, Volume 25, Issue 2, pp 154–177 | Cite as

Calcium Antagonists

Clinical Use in the Treatment of Systemic Hypertension
  • Carl Spivack
  • Stephen Ocken
  • William H. Frishman
Review Article


Increased peripheral vascular resistance is the cause of elevated systemic blood pressure in most patients with long standing hypertension. The desired haemodynamic effect in antihypertensive therapy is dilation of the constricted arterioles by a drug that acts directly on the vascular smooth muscle while not affecting the heart or the venous return.

Hydralazine, diazoxide and minoxidil act directly on vascular smooth muscle to produce vasodilatation and have been used with variable degrees of success in the long term treatment of hypertension. Their cellular mechanism of dilation is not understood fully, but the ability to chelate certain trace metals required for smooth muscle contraction has been proposed as a possible mechanism of action for these drugs.

The calcium antagonists (calcium entry blocking drugs) are a distinct group of compounds that interfere with the normal transmembrane flux of extracellular calcium ions on which vascular tissue depends for contraction or impulse generation. Thus, calcium antagonists can reduce the contractile activity of the heart, and promote coronary and systemic vasodilatation. These effects provide the clinical rationale for the use of calcium antagonists in the management of ischaemic heart disease and hypertrophic cardiomyopathy. Since systemic vasodilatation can be expected to reduce elevated arterial blood pressure, interest has focused recently on calcium antagonists in the medical management of systemic hypertension.

All the calcium antagonists are able, in low concentrations, to relax the smooth muscle vasculature from coronary, cerebral, mesenteric, and renal arteries. The effects on the myocardium, cardiac impulse tissue, and vascular smooth muscle are different in magnitude, however, depending on the individual agent that is used. Clinical experience in the treatment of hypertension with this class of agents is confined to verapamil, nifedipine, and diltiazem. In this article, the scientific rationale for using calcium antagonists in the treatment of arterial hypertension is explored and the clinical experiences with the different calcium antagonists used in hypertension are reviewed.


Propranolol Verapamil Nifedipine Diltiazem Calcium Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreasen, F.; Boye, E.; Christoffersen, E.; Dalsgaard, P.; Henneberg, E.; Kallenbach, A.; Ladefogel, S.; Lillquist, K.; Mikkelsen, E.; Nordero, E.; Olsen, J.; Pedersen, J.K.; Pedersen, V.; Petersen, G.; Schroll, J.; Schultz, H. and Seidelin, J.: Assessment of verapamil in the treatment of angina pectoris. European Journal of Cardiology 2: 443–452 (1975).PubMedGoogle Scholar
  2. Aoki, K.; Yoshida, T.; Kato, S.; Tazume, K.; Soto, I.; Takikawa, K. and Hotta, K.: Hypotensive action and increased plasma renin activity by calcium antagonist (nifedipine) in hypertensive patients. Japanese Heart Journal 17: 479–484 (1976).PubMedCrossRefGoogle Scholar
  3. Aoki, K.; Kondo, S.; Mochizaki, A.; Yoshida, T.; Kato, S.; Kato, K. and Takikawa, K.: Antihypertensive effect of cardiovascular Ca2+-antagonist in hypertensive patients in the absence and presence of beta-adrenergic blockade. American Heart Journal 96: 218–226 (1978)PubMedCrossRefGoogle Scholar
  4. Atterhög, J.H. and Ekelund, L.G.: Haemodynamic effects of intravenous verapamil at rest and during exercise in subjectively healthy middle-aged men. European Journal of Clinical Pharmacology 8: 317–322 (1975).PubMedCrossRefGoogle Scholar
  5. Avioli, L.V.: Stones, bones, abdominal groans, psychic moans and hypertones. Cardiovascular Medicine 3: 835–837 (1978).Google Scholar
  6. Bartorelli, C.; Magrini, F.; Moruzzi, P.; Olivari, M.T.; Polese, A.; Fiorentini, C. and Guazzi, M.: Haemodynamic effects of a calcium antagonist agent (nifedipine) in hypertension: Therapeutic implications. Clinical Science and Molecular Medicine 55(Suppl.4): 291S–292S (1978).Google Scholar
  7. Beer, N.; Gallegos, I.; Cohen, A.; Klein, N.; Sonnenblick, E. and Frishman, W.: Efficacy of sublingual nifedipine in the acute treatment of systemic hypertension. Chest 79: 571–574 (1981).PubMedCrossRefGoogle Scholar
  8. Blaustein, M.P.; Lang, S. and James-Kracke, M.: Cellular basis of sodium-induced hypertension; in Laragh et al. (Eds) Frontiers in Hypertension Research, pp.87–90 (Springer-Verlag, New York 1981).CrossRefGoogle Scholar
  9. Blaustein, M.P.: Sodium ions, calcium ions, blood pressure regulation and hypertension: A reassessment and a hypothesis. American Journal of Physiology 232(3): C165–C173 (1977).PubMedGoogle Scholar
  10. Brennan, F.N. and Blake, S.: Use of nifedipine as a third step agent in the treatment of refractory hypertension. Irish Medical Journal 75: 29–30 (1982).PubMedGoogle Scholar
  11. Brittinger, W.D.; Schwarzbeck, A.; Wittenmeier, K.W.; Tutkenhoff, W.D.; Stegaru, B.; Huber, W.; Ewald, R.W.; Henning, G.E.V.; Fabricius, M. and Strauch, M.: Klinish-experimentelle Untersuchungen über die Blutdruckenkende Wirkung von Verapamil. Deutsche Medizinische Wochenschrift 95: 1871–1877 (1970).PubMedCrossRefGoogle Scholar
  12. Chomdy, B.; Bell, P.D. and Navari L.G.: Renal hemodynamic and autoregulatory responses to acute hypercalcemia. American Journal of Physiology 232: G–13 (1977).Google Scholar
  13. Christensson, T.; Hellstrom, K. and Wengle, B.: Blood pressure in subjects with hypercalcaemia and primary hyperparathyroidism detected in a health screening programme. European Journal of Clinical Investigation 7: 109–114 (1977).PubMedCrossRefGoogle Scholar
  14. Chrysant, S.G.; Dunn, F.G.; de Carvalbo, J.G.R.; Adamopoulos, P.N. and Frohlich, E.D.: Action of nitroglycerin and amyl nitrate in labile and essential hypertension. Archives of Internal Medicine 137: 1702–1705 (1977).PubMedCrossRefGoogle Scholar
  15. Corea, L; Miele, N.; Bentivoglio, M.; Boschetti, E.; Agabiti-Rosei, E. and Muiesan, G.: Acute and chronic effects of nifedipine on plasma renin activity and plasma adrenaline and noradrenaline in controls and hypertensive patients. Clinical Science and Molecular Medicine 57: 115S–117S (1979).Google Scholar
  16. DeLeeuw, P.W.; Smout, A.J.P.M.; Willemse, P.J. and Birkenhager, W.H.: Effects of verapamil in hypertensive patients; in Zanchetti and Krikler (Eds) Calcium Antagonism in Cardiovascular Therapy: Experience with Verapamil, pp.233–237 (Excerpta Medica, Amsterdam-Oxford-Princeton 1981).Google Scholar
  17. Deth, R. and van Breemen, C.: Agonist induced release of intracellular Ca2+ in the rabbit aorta. Journal of Membrane Biology 30: 363–380 (1977).PubMedGoogle Scholar
  18. Doyle, A.E.; Anavekar, S.N. and Oliver, L.E.: A clinical trial of verapamil in the treatment of hypertension; in Zanchetti and Krikler (Eds) Calcium Antagonism in Cardiovascular Therapy: Experience with Verapamil, pp.252–258 (Excerpta Medica, Amsterdam-Oxford-Princeton 1981).Google Scholar
  19. Ferlinz, J.: Effects of verapamil on normal and abnormal ventricular functions in patients with ischemic heart disease; in Zanchetti and Krikler (Eds) Calcium Antagonism in Cardiovascular Therapy: Experience with Verapamil, pp.92–105 (Excerpta Medica, Amsterdam-Oxford-Princeton 1981).Google Scholar
  20. Flaim, S.F.; Irwin, J.M.; Ratz, P.H. and Swigart, S.: Differential effects of calcium channel blocking agents on oxygen consumption rate in vascular smooth muscle. American Journal of Cardiology 49: 511–518 (1982).PubMedCrossRefGoogle Scholar
  21. Frishman, W.H.; Klein, N.A.; Strom, J.A.; Willens, H.; LeJemtel, T.H.; Jentzer, J.; Siegel, L.; Klein, P.; Kirschen, N.; Silverman, R.; Pollack, S.; Doyle, R.; Kirsten, E. and Sonnenblick, EH.: Superiority of verapamil to propranolol in stable angina: A double-blind randomised placebo-controlled crossover comparison. Circulation 65(Suppl.1): 152–159 (1982a).Google Scholar
  22. Frishman, W.H.; Klein, N.A.; Klein, P.; Strom, J.A.; Tawil, R.; Strair, R.; Wong, B.; Roth, S.; LeJemtel, T.; Pollack, S. and Sonnenblick, E.: A comparison of oral propranolol and verapamil in patients with hypertension and angina pectoris: A placebo-controlled double-blind randomised crossover trial. American Journal of Cardiology 50: 1164–1172 (1982b).PubMedCrossRefGoogle Scholar
  23. Gould, B.A.; Mann, S.; Kieso, H.; Subramanian, V.B. and Raftery, E.B.: The 24-hour ambulatory blood pressure profile with verapamil. Circulation 65(1): 22–27 (1982).PubMedCrossRefGoogle Scholar
  24. Guazzi, M.D.: The role of calcium antagonists in the management of hypertension. Practical Cardiology 8: 39–55 (1982).Google Scholar
  25. Guazzi, M.D.; Fiorentini, C.; Olivari, M.T.; Bartorelli, A.; Necchi, G. and Polese, A.: Short and long-term efficacy of a calcium antagonistic agent (nifedipine) combined with methyldopa in the treatment of severe hypertension. Circulation 61: 913–919 (1980).PubMedCrossRefGoogle Scholar
  26. Guazzi, M.; Oliveri, M.T.; Polese, A.; Fiorentini, G; Magrini, F. and Moruzzi, P.: Nifedipine, a new anti-hypertensive with rapid action. Clinical Pharmacology and Therapeutics 22: 528–532 (1977).PubMedGoogle Scholar
  27. Gutche, H.Y.; Muller-Suur, R. and Schurek, H.J.: Ca++-antagonist prevents feedback induced SN-GFR decrease in rat kidney. Kidney International 8: 477 (1978).Google Scholar
  28. Haddy, F.J.; Scott, J.B. and Navari, L.G.: Renal hemodynamic and autoregulatory responses to acute hypercalcemia. American Journal of Physiology 232: 6–13 (1977).Google Scholar
  29. Hecht, H.; Christopher, Y.C.; Burnam, M.H.; Hopkins, J.; Schnugg, S. and Singh, B.N.: Verapamil in chronic stable angina: Amelioration of pacing-induced abnormalities of left ventricular ejection fraction, regional wall motion, lactate metabolism and hemodyriamics. American Journal of Cardiology 48: 536–544 (1981).PubMedCrossRefGoogle Scholar
  30. Henry, P.D.: Comparative pharmacology of calcium antagonists: Nifedipine, verapamil and diltiazem. American Journal of Cardiology 46: 1047–1058 (1980).PubMedCrossRefGoogle Scholar
  31. Hinke, J.A.M.: Effect of Ca++ upon contractility of small arteries from DCA-hypertensive rats. Circulation Research 18-19 (Suppl. I): 23–24 (1966).Google Scholar
  32. Hiwatari, M. and Taira, N.: Antihypertensive effect of niludipine (Bay a 7168) on conscious renal-hypertensive dogs. Arzneimittel-Forschung 29: 1373–1376 (1979).PubMedGoogle Scholar
  33. Imai, Y.; Abe, K.; Otsuka, Y.; Irokawa, N.; Yasujima, M.; Saito, K.; Sakurai, Y.; Chiba, S.; Ito, T.; Sato, M.; Haruyama, T.; Miura, Y. and Yoshinaga, K.: Management of severe hypertension with nifedipine in combination with clonidine or propranolol. Arzneimittel-Forschung 30: 674–678 (1980).PubMedGoogle Scholar
  34. Iriuchijima, J.: Effect of calcium antagonist, nifedipine, on blood pressure of various hypertensive rats. Hiroshima Journal of Medical Sciences 29: 15–19 (1980).PubMedGoogle Scholar
  35. Jones, A.W.: Altered ion transport in large and small arteries from spontaneously hypertensive rats and the influence of calcium. Circulation Research 34-35 (Suppl. I): 117–122 (1974).Google Scholar
  36. Kuwajima, I.; Ueda, K.; Kamata, C.; Matsushita, S.; Kuramoto, K.; Murakami, M. and Hada, Y.: A study of the effects of nifedipine in hypertensive crises and severe hypertension. Japanese Heart Journal 19: 455–467 (1978).PubMedCrossRefGoogle Scholar
  37. Kinoshita, M.; Motomura, M.; Kusukawa, R. and Kawakita, S.: Comparison of hemodynamic effects between β-blocking agents and a new antianginal agent, diltiazem hydrochloride. Japan Circulation Journal 43: 587–598 (1979).CrossRefGoogle Scholar
  38. Kubo, T.; Fujie, K.; Yamashita, M. and Misu, Y.: Antihypertensive effects of nifedipine on conscious normotensive and hypertensive rats. Journal of Pharmacobiodynamics 4: 294–300 (1981).CrossRefGoogle Scholar
  39. Kusukawa, R.; Kinoshita, M.; Shimono, Y.; Tomonaga, G. and Hosino, T.: Haemodynamic effects of a new anti-anginal drug, diltiazem hydrochloride. Arzneimittel-Forschung 27: 878–887 (1977).PubMedGoogle Scholar
  40. Laaser, U.; Meurer, K.A. and Kaufmann, W.: On the clinical evaluation of therapy with nifedipine in association with various antihypertensive drugs. Arzneimittel-Forschung 27: 676–681 (1977).PubMedGoogle Scholar
  41. Leary, W.P.; Phil, D. and Asmal, A.C.: Treatment of hypertension with verapamil. Current Therapeutic Research 25(5): 747–752 (1979).Google Scholar
  42. Leonetti, G.; Sala, C.; Bianchini, C.; Terzoli, L. and Zanchetti, A.: Antihypertensive and renal effects of orally administered verapamil. European Journal of Clinical Pharmacology 18: 375–382 (1980).PubMedCrossRefGoogle Scholar
  43. Leonetti, G.; Pasotti, C.; Ferrari, G.P. and Zanchetti, A.: Double-blind comparison of the antihypertensive effects of verapamil and propranolol; in Zanchetti and Krikler (Eds) Calcium Antagonism in Cardiovascular Therapy: Experience with Verapamil, pp.260–267 (Excerpta Medica, Amsterdam-Oxford-Princeton 1981).Google Scholar
  44. Lewis, G.R.; Morley, K.D.; Lewis, B.M. and Bones, P.J.: The treatment of hypertension with verapamil. New Zealand Medical Journal 87: 351–354 (1978).PubMedGoogle Scholar
  45. Lewis, G.R.J.; Morley, K.D.; Maslowski, A.H. and Bones, P.J.: Verapamil in the management of hypertensive patients. Australian and New Zealand Journal of Medicine 9: 62–64 (1979).PubMedCrossRefGoogle Scholar
  46. Lewis, G.R.J.: Verapamil in the management of chronic hypertension. Clinical and Investigative Medicine 3: 175–177 (1980).PubMedGoogle Scholar
  47. Lewis, G.R.J.; Stewart, D.J.; Lewis, B.M.; Bones, P.J.; Morley, K.D. and Janus, E.D.: The antihypertensive effect of oral verapamil — acute and long-term administration and its effects on the high-density lipoprotein values in plasma; in Zanchetti and Krikler (Eds) Calcium Antagonism in Cardiovascular Therapy: Experience with Verapamil, pp.270–277 (Excerpta Medica, Amsterdam-Oxford-Princeton 1981).Google Scholar
  48. Lewis, G.R.J.: In discussion; in Zanchetti and Krikler (Eds) Calcium Antagonism in Cardiovascular Therapy: Experience with Verapamil, p.279 (Excerpta Medica, Amsterdam-Oxford-Princeton 1981).Google Scholar
  49. Livesley, B.; Catley, P.F.; Campbell, R.C. and Oram, S.: Double-blind evaluation of verapamil, propranolol, and isosorbide dinitrate against a placebo in the treatment of angina pectoris. British Medical Journal 1: 375–378 (1973).PubMedCrossRefGoogle Scholar
  50. Maeda, K.; Takasugi, T.; Tsukano, Y.; Tanaka, Y. and Shiota, K.: Clinical study on the hypotensive effect of diltiazem hydrochloride. International Journal of Clinical Pharmacology, Therapy and Toxicology 19(2): 47–55 (1981).Google Scholar
  51. Mangiardi, L.M.; Hartman, R.J.; McAllister Jr, R.G.; Bhargava, V.; Surawicz, B. and Shabetai, R.: Electrophysiologic and hemodynamic effects of verapamil. Correlation with plasma drug concentrations. Circulation 57: 366–372 (1978).Google Scholar
  52. Marone, C.; Beretta-Piccoli, C. and Weidman, P.: Role of haemodynamics, catecholamines and renin in acute hypercalcaemic hypertension in man. Clinical Sciences 59: 369S–371S (1980).Google Scholar
  53. Midtbo, D. and Hals, O.: Verapamil in the treatment of hypertension. Current Therapeutic Research 27(6): 830–838 (1980).Google Scholar
  54. Mikkelsen, K.; Andersson, K.E. and Bengstsson, B.: Effects of verapamil and nitroglycerin on contractile responses to potassium and noradrenaline in isolated human peripheral veins. Acta Pharmacologica et Toxicologica 42: 14–22 (1978a).PubMedCrossRefGoogle Scholar
  55. Mikkelsen, E.; Andersson, K.E. and Pedersen, O.L.: The effect of nifedipine on isolated human peripheral vessels. Acta Pharmacologica et Toxicologica 43: 291–298 (1978b).PubMedCrossRefGoogle Scholar
  56. Mostbeck, A.; Partsch, H. and Peschl, L.: Investigations on peripheral blood distribution. Third International Adalat Symposium, pp.91–97 (Excerpta Medica, Amsterdam 1976).Google Scholar
  57. Muiesan, G.; Agabiti-Rosei, E.; Alicandri, C.; Beschi, M.; Castellano, M.; Corea, L.; Fariello, R.; Romanelli, G.; Pasini, C. and Platto, L: Influence of verapamil on catecholamines, renin and aldosterone in essential hypertensive patients; in Zanchetti and Krikler (Eds) Calcium Antagonism in Cardiovascular Therapy: Experience with Verapamil, pp.238–249 (Excerpta Medica, Amsterdam-Oxford-Princeton 1981).Google Scholar
  58. Murakami, M.; Murakami, E.; Takekoshi, N.; Tsuchiga, M.; Kin, T.; Onoe, T.; Takeuchi, N.; Funatsu, T.; Hara, S.; Ishise, S.; Mifune, J. and Maeda, M.: Antihypertensive effect of 4 (-2-nitrophenyl)-2, 6-dimethyl-1, 4-dihydropyridine-3, 5-dicarbonic acid dimethylester (nifedipine, Bay-a 1040), a new coronary vasodilator. Japanese Heart Journal 13: 128–135 (1972).PubMedCrossRefGoogle Scholar
  59. Olivari, M.T.; Bartorelli, C.; Polese, A.; Fiorentini, C.; Moruzzi, P.; and Guazzi, M.D.: Treatment of hypertension with nifedipine, a calcium antagonistic agent. Circulation 59: 1056–1062 (1979).PubMedCrossRefGoogle Scholar
  60. Opie, L.H.: Drugs and the heart. III: Calcium antagonists. Lancet 1: 806–810 (1980).Google Scholar
  61. Osada, T.; Kajiwara, N.; Kobayashi, Y.; Murakami, A.; Hashida, J.; Uchiyama, T.; Ono, M.; Kita, T.; Tei, T.; Fujiboyashi, Y.; Yamamoto, Y.; Shimoda, K.; Hatano, M. and Satoh, Y.: The inhibition of hypertension and the histological changes in SHR treated with diltiazem. Japanese Heart Journal 20: 745 (1979).PubMedCrossRefGoogle Scholar
  62. Overbeck, H.W. and Conrad, L.L.: Intracellular distribution of calcium-45 in arteries of normal and hypertensive dogs. Proceedings of the Society for Experimental Biology and Medicine 127: 565–570 (1968).PubMedGoogle Scholar
  63. Pedersen, O.L.: Does verapamil have a clinically significant antihypertensive effect? European Journal of Clinical Pharmacology 13: 21–24 (1978).PubMedCrossRefGoogle Scholar
  64. Pedersen, O.L.; Mikkelsen, E.; Kornerup, H.J. and Christensen, N.J.: Effects of nifedipine on blood pressure, regional hemodynamics, plasma renin activity and plasma catecholamines in patients with hypertension. Acta Medica Scandinavica 625 (Suppl.): 65–67 (1978a).Google Scholar
  65. Pedersen, O.L.; Christensen, C.K.; Mikkelsen, E. and Ramsch, K.D.: Relationship between antihypertensive effect and steady-state plasma concentration of nifedipine given alone or in combination with a β-adrenoceptor blocking agent. European Journal of Clinical Pharmacology 18: 287–293 (1980).CrossRefGoogle Scholar
  66. Pedersen, O.L. and Mikkelsen, E.: Acute and chronic effects of nifedipine in arterial hypertension. European Journal of Clinical Pharmacology 14: 375–381 (1978).PubMedCrossRefGoogle Scholar
  67. Pedersen, O.L.; Mikkelsen, E. and Andersson, K-E.: Effects of extracellular calcium on potassium and noradrenaline induced contractions in the aorta of spontaneously hypertensive rats — increased sensitivity to nifedipine. Acta Pharmacologica et Toxicologica 43: 137–144 (1978b).CrossRefGoogle Scholar
  68. Pedersen, O.L.; Mikkelsen, E.; Christensen, N.J.; Kornerup, H.J. and Pedersen, E.B.: Effect of nifedipine on plasma renin, aldosterone and catecholamines in arterial hypertension. European Journal of Clinical Pharmacology 15: 235–240 (1979).PubMedCrossRefGoogle Scholar
  69. Polese, A.; Fiorentini, C.; Olivari, M.T. and Guazzi, M.D.: Clinical use of a calcium antagonistic agent (nifedipine) in acute pulmonary edema. American Journal of Medicine 66: 825–830 (1979).PubMedCrossRefGoogle Scholar
  70. Rosenthal, F.D. and Roy, S.: Hypertension and hyperparathyroidism. British Medical Journal 4: 391–399 (1972).CrossRefGoogle Scholar
  71. Ross, G. and Jorgenson, C.R.: Cardiovascular action of iproveratril. Journal of Pharmacology and Experimental Therapeutics 158: 504–509 (1967).PubMedGoogle Scholar
  72. Ryden, L. and Saetre, H.: The haemodynamic effect of verapamil. European Journal of Clinical Pharmacology 3: 153–157 (1971).CrossRefGoogle Scholar
  73. Sakuri, T.; Kurita, T.; Nagano, S. et al.: Antihypertensive, vasodilating, and sodium diuretic actions of D-cis-isomer of benzothiazepine derivative (CRD-401). Acta Urologica Japonica 18: 695–707 (1972).Google Scholar
  74. Sandier, G.; Clayton, G.A. and Thornicroft, S.G.: Clinical evaluation of verapamil in angina pectoris. British Medical Journal 3: 224–227 (1968).CrossRefGoogle Scholar
  75. Sato, M.; Murata, S.; Narita, H.; Tomita, M.; Yamashita, K. and Yamaguchi, I.: Hypotensive effects of diltiazem hydrochloride in the normotensive, spontaneously hypertensive and renal hypertensive rats (authors’ translation of abstract). Nippon Yakurigaku Zasshi 75(2): 99–106 (1979).PubMedCrossRefGoogle Scholar
  76. Scharer, K.; Alatas, H. and Bein, G.: The treatment of renal hypertension with verapamil in childhood (abstract). Monatsschrift für Kinderheilkunde 125(7): 706–12 (1977).PubMedGoogle Scholar
  77. Seabra-Gomes, R.; Rickards, A. and Sutton, R.: Haemodynamic effects of verapamil and practolol in man. European Journal of Cardiology 4: 79–85 (1976).PubMedGoogle Scholar
  78. Singh, B. and Roche, A.: Effects of intravenous verapamil on hemodynamics in patients with heart disease. American Heart Journal 94(5): 593–599 (1977).PubMedCrossRefGoogle Scholar
  79. Stone, P.H.; Antman, E.M.; Muller, J.E. and Braunwald, E.: Calcium channel blocking agents in the treatment of cardiovascular disorders. Part II: Hemodynamic effects and clinical applications. Annals of Internal Medicine 93: 886–904 (1980).PubMedGoogle Scholar
  80. Takekoshi, N.; Murakami, E.; Murakami, H.; Matsui, S.; Masuya, K.; Nomura, M.; Fujita, S.; Tsuji, S.; Chatani, T.; Emoto, J.; Tsugawa, H. and Hashimoto, A.: Treatment of severe hypertension and hypertensive emergency with nifedipine, a calcium antagonistic agent. Japan Circulation Journal 45: 852–860 (1981).CrossRefGoogle Scholar
  81. Tarazi, R.C.; Dustan, H.P.; Bravo, E.L. and Niarchos, A.P.: Vasodilating drugs: Contrasting hemodynamic effects. Clinical Science and Molecular Medicine 51: 575S–578S (1976).Google Scholar
  82. Thibonnier, M.; Bonnet, F. and Corvol, P.: Antihypertensive effect of fractionated sublingual administration of nifedipine in moderate essential hypertension. European Journal of Clinical Pharmacology 17: 161–164 (1980).PubMedCrossRefGoogle Scholar
  83. Tobian, L. and Chesley, G.: Calcium content of arteriolar walls in normotensive and hypertensive rats. Proceedings of the Society for Experimental Biology and Medicine 121: 340–343 (1966).PubMedGoogle Scholar
  84. Vincenzi, M.; Allegri, P.; Gabaldo, S.; Maiolino, P. and Ometto, R.: Haemodynamic effects caused by intravenous administration of verapamil in healthy subjects. Arzneimittel-Forschung 26: 1221–1223 (1976).PubMedGoogle Scholar
  85. Wei, J-W.; Janis, R.A. and Daniel, E.E.: Calcium accumulation and enzymatic activities of subcellular fractions from aortas and ventricles of genetically hypertensive rats. Circulation Research 39: 133–140 (1976).PubMedCrossRefGoogle Scholar
  86. Weidmann, P.; Massry, S.R.; Coburn, J.W.; Maxwell, M.H.; Atleson, J. and Kleeman, C.R.: Acute hypercalcemic hypertension. Annals of Internal Medicine 76: 741–746 (1972).PubMedGoogle Scholar
  87. Yamaguchi, I.; Ikezawa, K.; Takada, T. and Kiyomoto, A.: Studies on a new 1,5-benzothiazepine derivative (CRD-401). VI. Effects on renal blood flow and renal function. Japanese Journal of Pharmacology 24: 511–522 (1974).PubMedCrossRefGoogle Scholar
  88. Zsotér, T.T.; Nolchinsky, C.; Henein, N.F. and Ho, L.C.: Calcium kinetics in the aorta of spontaneously hypertensive rats. Cardiovascular Research 11: 353–357 (1977).PubMedCrossRefGoogle Scholar

Copyright information

© ADIS Press Australasia Pty Ltd (Inc. NSW) 1983

Authors and Affiliations

  • Carl Spivack
    • 1
  • Stephen Ocken
    • 1
  • William H. Frishman
    • 1
  1. 1.Division of Cardiology, Department of MedicineThe Albert Einstein College of MedicineBronxUSA

Personalised recommendations