Clinical Pharmacokinetics

, Volume 47, Issue 9, pp 565–594 | Cite as

Pharmacogenetics of Oral Anticoagulants

A Basis for Dose Individualization
  • Simone Stehle
  • Julia Kirchheiner
  • Andreas Lazar
  • Uwe Fuhr
Review Article


Coumarin derivatives, including warfarin, acenocoumarol and phenprocoumon, are the drugs of choice for long-term treatment and prevention of thromboembolic events. The management of oral anticoagulation is challenging because of a large variability in the dose-response relationship, which is in part caused by genetic polymorphisms. The narrow therapeutic range may result in bleeding complications or recurrent thrombosis, especially during the initial phase of treatment. The aim of this review is to systematically extract the published data reporting pharmacogenetic influences on oral anticoagulant therapy and to provide empirical doses for individual genotype combinations. To this end, we extracted all data from clinical studies of warfarin, phenprocoumon and acenocoumarol that reported genetic influences on either the dose demand or adverse drug effects, such as bleeding complications. Data were summarized for each substance, and the relative effect of each relevant gene was calculated across studies, assuming a linear gene-dose effect in Caucasians. Cytochrome P450 (CYP) 2C9, which is the main enzyme for rate-limiting metabolism of oral anticoagulants, had the largest impact on the dose demand. Compared with homozygous carriers of CYP2C9*1, patients homozygous for CYP2C9*3 were estimated to need 3.3-fold lower mean doses of warfarin to achieve the same international normalized ratio, with *2 carriers and heterozygous patients in between. Differences for acenocoumarol and phenprocoumon were 2.5-fold and 1.5-fold, respectively. Homozygosity of the vitamin K epoxide reductase complex subunit 1 (VK0RC1) variant C1173T (*2) allele (VKORC1 is the molecular target of anticoagulant action) was related to 2.4-fold, 1.6-fold and 1.9-fold lower dose requirements compared with the wild-type for warfarin, acenocoumarol and phenprocoumon, respectively. Compared with CYP2C9 and VKORC1 homozygous wild-type individuals, patients with polymorphisms in these genes also more often experience severe overanticoagulation. An empirical dose table, which may be useful as a basis for dose individualization, is presented for the combined CYP2C9/VKORC1 genotypes. Genetic polymorphism in further enzymes and structures involved in the effect of anticoagulants such as γ-glutamylcarboxylase, glutathione S-transferase A1, microsomal epoxide hydrolase and apolipoprotein E appear to be of negligible importance.

Despite the clear effects of CYP2C9 and VKORC1 variants, these polymorphisms explain less than half of the interindividual variability in the dose response to oral anticoagulants. Thus, while individuals at the extremes of the dose requirements are likely to benefit, the overall clinical merits of a genotype-adapted anticoagulant treatment regimen in the entire patient populations remain to be determined in further prospective clinical studies.


Warfarin International Normalize Ratio Oral Anticoagulant Warfarin Dose Phenprocoumon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Simone Stehle was supported by the Köln Fortune Program of the Medical Faculty, University of Cologne, Germany. No other sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.


  1. 1.
    Hirsh J. Antithrombotic therapy in deep vein thrombosis and pulmonary embolism. Am Heart J 1992 Apr; 123 (4 Pt 2): 1115–22PubMedCrossRefGoogle Scholar
  2. 2.
    Hirsh J, Dalen J, Anderson DR, et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 2001 Jan; 119 (1 Suppl.): 8S–21SPubMedCrossRefGoogle Scholar
  3. 3.
    Hirsh J, Dalen JE, Anderson DR, et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 1998 Nov; 114 (5 Suppl.): 445S–69SPubMedCrossRefGoogle Scholar
  4. 4.
    Laupacis A, Albers G, Dalen J, et al. Antithrombotic therapy in atrial fibrillation. Chest 1995 Oct; 108 (4 Suppl.): 352S–9SPubMedCrossRefGoogle Scholar
  5. 5.
    Stein PD, Alpert JS, Copeland J, et al. Antithrombotic therapy in patients with mechanical and biological prosthetic heart valves. Chest 1995 Oct; 108 (4 Suppl.): 371S–9SPubMedCrossRefGoogle Scholar
  6. 6.
    Latner AW. The top 200 drugs of 1999. Pharm Times 2000; 66(4): 16–32Google Scholar
  7. 7.
    Thijssen HH, Flinois JP, Beaune PH. Cytochrome P4502C9 is the principal catalyst of racemic acenocoumarol hydroxylation reactions in human liver microsomes. Drug Metab Dispos 2000 Nov; 28(11): 1284–90PubMedGoogle Scholar
  8. 8.
    Landefeld CS, Beyth RJ. Anticoagulant-related bleeding: clinical epidemiology, prediction, and prevention. Am J Med 1993 Sep; 95(3): 315–28PubMedCrossRefGoogle Scholar
  9. 9.
    Palareti G, Leali N, Coccheri S, et al. Bleeding complications of oral anticoagulant treatment: an inception-cohort, prospective collaborative study (ISCOAT). Italian Study on Complications of Oral Anticoagulant Therapy. Lancet 1996 Aug 17; 348(9025): 423–8PubMedCrossRefGoogle Scholar
  10. 10.
    Hummers-Pradier E, Hess S, Adham IM, et al. Determination of bleeding risk using genetic markers in patients taking phenprocoumon. Eur J Clin Pharmacol 2003 Jul; 59(3): 213–9PubMedCrossRefGoogle Scholar
  11. 11.
    Tiaden JD, Wenzel E, Berthold HK, et al. Adverse reactions to anticoagulants and to antiplatelet drugs recorded by the German spontaneous reporting system. Semin Thromb Hemost 2005; 31(4): 371–80PubMedCrossRefGoogle Scholar
  12. 12.
    Aithal GP, Day CP, Kesteven PJ, et al. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999 Feb 27; 353(9154): 717–9PubMedCrossRefGoogle Scholar
  13. 13.
    Higashi MK, Veenstra DL, Kondo LM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 2002 Apr 3; 287(13): 1690–8PubMedCrossRefGoogle Scholar
  14. 14.
    Margaglione M, Colaizzo D, D’Andrea G, et al. Genetic modulation of oral anticoagulation with warfarin. Thromb Haemost 2000 Nov; 84(5): 775–8PubMedGoogle Scholar
  15. 15.
    Ogg MS, Brennan P, Meade T, et al. CYP2C9*3 allelic variant and bleeding complications. Lancet 1999 Sep 25; 354(9184): 1124PubMedCrossRefGoogle Scholar
  16. 16.
    James AH, Britt RP, Raskino CL, et al. Factors affecting the maintenance dose of warfarin. J Clin Pathol 1992 Aug; 45(8): 704–6PubMedCrossRefGoogle Scholar
  17. 17.
    Visser LE, Trienekens PH, De Smet PA, et al. Patients with an ApoE epsilon4 allele require lower doses of coumarin anticoagulants. Pharmacogenet Genomics 2005 Feb; 15(2): 69–74PubMedCrossRefGoogle Scholar
  18. 18.
    Hirsh J, Dalen JE, Deykin D, et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 1995 Oct; 108 (4 Suppl.): 231S–46SPubMedCrossRefGoogle Scholar
  19. 19.
    Linder MW. Genetic mechanisms for hypersensitivity and resistance to the anticoagulant warfarin. Clin Chim Acta 2001 Jun; 308(1–2): 9–15PubMedCrossRefGoogle Scholar
  20. 20.
    Rost S, Fregin A, Koch D, et al. Compound heterozygous mutations in the gammaglutamyl carboxylase gene cause combined deficiency of all vitamin K-dependent blood coagulation factors. Br J Haematol 2004 Aug; 126(4): 546–9PubMedCrossRefGoogle Scholar
  21. 21.
    Sadler JE. Medicine: K is for koagulation. Nature 2004 Feb 5; 427(6974): 493–4PubMedCrossRefGoogle Scholar
  22. 22.
    Fasco MJ, Principe LM. R- and S-warfarin inhibition of vitamin K and vitamin K 2,3-epoxide reductase activities in the rat. J Biol Chem 1982 May 10; 257(9): 4894–901PubMedGoogle Scholar
  23. 23.
    de Vries JX, Simon M, Volker U, et al. Comparative plasma disposition and anticoagulant activities of racemic phenprocoumon and its metabolites in rats. Haemostasis 1993; 23(1): 13–8PubMedGoogle Scholar
  24. 24.
    He M, Korzekwa KR, Jones JP, et al. Structural forms of phenprocoumon and warfarin that are metabolized at the active site of CYP2C9. Arch Biochem Biophys 1999 Dec 1; 372(1): 16–28PubMedCrossRefGoogle Scholar
  25. 25.
    Kaminsky LS, Zhang ZY. Human P450 metabolism of warfarin. Pharmacol Ther 1997; 73(1): 67–74PubMedCrossRefGoogle Scholar
  26. 26.
    Alberio L. Oral anticoagulation with vitamin K antagonists [in German]. Ther Umsch 2003 Jan; 60(1): 5–9PubMedCrossRefGoogle Scholar
  27. 27.
    Pyorala K, Jussila J, Mustala O, et al. Absorption of warfarin from the stomach and small intestine. Scand J Gastroenterol 1971; 9 Suppl.: 95–103Google Scholar
  28. 28.
    de Vries JX, Volker U. Determination of the plasma protein binding of the coumarin anticoagulants phenprocoumon and its metabolites, warfarin and acenocoumarol, by ultrafiltration and high-performance liquid chromatography. J Chromatogr 1990 Aug 3; 529(2): 479–85PubMedGoogle Scholar
  29. 29.
    Jahnchen E, Meinertz T, Gilfrich HJ, et al. The enantiomers of phenprocoumon: pharmacodynamic and pharmacokinetic studies. Clin Pharmacol Ther 1976 Sep; 20(3): 342–9PubMedGoogle Scholar
  30. 30.
    Hemker HC, Frank HL. The mechanism of action of oral anticoagulants and its consequences for the practice of oral anticoagulation. Haemostasis 1985; 15(4): 263–70PubMedGoogle Scholar
  31. 31.
    Thijssen HH, Hamulyak K, Willigers H. 4-Hydroxycoumarin oral anticoagulants: pharmacokinetics-response relationship. Thromb Haemost 1988 Aug 30; 60(1): 35–8PubMedGoogle Scholar
  32. 32.
    Ufer M, Svensson JO, Krausz KW, et al. Identification of cytochromes P450 2C9 and 3A4 as the major catalysts of phenprocoumon hydroxylation in vitro. Eur J Clin Pharmacol 2004 May; 60(3): 173–82PubMedCrossRefGoogle Scholar
  33. 33.
    Pohl LR, Haddock RE, Trager WF. Biotransformation of phenprocoumon in the rat. J Med Chem 1975 May; 18(5): 519–23PubMedCrossRefGoogle Scholar
  34. 34.
    Stirling Y, Howarth DJ, Stockley R, et al. Comparison of the bioavailabilities and anticoagulant activities of two warfarin formulations. Br J Haematol 1982 May; 51(1): 37–46PubMedCrossRefGoogle Scholar
  35. 35.
    Yacobi A, Udall JA, Levy G. Intrasubject variation of warfarin binding to protein in serum of patients with cardiovascular disease. Clin Pharmacol Ther 1976 Sep; 20(3): 300–3PubMedGoogle Scholar
  36. 36.
    Yacobi A, Udall JA, Levy G. Serum protein binding as a determinant of warfarin body clearance and anticoagulant effect. Clin Pharmacol Ther 1976 May; 19 (5 Pt 1): 552–8PubMedGoogle Scholar
  37. 37.
    Chan E, McLachlan AJ, Pegg M, et al. Disposition of warfarin enantiomers and metabolites in patients during multiple dosing with rac-warfarin. Br J Clin Pharmacol 1994 Jun; 37(6): 563–9PubMedCrossRefGoogle Scholar
  38. 38.
    Hewick DS, McEwen J. Plasma half-lives, plasma metabolites and anticoagulant efficacies of the enantiomers of warfarin in man. J Pharm Pharmacol 1973 Jun; 25(6): 458–65PubMedCrossRefGoogle Scholar
  39. 39.
    Lewis RJ, Trager WF. Warfarin metabolism in man: identification of metabolites in urine. J Clin Invest 1970 May; 49(5): 907–13PubMedCrossRefGoogle Scholar
  40. 40.
    Lewis RJ, Trager WF, Chan KK, et al. Warfarin: stereochemical aspects of its metabolism and the interaction with Phenylbutazone. J Clin Invest 1974 Jun; 53(6): 1607–17PubMedCrossRefGoogle Scholar
  41. 41.
    Rettie AE, Korzekwa KR, Kunze KL, et al. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol 1992 Jan–Feb; 5(1): 54–9PubMedCrossRefGoogle Scholar
  42. 42.
    Toon S, Low LK, Gibaldi M, et al. The warfarin-sulfinpyrazone interaction: stereochemical considerations. Clin Pharmacol Ther 1986 Jan; 39(1): 15–24PubMedCrossRefGoogle Scholar
  43. 43.
    Kelly JG, O’Malley K. Clinical pharmacokinetics of oral anticoagulants. Clin Pharmacokinet 1979 Jan–Feb; 4(1): 1–15PubMedCrossRefGoogle Scholar
  44. 44.
    Ufer M. Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet 2005; 44(12): 1227–46PubMedCrossRefGoogle Scholar
  45. 45.
    Trager WF, Lewis RJ, Garland WA. Mass spectral analysis in the identification of human metabolites of warfarin. J Med Chem 1970 Nov; 13(6): 1196–204PubMedCrossRefGoogle Scholar
  46. 46.
    Kaminsky LS, de Morais SM, Faletto MB, et al. Correlation of human cytochrome P4502C substrate specificities with primary structure: warfarin as a probe. Mol Pharmacol 1993 Feb; 43(2): 234–9PubMedGoogle Scholar
  47. 47.
    Wienkers LC, Steenwyk RC, Sanders PE, et al. Biotransformation of tirilazad in human: 1. Cytochrome P450 3A-mediated hydroxylation of tirilazad mesylate in human liver microsomes. J Pharmacol Exp Ther 1996 May; 277(2): 982–90PubMedGoogle Scholar
  48. 48.
    Zhang ZY, Kerr J, Wexler RS, et al. Warfarin analog inhibition of human CYP2C9-catalyzed S-warfarin 7-hydroxylation. Thromb Res 1997 Nov 15; 88(4): 389–98PubMedCrossRefGoogle Scholar
  49. 49.
    Hermans JJ, Thijssen HH. The in vitro ketone reduction of warfarin and analogues: substrate stereoselectivity, product stereoselectivity and species differences. Biochem Pharmacol 1989 Oct 1; 38(19): 3365–70PubMedCrossRefGoogle Scholar
  50. 50.
    Kaminsky LS. Warfarin as a probe of cytochromes P-450 function. Drug Metab Rev 1989; 20(2–4): 479–87PubMedCrossRefGoogle Scholar
  51. 51.
    Dieterle W, Faigle JW, Montigel C, et al. Biotransformation and pharmacokinetics of acenocoumarol (Sintrom) in man. Eur J Clin Pharmacol 1977; 11(5): 367–75PubMedCrossRefGoogle Scholar
  52. 52.
    Thijssen HH, Drittij MJ, Vervoort LM, et al. Altered pharmacokinetics of R- and S-acenocoumarol in a subject heterozygous for CYP2C9*3. Clin Pharmacol Ther 2001 Sep; 70(3): 292–8PubMedCrossRefGoogle Scholar
  53. 53.
    Hermans JJ, Thijssen HH. Comparison of the rat liver microsomal metabolism of the enantiomers of warfarin and 4′-nitrowarfarin (acenocoumarol). Xenobiotica 1991 Mar; 21(3): 295–307PubMedCrossRefGoogle Scholar
  54. 54.
    Hermans JJ, Thijssen HH. Human liver microsomal metabolism of the enantiomers of warfarin and acenocoumarol: P450 isozyme diversity determines the differences in their pharmacokinetics. Br J Pharmacol 1993 Sep; 110(1): 482–90PubMedCrossRefGoogle Scholar
  55. 55.
    Thijssen HH, Janssen GM, Baars LG. Lack of effect of Cimetidine on pharmacodynamics and kinetics of single oral doses of R- and S-acenocoumarol. Eur J Clin Pharmacol 1986; 30(5): 619–23PubMedCrossRefGoogle Scholar
  56. 56.
    Toon S, Heimark LD, Trager WF, et al. Metabolic fate of phenprocoumon in humans. J Pharm Sci 1985 Oct; 74(10): 1037–40PubMedCrossRefGoogle Scholar
  57. 57.
    Kammerer B, Kahlich R, Ufer M, et al. Stereospecific pharmacokinetic characterisation of phenprocoumon metabolites, and mass-spectrometric identification of two novel metabolites in human plasma and liver microsomes. Anal Bioanal Chem 2005 Nov; 383(6): 909–17PubMedCrossRefGoogle Scholar
  58. 58.
    Ufer M, Kammerer B, Kahlich R, et al. Genetic polymorphisms of cytochrome P450 2C9 causing reduced phenprocoumon (S)-7-hydroxylation in vitro and in vivo. Xenobiotica 2004 Sep; 34(9): 847–59PubMedCrossRefGoogle Scholar
  59. 59.
    de Vries JX, Raedsch R, Volker U, et al. Biliary excretion of phenprocoumon and metabolites. Eur J Clin Pharmacol 1988; 35(4): 433–6PubMedCrossRefGoogle Scholar
  60. 60.
    Edelbroek PM, van Kempen GM, Hessing TJ, et al. Analysis of phenprocoumon and its hydroxylated and conjugated metabolites in human urine by high-performance liquid chromatography after solid-phase extraction. J Chromatogr 1990 Sep 14; 530(2): 347–58PubMedGoogle Scholar
  61. 61.
    Heni N, Glogner P. Pharmacokinetics of phenprocoumon in man investigated using a gas Chromatographie method of drug analysis. Naunyn Schmiedebergs Arch Pharmacol 1976 May; 293(2): 183–6PubMedCrossRefGoogle Scholar
  62. 62.
    Heimark LD, Toon S, Gibaldi M, et al. The effect of sulfinpyrazone on the disposition of pseudoracemic phenprocoumon in humans. Clin Pharmacol Ther 1987 Sep; 42(3): 312–9PubMedCrossRefGoogle Scholar
  63. 63.
    zu Schwabedissen CM, Mevissen V, Schmitz F, et al. Obesity is associated with a slower response to initial phenprocoumon therapy whereas CYP2C9 genotypes are not. Eur J Clin Pharmacol 2006 Sep; 62(9): 713–20CrossRefGoogle Scholar
  64. 64.
    Carlquist JF, Horne BD, Muhlestein JB, et al. Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study. J Thromb Thrombolysis 2006 Dec; 22(3): 191–7PubMedCrossRefGoogle Scholar
  65. 65.
    Herman D, Locatelli I, Grabnar I, et al. Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics J 2005; 5(3): 193–202PubMedCrossRefGoogle Scholar
  66. 66.
    Kimura R, Miyashita K, Kokubo Y, et al. Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb Res 2007; 120(2): 181–6PubMedCrossRefGoogle Scholar
  67. 67.
    Millican E, Jacobsen-Lenzini PA, Milligan PE, et al. Genetic-based dosing in orthopaedic patients beginning warfarin therapy. Blood 2007 Sep 1; 110(5): 1511–5PubMedCrossRefGoogle Scholar
  68. 68.
    Peyvandi F, Spreafico M, Siboni SM, et al. CYP2C9 genotypes and dose requirements during the induction phase of oral anticoagulant therapy. Clin Pharmacol Ther 2004 Mar; 75(3): 198–203PubMedCrossRefGoogle Scholar
  69. 69.
    Sconce EA, Khan TI, Wynne HA, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 2005 Oct 1; 106(7): 2329–33PubMedCrossRefGoogle Scholar
  70. 70.
    Scordo MG, Pengo V, Spina E, et al. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 2002 Dec; 72(6): 702–10PubMedCrossRefGoogle Scholar
  71. 71.
    Taube J, Halsall D, Baglin T. Influence of cytochrome P-450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over-anticoagulation in patients on longterm treatment. Blood 2000 Sep 1; 96(5): 1816–9PubMedGoogle Scholar
  72. 72.
    Michaud V, Vanier MC, Brouillette D, et al. Combination of phenotype assessments and CYP2C9-VKORC1 polymorphisms in the determination of warfarin dose requirements in heavily medicated patients. Clin Pharmacol Ther 2008 May; 83(5): 740–8PubMedCrossRefGoogle Scholar
  73. 73.
    Wadelius M, Sorlin K, Wallerman O, et al. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J 2004; 4(1): 40–8PubMedCrossRefGoogle Scholar
  74. 74.
    Miao L, Yang J, Huang C, et al. Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin: proposal for a new dosing regimen in Chinese patients. Eur J Clin Pharmacol 2007 Dec; 63(12): 1135–41PubMedCrossRefGoogle Scholar
  75. 75.
    Momary KM, Shapiro NL, Viana MA, et al. Factors influencing warfarin dose requirements in African-Americans. Pharmacogenomics 2007 Nov; 8(11): 1535–44PubMedCrossRefGoogle Scholar
  76. 76.
    Lindh JD, Lundgren S, Holm L, et al. Several-fold increase in risk of overanticoagulation by CYP2C9 mutations. Clin Pharmacol Ther 2005 Nov; 78(5): 540–50PubMedCrossRefGoogle Scholar
  77. 77.
    Steward DJ, Haining RL, Henne KR, et al. Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 1997 Oct; 7(5): 361–7PubMedCrossRefGoogle Scholar
  78. 78.
    Schalekamp T, Brasse BP, Roijers JF, et al. VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation. Clin Pharmacol Ther 2006 Jul; 80(1): 13–22PubMedCrossRefGoogle Scholar
  79. 79.
    Mark L, Marki-Zay J, Fodor L, et al. Cytochrome P450 2C9 polymorphism and acenocoumarol therapy. Kardiol Pol 2006 Apr; 64(4): 397–402; discussion 403–4PubMedGoogle Scholar
  80. 80.
    Tassies D, Freire C, Pijoan J, et al. Pharmacogenetics of acenocoumarol: cytochrome P450 CYP2C9 polymorphisms influence dose requirements and stability of anticoagulation. Haematologica 2002 Nov; 87(11): 1185–91PubMedGoogle Scholar
  81. 81.
    Visser LE, van Vliet M, van Schaik RH, et al. The risk of overanticoagulation in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Pharmacogenetics 2004 Jan; 14(1): 27–33PubMedCrossRefGoogle Scholar
  82. 82.
    Schalekamp T, Brasse BP, Roijers JF, et al. VKORC1 and CYP2C9 genotypes and phenprocoumon anticoagulation status: interaction between both genotypes affects dose requirement. Clin Pharmacol Ther 2007 Feb; 81(2): 185–93PubMedCrossRefGoogle Scholar
  83. 83.
    Schalekamp T, Oosterhof M, van Meegen E, et al. Effects of cytochrome P450 2C9 polymorphisms on phenprocoumon anticoagulation status. Clin Pharmacol Ther 2004 Nov; 76(5): 409–17PubMedCrossRefGoogle Scholar
  84. 84.
    Schelleman H, Chen Z, Kealey C, et al. Warfarin response and vitamin K epoxide reductase complex 1 in African Americans and Caucasians. Clin Pharmacol Ther 2007 May; 81(5): 742–7PubMedCrossRefGoogle Scholar
  85. 85.
    Herman D, Peternel P, Stegnar M, et al. The influence of sequence variations in factor VII, gamma-glutamyl carboxylase and vitamin K epoxide reductase complex genes on warfarin dose requirement. Thromb Haemost 2006 May; 95(5): 782–7PubMedGoogle Scholar
  86. 86.
    D’Andrea G, D’Ambrosio RL, Di Perna P, et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 2005 Jan 15; 105(2): 645–9PubMedCrossRefGoogle Scholar
  87. 87.
    Zhu Y, Shennan M, Reynolds KK, et al. Estimation of warfarin maintenance dose based on VKORC1 (-1639 G>A) and CYP2C9 genotypes. Clin Chem 2007 Jul; 53(7): 1199–205PubMedCrossRefGoogle Scholar
  88. 88.
    Borgiani P, Ciccacci C, Forte V, et al. Allelic variants in the CYP2C9 and VKORC1 loci and interindividual variability in the anticoagulant dose effect of warfarin in Italians. Pharmacogenomics 2007 Nov; 8(11): 1545–50PubMedCrossRefGoogle Scholar
  89. 89.
    Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999 Oct 15; 286(5439): 487–91PubMedCrossRefGoogle Scholar
  90. 90.
    Yasar U, Eliasson E, Dahl ML, et al. Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun 1999 Jan 27; 254(3): 628–31PubMedCrossRefGoogle Scholar
  91. 91.
    Xie HG, Prasad HC, Kim RB, et al. CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev 2002 Nov 18; 54(10): 1257–70PubMedCrossRefGoogle Scholar
  92. 92.
    Kidd RS, Curry TB, Gallagher S, et al. Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. Pharmacogenetics 2001 Dec; 11(9): 803–8PubMedCrossRefGoogle Scholar
  93. 93.
    Yasar U, Aklillu E, Canaparo R, et al. Analysis of CYP2C9*5 in Caucasian, Oriental and black-African populations. Eur J Clin Pharmacol 2002 Nov; 58(8): 555–8PubMedCrossRefGoogle Scholar
  94. 94.
    Crespi CL, Miller VP. The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPHxytochrome P450 oxidoreductase. Pharmacogenetics 1997 Jun; 7(3): 203–10PubMedCrossRefGoogle Scholar
  95. 95.
    Haining RL, Hunter AP, Veronese ME, et al. Allelic variants of human cytochrome P450 2C9: baculovirus-mediated expression, purification, structural characterization, substrate stereoselectivity, and prochiral selectivity of the wild-type and I359L mutant forms. Arch Biochem Biophys 1996 Sep 15; 333(2): 447–58PubMedCrossRefGoogle Scholar
  96. 96.
    Rettie AE, Wienkers LC, Gonzalez FJ, et al. Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 1994 Feb; 4(1): 39–42PubMedCrossRefGoogle Scholar
  97. 97.
    Breckenridge A, Orme M, Wesseling H, et al. Pharmacokinetics and pharmacodynamics of the enantiomers of warfarin in man. Clin Pharmacol Ther 1974 Apr; 15(4): 424–30PubMedGoogle Scholar
  98. 98.
    Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet 2001; 40(8): 587–603PubMedCrossRefGoogle Scholar
  99. 99.
    Loebstein R, Yonath H, Peleg D, et al. Interindividual variability in sensitivity to warfarin: nature or nurture? Clin Pharmacol Ther 2001 Aug; 70(2): 159–64PubMedCrossRefGoogle Scholar
  100. 100.
    Takahashi H, Kashima T, Nomizo Y, et al. Metabolism of warfarin enantiomers in Japanese patients with heart disease having different CYP2C9 and CYP2C19 genotypes. Clin Pharmacol Ther 1998 May; 63(5): 519–28PubMedCrossRefGoogle Scholar
  101. 101.
    Takahashi H, Echizen H. Pharmacogenetics of CYP2C9 and interindividual variability in anticoagulant response to warfarin. Pharmacogenomics J 2003; 3(4): 202–14PubMedCrossRefGoogle Scholar
  102. 102.
    Freeman BD, Zehnbauer BA, McGrath S, et al. Cytochrome P450 polymorphisms are associated with reduced warfarin dose. Surgery 2000 Aug; 128(2): 281–5PubMedCrossRefGoogle Scholar
  103. 103.
    Kohnke H, Sorlin K, Granath G, et al. Warfarin dose related to apolipoprotein E (APOE) genotype. Eur J Clin Pharmacol 2005 Jul; 61(5–6): 381–8PubMedCrossRefGoogle Scholar
  104. 104.
    Sanderson S, Emery J, Higgins J. CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and metaanalysis. Genet Med 2005 Feb; 7(2): 97–104PubMedCrossRefGoogle Scholar
  105. 105.
    Bloch A, Ben-Chetrit E, Muszkat M, et al. Major bleeding caused by warfarin in a genetically susceptible patient. Pharmacotherapy 2002 Jan; 22(1): 97–101PubMedCrossRefGoogle Scholar
  106. 106.
    Limdi NA, McGwin G, Goldstein JA, et al. Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in African-American and European-American patients on warfarin. Clin Pharmacol Ther 2008 Feb; 83(2): 312–21PubMedCrossRefGoogle Scholar
  107. 107.
    Takahashi H, Wilkinson GR, Padrini R, et al. CYP2C9 and oral anticoagulation therapy with acenocoumarol and warfarin: similarities yet differences. Clin Pharmacol Ther 2004 May; 75(5): 376–80PubMedCrossRefGoogle Scholar
  108. 108.
    Thijssen HH, Ritzen B. Acenocoumarol pharmacokinetics in relation to cytochrome P450 2C9 genotype. Clin Pharmacol Ther 2003 Jul; 74(1): 61–8PubMedCrossRefGoogle Scholar
  109. 109.
    Visser LE, van Schaik RH, van Vliet M, et al. The risk of bleeding complications in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Thromb Haemost 2004 Jul; 92(1): 61–6PubMedGoogle Scholar
  110. 110.
    Mark L, Marki-Zay J, Paragh G, et al. Retrospective analyses of acenocoumarol doses and bleeding complications in patients with wild type or variant cytochrome P450 CYP2C9 alleles. Thromb Haemost 2005 Feb; 93(2): 396–7PubMedGoogle Scholar
  111. 111.
    Kirchheiner J, Ufer M, Walter EC, et al. Effects of CYP2C9 polymorphisms on the pharmacokinetics of R- and S-phenprocoumon in healthy volunteers. Pharmacogenetics 2004 Jan; 14(1): 19–26PubMedCrossRefGoogle Scholar
  112. 112.
    Pauli RM, Lian JB, Mosher DF, et al. Association of congenital deficiency of multiple vitamin K-dependent coagulation factors and the phenotype of the warfarin embryopathy: clues to the mechanism of teratogenicity of coumarin derivatives. Am J Hum Genet 1987 Oct; 41(4): 566–83PubMedGoogle Scholar
  113. 113.
    Cain D, Hutson SM, Wallin R. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane. J Biol Chem 1997 Nov 14; 272(46): 29068–75PubMedCrossRefGoogle Scholar
  114. 114.
    Reitsma PH, van der Heijden JF, Groot AP, et al. A C1173T dimorphism in the VKORC1 gene determines coumarin sensitivity and bleeding risk. PLoS Med 2005 Oct; 2(10): e312PubMedCrossRefGoogle Scholar
  115. 115.
    Rieder MJ, Reiner AP, Gage BF, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 2005 Jun 2; 352(22): 2285–93PubMedCrossRefGoogle Scholar
  116. 116.
    Wadelius M, Chen LY, Downes K, et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 2005; 5(4): 262–70PubMedCrossRefGoogle Scholar
  117. 117.
    Osman A, Enstrom C, Arbring K, et al. Main haplotypes and mutational analysis of vitamin K epoxide reductase (VKORC1) in a Swedish population: a retrospective analysis of case records. J Thromb Haemost 2006 Aug; 4(8): 1723–9PubMedCrossRefGoogle Scholar
  118. 118.
    Loebstein R, Dvoskin I, Halkin H, et al. A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance. Blood 2007 Mar 15; 109(6): 2477–80PubMedCrossRefGoogle Scholar
  119. 119.
    Obayashi K, Nakamura K, Kawana J, et al. VKORC1 gene variations are the major contributors of variation in warfarin dose in Japanese patients. Clin Pharmacol Ther 2006 Aug; 80(2): 169–78PubMedCrossRefGoogle Scholar
  120. 120.
    Veenstra DL, You JH, Rieder MJ, et al. Association of vitamin K epoxide reductase complex 1 (VKORC1) variants with warfarin dose in a Hong Kong Chinese patient population. Pharmacogenet Genomics 2005 Oct; 15(10): 687–91PubMedCrossRefGoogle Scholar
  121. 121.
    Takahashi H, Wilkinson GR, Nutescu EA, et al. Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genomics 2006 Feb; 16(2): 101–10PubMedCrossRefGoogle Scholar
  122. 122.
    Geisen C, Watzka M, Sittinger K, et al. VKORC1 haplotypes and their impact on the inter-individual and inter-ethnical variability of oral anticoagulation. Thromb Haemost 2005 Oct; 94(4): 773–9PubMedGoogle Scholar
  123. 123.
    Yuan HY, Chen JJ, Lee MT, et al. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet 2005 Jul 1; 14(13): 1745–51PubMedCrossRefGoogle Scholar
  124. 124.
    Bodin L, Verstuyft C, Tregouet DA, et al. Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood 2005 Jul 1; 106(1): 135–40PubMedCrossRefGoogle Scholar
  125. 125.
    Rost S, Fregin A, Ivaskevicius V, et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004 Feb 5; 427(6974): 537–41PubMedCrossRefGoogle Scholar
  126. 126.
    Harrington DJ, Underwood S, Morse C, et al. Pharmacodynamic resistance to warfarin associated with a Val66Met substitution in vitamin K epoxide reductase complex subunit 1. Thromb Haemost 2005 Jan; 93(1): 23–6PubMedGoogle Scholar
  127. 127.
    Tham LS, Goh BC, Nafziger A, et al. A warfarin-dosing model in Asians that uses single-nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9. Clin Pharmacol Ther 2006 Oct; 80(4): 346–55PubMedCrossRefGoogle Scholar
  128. 128.
    Wadelius M, Pirmohamed M. Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenomics J 2007 Apr; 7(2): 99–111PubMedCrossRefGoogle Scholar
  129. 129.
    Cain D, Hutson SM, Wallin R. Warfarin resistance is associated with a protein component of the vitamin K 2,3-epoxide reductase enzyme complex in rat liver. Thromb Haemost 1998 Jul; 80(1): 128–33PubMedGoogle Scholar
  130. 130.
    Bredschneider M, Klein K, Murdter TE, et al. Genetic polymorphisms of glutathione S-transferase A1, the major glutathione S-transferase in human liver: consequences for enzyme expression and busulfan conjugation. Clin Pharmacol Ther 2002 Jun; 71(6): 479–87PubMedCrossRefGoogle Scholar
  131. 131.
    Morel F, Rauch C, Coles B, et al. The human glutathione transferase alpha locus: genomic organization of the gene cluster and functional characterization of the genetic polymorphism in the hGSTA1 promoter. Pharmacogenetics 2002 Jun; 12(4): 277–86PubMedCrossRefGoogle Scholar
  132. 132.
    Loebstein R, Vecsler M, Kurnik D, et al. Common genetic variants of microsomal epoxide hydrolase affect warfarin dose requirements beyond the effect of cytochrome P450 2C9. Clin Pharmacol Ther 2005 May; 77(5): 365–72PubMedCrossRefGoogle Scholar
  133. 133.
    Hassett C, Aicher L, Sidhu JS, et al. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet 1994 Mar; 3(3): 421–8PubMedCrossRefGoogle Scholar
  134. 134.
    Omiecinski CJ, Hassett C, Hosagrahara V. Epoxide hydrolase: polymorphism and role in toxicology. Toxicol Lett 2000 Mar 15; 112–113: 365–70Google Scholar
  135. 135.
    Hassett C, Lin J, Carty CL, et al. Human hepatic microsomal epoxide hydrolase: comparative analysis of polymorphic expression. Arch Biochem Biophys 1997 Jan 15; 337(2): 275–83PubMedCrossRefGoogle Scholar
  136. 136.
    Shearer MJ. The roles of vitamins D and K in bone health and osteoporosis prevention. Proc Nutr Soc 1997 Nov; 56(3): 915–37PubMedCrossRefGoogle Scholar
  137. 137.
    Berkner KL, Runge KW. The physiology of vitamin K nutriture and vitamin K-dependent protein function in atherosclerosis. J Thromb Haemost 2004 Dec; 2(12): 2118–32PubMedCrossRefGoogle Scholar
  138. 138.
    Saupe J, Shearer MJ, Kohlmeier M. Phylloquinone transport and its influence on gamma-carboxyglutamate residues of osteocalcin in patients on maintenance hemodialysis. Am J Clin Nutr 1993 Aug; 58(2): 204–8PubMedGoogle Scholar
  139. 139.
    Kohlmeier M, Salomon A, Saupe J, et al. Transport of vitamin K to bone in humans. J Nutr 1996 Apr; 126 (4 Suppl.): 1192S–6SPubMedGoogle Scholar
  140. 140.
    Wadelius M, Chen LY, Eriksson N, et al. Association of warfarin dose with genes involved in its action and metabolism. Hum Genet 2007 Mar; 121(1): 23–34PubMedCrossRefGoogle Scholar
  141. 141.
    Sconce EA, Daly AK, Khan TI, et al. APOE genotype makes a small contribution to warfarin dose requirements. Pharmacogenet Genomics 2006 Aug; 16(8): 609–11PubMedCrossRefGoogle Scholar
  142. 142.
    Lal S, Sandanaraj E, Jada SR, et al. Influence of APOE genotypes and VKORC1 haplotypes on warfarin dose requirements in Asian patients. Br J Clin Pharmacol 2008 Feb; 65(2): 260–4PubMedCrossRefGoogle Scholar
  143. 143.
    Kuo WL, Stafford DW, Cruces J, et al. Chromosomal localization of the gammaglutamyl carboxylase gene at 2p12. Genomics 1995 Feb 10; 25(3): 746–8PubMedCrossRefGoogle Scholar
  144. 144.
    Lingenfelter SE, Berkner KL. Isolation of the human gamma-carboxylase and a gamma-carboxylase-associated protein from factor IX-expressing mammalian cells. Biochemistry 1996 Jun 25; 35(25): 8234–43PubMedCrossRefGoogle Scholar
  145. 145.
    Suttie JW, Canfield LM, Shah DV. Microsomal vitamin K-dependent carboxylase. Methods Enzymol 1980; 67: 180–5PubMedCrossRefGoogle Scholar
  146. 146.
    Wu SM, Stafford DW, Frazier LD, et al. Genomic sequence and transcription start site for the human gamma-glutamyl carboxylase. Blood 1997 Jun 1; 89(11): 4058–62PubMedGoogle Scholar
  147. 147.
    Rieder MJ, Reiner AP, Rettie AE. Gamma-glutamyl carboxylase (GGCX) tagSNPs have limited utility for predicting warfarin maintenance dose. J Thromb Haemost 2007 Nov; 5(11): 2227–34PubMedCrossRefGoogle Scholar
  148. 148.
    Hylek EM, Regan S, Go AS, et al. Clinical predictors of prolonged delay in return of the international normalized ratio to within the therapeutic range after excessive anticoagulation with warfarin. Ann Intern Med 2001 Sep 18; 135(6): 393–400PubMedGoogle Scholar
  149. 149.
    Hamberg AK, Dahl ML, Barban M, et al. A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin Pharmacol Ther 2007 Apr; 81(4): 529–38PubMedCrossRefGoogle Scholar
  150. 150.
    Almog S, Shafran N, Halkin H, et al. Mechanism of warfarin potentiation by amiodarone: dose- and concentration-dependent inhibition of warfarin elimination. Eur J Clin Pharmacol 1985; 28(3): 257–61PubMedCrossRefGoogle Scholar
  151. 151.
    Transon C, Leemann T, Vogt N, et al. In vivo inhibition profile of cytochrome P450TB (CYP2C9) by (+/-)-fluvastatin. Clin Pharmacol Ther 1995 Oct; 58(4): 412–7PubMedCrossRefGoogle Scholar
  152. 152.
    Hemeryck A, De Vriendt C, Belpaire FM. Inhibition of CYP2C9 by selective serotonin reuptake inhibitors: in vitro studies with tolbutamide and (S)-warfarin using human liver microsomes. Eur J Clin Pharmacol 1999 Feb; 54(12): 947–51PubMedCrossRefGoogle Scholar
  153. 153.
    Ahmad S. Lovastatin: warfarin interaction. Arch Intern Med 1990 Nov; 150(11): 2407PubMedCrossRefGoogle Scholar
  154. 154.
    Chan E, McLachlan A, O’Reilly R, et al. Stereochemical aspects of warfarin drug interactions: use of a combined pharmacokinetic-pharmacodynamic model. Clin Pharmacol Ther 1994 Sep; 56(3): 286–94PubMedCrossRefGoogle Scholar
  155. 155.
    Wittkowsky AK. Warfarin and other coumarin derivatives: pharmacokinetics, pharmacodynamics, and drug interactions. Semin Vasc Med 2003 Aug; 3(3): 221–30PubMedCrossRefGoogle Scholar
  156. 156.
    Madabushi R, Frank B, Drewelow B, et al. Hyperforin in St John’s wort drug interactions. Eur J Clin Pharmacol 2006 Mar; 62(3): 225–33PubMedCrossRefGoogle Scholar
  157. 157.
    Harder S, Thurmann P. Clinically important drug interactions with anticoagulants: an update. Clin Pharmacokinet 1996 Jun; 30(6): 416–44PubMedCrossRefGoogle Scholar
  158. 158.
    Lubetsky A, Dekel-Stern E, Chetrit A, et al. Vitamin K intake and sensitivity to warfarin in patients consuming regular diets. Thromb Haemost 1999 Mar; 81(3): 396–9PubMedGoogle Scholar
  159. 159.
    Wells PS, Holbrook AM, Crowther NR, et al. Interactions of warfarin with drugs and food. Ann Intern Med 1994 Nov 1; 121(9): 676–83PubMedGoogle Scholar
  160. 160.
    Zhao F, Loke C, Rankin SC, et al. Novel CYP2C9 genetic variants in Asian subjects and their influence on maintenance warfarin dose. Clin Pharmacol Ther 2004 Sep; 76(3): 210–9PubMedCrossRefGoogle Scholar
  161. 161.
    Kuehn BM. Health agencies update: warfarin label update. JAMA 2007 Sep 26; 298(12): 1389Google Scholar
  162. 162.
    Anderson JL, Horne BD, Stevens SM, et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 2007 Nov 27; 116(22): 2563–70PubMedCrossRefGoogle Scholar
  163. 163.
    Caraco Y, Blotnick S, Muszkat M. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin Pharmacol Ther 2008 Mar; 83(3): 460–70PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2008

Authors and Affiliations

  • Simone Stehle
    • 1
  • Julia Kirchheiner
    • 2
  • Andreas Lazar
    • 1
  • Uwe Fuhr
    • 1
  1. 1.Department of PharmacologyUniversity of CologneCologneGermany
  2. 2.Department of Pharmacology of Natural Products & Clinical PharmacologyUniversity of UlmUlmGermany

Personalised recommendations