-methoxy-4-hydroxyphenylethylene glycol excretion. Archives of General Psychiatry 35: 1418–1423 (1978).

    PubMed  CAS  Google Scholar 

  • Tang, S.W.; Stancer, H.C.; Takahashi, S.; Shephard, R.J. and Warsh, J.J.: Controlled exercise elevates plasma but not urinary MHPG and VMA. Psychiatry Research 4: 12–20 (1981).

    Google Scholar 

  • Taube, S.L.; Kirstein, L.S.; Sweeney, D.R.; Heninger, G.R. and Maas, J.W.: Urinary 3-methoxy-4-hydroxyphenylglycol and psychiatric diagnosis. American Journal of Psychiatry 135: 78–82 (1978).

    PubMed  CAS  Google Scholar 

  • Traskman, L.; Asberg, M; Bertilsson, L.; Cronhold, B.; Mellstrom, B.; Neckers, L.M.; Sjöqvist, F.; Thoren, P. and Tybring, G.: Plasma levels of chlorimipramine and its demethyl metabolite during treatment of depression. Clinical Pharmacology and Therapeutics 26: 600–610 (1979).

    PubMed  CAS  Google Scholar 

  • Tuomisto, J. and Tukiainen, E.: Decreased uptake of 5-hydroxy-trytamine in blood platelets from depressed patients. Nature 262: 596–598 (1976).

    PubMed  CAS  Google Scholar 

  • Van Kammen, D.P.: Urinary MHPG and treatment response: A review; in Maas (Ed.) MHPG: Basic Mechanisms and Psychopathology, pp. 167–193 (Academic Press, New York 1983).

    Google Scholar 

  • Van Praag, H.M.: New evidence of serotonin deficient depression: Neuropsychology 3: 56–63 (1977).

    Google Scholar 

  • Wehr, T.A.: Phase and biorhythm studies in affective illness; in Bunney (Moderator) The Switch Process in Manic-Depressive Psychosis. Annals of Internal Medicine 87: 321–324 (1977).

    Google Scholar 

  • White, K. and Simpson, G.: Combined MAOI-tricyclic anti-depressant treatment: A re-evaluation. Journal of Clinical Psychopharmacology 1: 264–282 (1981).

    PubMed  CAS  Google Scholar 

  • Wyatt, R.J.: The dopamine hypothesis: Variations on a theme. Proceedings of the American College of Psychiatry, New Orleans (1983).

  • Zis, A.P.; Cowdry, R.W.; Wehr, T.A.; Muscettola, G. and Goodwin, F.K.: Tricyclic-induced mania and MHPG excretion. Journal of Psychiatric Research 1: 93–99 (1979).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potter, W.Z. Psychotherapeutic Drugs and Biogenic Amines. Drugs 28, 127–143 (1984). https://doi.org/10.2165/00003495-198428020-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-198428020-00003

Keywords

Navigation