Clinical Pharmacokinetics

, Volume 47, Issue 2, pp 91–102 | Cite as

Clinical Pharmacology of Artemisinin-Based Combination Therapies

Review Article


Malaria, a disease transmitted by the female Anopheles mosquito, has had devastating effects on human populations for more than 4000 years. Treatment of the disease with single drugs, such as chloroquine, sulfadoxine/pyrimethamine or mefloquine, has led to the emergence of resistant Plasmodium falciparum parasites that lead to the most severe form of the illness. Artemisinin-based combination therapies are currently recommended by WHO for the treatment of uncomplicated P. falciparum malaria. Artemisinin and semisynthetic derivatives, including artesunate, artemether and dihydroartemisinin, are short-acting antimalarial agents that kill parasites more rapidly than conventional antimalarials, and are active against both the sexual and asexual stages of the parasite cycle. Artemisinin fever clearance time is shortened to 32 hours as compared with 2–3 days with older agents. To delay or prevent emergence of resistance, artemisinins are combined with one of several longer-acting drugs — amodiaquine, mefloquine, sulfadoxine/pyrimethamine or lumefantrine — which permit elimination of the residual malarial parasites.

The clinical pharmacology of artemisinin-based combination therapies is highly complex. The short-acting artemisinins and their long-acting counterparts are metabolized and/or inhibit/induce cytochrome P450 enzymes, and may thus participate in drug-drug interactions with multiple drugs on the market. Alterations in antimalarial drug plasma concentrations may lead to either suboptimal efficacy or drug toxicity and may compromise treatment.


Malaria Chloroquine Artemisinin Mefloquine Falciparum Malaria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr German is the recipient of grant no. P30 AI27763 from the National Institutes of Health, University of California San Francisco-Gladstone Institute of Virology & Immunology Center for AIDS Research.

The authors thank Dr Grant Dorsey for his invaluable comments in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this review.


  1. 1.
    Joint United Nations Programme on HIV/AIDS (UNAIDS)/WHO. AIDS epidemic update: special report on HIV prevention [online]. Geneva: UNAIDS, 2005 Dec. Available from URL: [Accessed 2007 Oct 15]
  2. 2.
    White NJ. Antimalarial drug resistance. J Antimicrob Chemother 1992; 30: 571–85PubMedCrossRefGoogle Scholar
  3. 3.
    Talisuna AO, Bloland P, D’Allessandro U. History, dynamics, and public health importance of malaria parasite resistance. Clin Microbiol Rev 2004; 17(1): 235–54PubMedCrossRefGoogle Scholar
  4. 4.
    Nosten F, van Vugt M, Price R, et al. Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in Western Thailand: a prospective study. Lancet 2000; 356: 297–302PubMedCrossRefGoogle Scholar
  5. 5.
    WHO. Guidelines for the treatment of malaria [online]. Geneva: WHO, 2006. Available from URL: [Accessed 2007 Oct 15]
  6. 6.
    White NJ. Antimalarial drug resistance. J Clin Invest 2004; 113(8): 1084–92PubMedGoogle Scholar
  7. 7.
    Karema C, Fanello CI, van Overmeir C, et al. Safety and efficacy of dihydroartemisinin/piperaquine (Artekin) for the treatment of uncomplicated Plasmodium falciparum malaria in Rwandan children. Trans R Soc Trop Med Hyg 2006; 100(12): 1105–11PubMedCrossRefGoogle Scholar
  8. 8.
    Denis MB, Davis TM, Hewitt S, et al. Efficacy and safety of dihydroartemisininpiperaquine (Artekin) in Cambodian children and adults with uncomplicated falciparum malaria. Clin Infect Dis 2002; 35: 1469–75PubMedCrossRefGoogle Scholar
  9. 9.
    van Agtmael MA, Eggelte TA, van Boxtel CJ. Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication. Trends Pharmacol Sci 1999; 20(5): 199–205PubMedCrossRefGoogle Scholar
  10. 10.
    Woodrow CJ, Haynes RK, Krishna S. Artemisinins. Postgrad Med J 2005; 81: 71–8PubMedCrossRefGoogle Scholar
  11. 11.
    Hsu E. The history of qing hao in the Chinese material medica. Trans R Soc Trop Med Hyg 2006 Jun; 100(6): 505–8PubMedCrossRefGoogle Scholar
  12. 12.
    Wiesner J, Ortmann R, Jomaa H, et al. New antimalarial drugs. Angew Chem Int Ed Engl 2003; 42(43): 5274–93PubMedCrossRefGoogle Scholar
  13. 13.
    Foley M, Tilley L. Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther 1998; 79(1): 55–87PubMedCrossRefGoogle Scholar
  14. 14.
    D’Alessandro U, ter Kuile FO. Amodiaquine, malaria, pregnancy: the old new drug. Lancet 2006; 368: 1306–7PubMedCrossRefGoogle Scholar
  15. 15.
    Lefevre G, Thomsen MS. Clinical pharmacokinetics of artemether and lumefantrine (Riamet®). Clin Drug Invest 1999; 18(6): 467–80CrossRefGoogle Scholar
  16. 16.
    Simpson JA, Price R, ter Kuile F, et al. Population pharmacokinetics of mefloquine in patients with acute falciparum malaria. Clin Pharmacol Ther 1999; 66(5): 472–84PubMedCrossRefGoogle Scholar
  17. 17.
    Ashley EA, Stepniewska K, Lindegårdh N, et al. Population pharmacokinetic assessment of a new regimen of mefloquine used in combination treatment of uncomplicated falciparum malaria. Antimicrob Agents Chemother 2006 Jul; 50(7): 2281–5PubMedCrossRefGoogle Scholar
  18. 18.
    Davis TME, Hung T, Sim I, et al. Piperaquine: a resurgent antimalarial drug. Drugs 2006; 65(1): 75–87CrossRefGoogle Scholar
  19. 19.
    White NJ. Clinical pharmacokinetics and pharmacodynamics of artemisinin and derivatives. Trans R Soc Trop Med Hyg 1994; 88 Suppl. 1: S41–3PubMedCrossRefGoogle Scholar
  20. 20.
    Golenser J, Waknine JH, Krugliak M, et al. Current perspectives on the mechanism of action of artemisinins. Int J Parasitol 2006; 36(14): 1427–41PubMedCrossRefGoogle Scholar
  21. 21.
    Eckstein-Ludwig U, Webb RJ, Van Goethem ID, et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature 2003; 424(6951): 957–61PubMedCrossRefGoogle Scholar
  22. 22.
    Li W, Mo W, Shen D, et al. Yeast model uncovers dual roles of mitochondria in the action of artemisinin. PLoS Genet 2005; 1(3): e36PubMedCrossRefGoogle Scholar
  23. 23.
    Krishna S, Woodrow CJ, Staines HM, et al. Re-evaluation of how artemisinins work in light of emerging evidence of in vitro resistance. Trends Mol Med 2006; 12(5): 200–5PubMedCrossRefGoogle Scholar
  24. 24.
    Vyas N, Avery BA, Avery MA, et al. Carrier-mediated partitioning of artemisinin into Plasmodium falciparum-infected erythrocytes. Antimicrob Agents Chemother 2002; 46(1): 105–9PubMedCrossRefGoogle Scholar
  25. 25.
    Famin O, Ginsburg H. Differential effects of 4-aminoquinoline-containing anti-malarial drugs on hemoglobin digestion in Plasmodium falciparum-infected erythrocytes. Biochem Pharmacol 2002; 63(3): 393–8PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang JM, Krugliak M, Ginsburg H. The fate of ferriprotorphyrin IX in malaria infected erythrocytes in conjunction with the mode of action of antimalarial drugs. Mol Biochem Parasitol 1999; 99: 129–41PubMedCrossRefGoogle Scholar
  27. 27.
    Famin O, Krugliak M, Ginsburg H. Kinetics of inhibition of glutathione-mediated degradation of ferriprotoporphyrin IX by antimalarial drugs. Biochem Pharmacol 1999; 58: 59–68PubMedCrossRefGoogle Scholar
  28. 28.
    Novartis Pharma AG. Product monograph: Coartem®/Riamet®. A novel anti-malarial combination: one product, two concepts. Basel: Novartis Pharma AG, 2005Google Scholar
  29. 29.
    Roche Laboratories Inc. Lariam® brand of mefloquine hydrochloride tablets [package insert; online]. Nutley (NJ): Roche Laboratories Inc., 2002. Available from URL: [Accessed 2007 Oct 15]
  30. 30.
    Triglia R, Cowman AF. Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. Proc Natl Acad Sci U S A 1994; 91(15): 7149–53PubMedCrossRefGoogle Scholar
  31. 31.
    Sibley CH, Hyde JE, Sims PF, et al. Pyrimethamine-sufadoxine resistance in Plasmodium falciparum: what next? Trends Parasitol 2001; 17(12): 582–8PubMedCrossRefGoogle Scholar
  32. 32.
    Balint GA. Artemisinin and its derivatives: an important new class of antimalarial drugs. Pharmacol Ther 2001; 90(2-3): 261–5PubMedCrossRefGoogle Scholar
  33. 33.
    Karbwang J, Thomas CG, Na Bangchang K, et al. Pharmacokinetics of artemether after oral administration to healthy Thai males and patients with acute, uncomplicated falciparum malaria. Br J Clin Pharmacol 1994; 37(3): 249–53PubMedCrossRefGoogle Scholar
  34. 34.
    Benakis A, Paris M, Loutan L, et al. Pharmacokinetics of artemisinin and artesunate after oral administration in healthy volunteers. Am J Trop Med Hyg 1997; 56(1): 17–23PubMedGoogle Scholar
  35. 35.
    Sidhu JS, Ashton M. Single-dose, comparative study of venous capillary and salivary artemisinin concentrations in healthy, male adults. Am J Trop Med Hyg 1997; 56(1): 13–6PubMedGoogle Scholar
  36. 36.
    Svensson US, Ashton M, Trinh NH, et al. Artemisinin induces omeprazole metabolism in human beings. Clin Pharmacol Ther 1998; 64(2): 160–7PubMedCrossRefGoogle Scholar
  37. 37.
    Svensson US, Jouppila MM, Hoffmann KJ, et al. Characterization of the human liver in vitro metabolic pattern of artemisinin and auto-induction in the rat by use of nonlinear mixed effects modeling. Biopharm Drug Dispos 2003; 24(2): 71–85PubMedCrossRefGoogle Scholar
  38. 38.
    Simonsson US, Jansson B, Hai TN, et al. Artemisinin autoinduction is caused by involvement of cytochrome P450 2B6 but not 2C9. Clin Pharmacol Ther 2003; 74(1): 32–43PubMedCrossRefGoogle Scholar
  39. 39.
    Li Q, Xie LH, Si Y, et al. Toxicokinetics and hydrolysis of artelinate and artesunate in malaria-infected rats. Int J Toxicol 2005; 24(4): 241–50PubMedCrossRefGoogle Scholar
  40. 40.
    WHO. Facts on ACTs (artemisinin-based combination therapies): January 2006 update [online]. Geneva: WHO, 2006. Available from URL: [Accessed 2007 Oct 15]
  41. 41.
    Drugs for neglected diseases initiative [online]. Available from URL: [Accessed 2007 Oct 15]
  42. 42.
    Karunajeewa HA, Ilett KF, Dufall K, et al. Disposition of artesunate and dihydroartemisinin after administration of artesunate suppositories in children from Papua New Guinea with uncomplicated malaria. Antimicrob Agents Chemother 2004; 48(8): 2966–72PubMedCrossRefGoogle Scholar
  43. 43.
    Dondorp A, Nosten F, Stepniewska K, et al. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 2005; 366(9487): 717–25PubMedCrossRefGoogle Scholar
  44. 44.
    Newton PN, Barnes KI, Smith PJ, et al. The pharmacokinetics of intravenous artesunate in adults with severe falciparum malaria. Eur J Clin Pharmacol 2006; 62(12): 1003–9PubMedCrossRefGoogle Scholar
  45. 45.
    Ilett KF, Ethell BT, Maggs JL, et al. Glucuronidation of dihydroartemisinin in vivo and by human liver microsomes and expressed UDP-glucuronosyltransferases. Drug Metab Dispos 2002; 30(9): 1005–12PubMedCrossRefGoogle Scholar
  46. 46.
    Teja-Isavadharm P, Watt G, Eamsila C, et al. Comparative pharmacokinetics and effect kinetics of orally administered artesunate in healthy volunteers and patients with uncomplicated P. falciparum malaria. Am J Trop Med Hyg 2001; 65(6): 717–21PubMedGoogle Scholar
  47. 47.
    Li Q, Xie LH, Haeberle A, et al. The evaluation of radiolabeled artesunate on tissue distribution in rats and protein binding in humans. Am J Trop Med Hyg 2006; 75(5): 817–26PubMedGoogle Scholar
  48. 48.
    Batty KT, Ilett KF, Davis TME. Protein binding and α:β anomer ratio of dihydroartemisinin in vivo. Br J Clin Pharmacol 2004; 57(4): 529–33PubMedCrossRefGoogle Scholar
  49. 49.
    Winstanley PA, Edwards G, Orme MLE, et al. Effect of dose size on amodiaquine pharmacokinetics after oral administration. Eur J Clin Pharmacol 1987; 33: 331–3PubMedCrossRefGoogle Scholar
  50. 50.
    Winstanley PA, Edwards G, Orme MLE, et al. The disposition of amodiaquine in man after oral administration. Br J Clin Pharmacol 1987; 23(1): 1–7PubMedCrossRefGoogle Scholar
  51. 51.
    Li XQ, Bjorkman A, Andersson RB, et al. Amodiaquine clearance and its metabolism to N-dessethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther 2002; 300(2): 399–407PubMedCrossRefGoogle Scholar
  52. 52.
    Churchill FC, Patchen LC, Campbell CC, et al. Amodiaquine as a prodrug: the importance of metabolite(s) in the antimalarial effect of amodiaquine in humans. Life Sci 1985; 36: 53–62PubMedCrossRefGoogle Scholar
  53. 53.
    Jewell H, Maggs JL, Harrison AC, et al. Role of hepatic metabolism in the bioactivation and detoxication of amodiaquine. Xenobiotica 1995; 25(2): 199–217PubMedCrossRefGoogle Scholar
  54. 54.
    Christie G, Breckenridge AM, Park BK. Drug-protein conjugates: XVIII. Detection of antibodies towards the antimalarial amodiaquine and its quinone imine metabolite in man and the rat. Biochem Pharmacol 1989; 38(9): 1451–8PubMedCrossRefGoogle Scholar
  55. 55.
    Harrison AC, Kitteringham NR, Clarke JB, et al. The mechanism of bioactivation and antigen formation of amodiaquine in the rat. Biochem Pharmacol 1992; 43(7): 1421–30PubMedCrossRefGoogle Scholar
  56. 56.
    Maggs JL, Kitteringham NR, Breckenridge AM, et al. Autoxidative formation of a chemically reactive intermediate from amodiaquine, a myelotoxin and hepatotoxin in man. Biochem Pharmacol 1987; 36(13): 2061–2PubMedCrossRefGoogle Scholar
  57. 57.
    Maggs JL, Tingle MD, Kitteringham NR, et al. Drug-protein conjugates: XIV. Mechanisms of formation of protein-arylating intermediates from amodiaquine, a myelotoxin and hepatotoxin in man. Biochem Pharmacol 1988; 37(2): 303–11PubMedCrossRefGoogle Scholar
  58. 58.
    Krishna S, White NJ. Pharmacokinetics of quinine, chloroquine and amodiaquine: clinical implications. Clin Pharmacokinet 1996; 30(4): 263–99PubMedCrossRefGoogle Scholar
  59. 59.
    Giao PT, de Vries PJ. Pharmacokinetic interactions of antimalarial agents. Clin Pharmacokinet 2001; 40(5): 343–73PubMedCrossRefGoogle Scholar
  60. 60.
    Parikh S, Ouedraogo JB, Goldstein JA, et al. Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: implications for malaria treatment in Africa. Clin Pharmacol Ther 2007; 82(2): 197–203PubMedCrossRefGoogle Scholar
  61. 61.
    Dai D, Zeldin DC, Blaisdell JA, et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 2001; 11: 597–607PubMedCrossRefGoogle Scholar
  62. 62.
    Bahadur N, Leathart JB, Mutch E, et al. CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6a-hydroxylase activity in human liver microsomes. Biochem Pharmacol 2002; 64: 1579–89PubMedCrossRefGoogle Scholar
  63. 63.
    Hayeshi R, Masimirembwa C, Mukanganyama S, et al. The potential inhibitor effects of antiparasitic drugs and natural products on P-glycoprotein mediated efflux. Eur J Pharm Sci 2006; 29(1): 70–81PubMedCrossRefGoogle Scholar
  64. 64.
    Wennerholm A, Nordmark A, Pihlsgård M, et al. Amodiaquine, its desethylated metabolite, or both, inhibit the metabolism of debrisoquine (CYP2D6) and losartan (CYP2C9). Eur J Clin Pharmacol 2006; 62: 539–46PubMedCrossRefGoogle Scholar
  65. 65.
    German P, Greenhouse B, Coates C, et al. Hepatotoxicity due to a drug interaction between amodiaquine plus artesunate and efavirenz. Clin Infect Dis 2007; 44(6): 889–91PubMedCrossRefGoogle Scholar
  66. 66.
    Price R, Simpson JA, Teja-Isavatharm P, et al. Pharmacokinetics of mefloquine combined with artesunate in children with acute falciparum malaria. Antimicrob Agents Chemother 1999; 43(2): 341–6PubMedGoogle Scholar
  67. 67.
    Nosten F, Luxemburger C, ter Kuile FO, et al. Mefloquine treatment of acute falciparum malaria: a prospective study of non-serious adverse effects in 3673 patients. Bull World Health Organ 1995; 73(5): 631–42PubMedGoogle Scholar
  68. 68.
    Gimenez F, Pennie RA, Koren G, et al. Stereoselective pharmacokinetics of mefloquine in healthy Caucasians after multiple doses. J Pharm Sci 1994; 83(6): 824–7PubMedCrossRefGoogle Scholar
  69. 69.
    Martin C, Gimenez F, Bangchang KN, et al. Whole blood concentrations of mefloquine enantiomers in healthy Thai volunteers. Eur J Clin Pharmacol 1994; 47(1): 85–7PubMedCrossRefGoogle Scholar
  70. 70.
    Crevoisier C, Handschin J, Barré J, et al. Food increases the bioavailability of mefloquine. Eur J Clin Pharmacol 1997; 53(2): 135–9PubMedCrossRefGoogle Scholar
  71. 71.
    Dao NV, Quoc NP, Ngoa ND, et al. Fatty food does not alter blood mefloquine concentrations in the treatment of falciparum malaria. Trans R Soc Trop Med Hyg 2005; 99(12): 927–31PubMedCrossRefGoogle Scholar
  72. 72.
    Karbwang J, Na-Bangchang K. Clinical application of mefloquine pharmacokinetics in the treatment of P. falciparum malaria. Fundam Clin Pharmacol 1994; 8(6): 491–502PubMedCrossRefGoogle Scholar
  73. 73.
    Pham YT, Nosten F, Farinotti R, et al. Cerebral uptake of mefloquine enantiomers in fatal cerebral malaria. Int J Clin Pharmacol Ther 1999; 37(1): 58–61PubMedGoogle Scholar
  74. 74.
    Fontaine F, de Sousa G, Burcham PC, et al. Role of cytochrome P450 3A in the metabolism of mefloquine in human and animal hepatocytes. Life Sci 2000; 66(22): 2193–212PubMedCrossRefGoogle Scholar
  75. 75.
    Karbwang J, Thanavibul A, Na Bangchang K, et al. Pharmacokinetics of mefloquine alone or in combination with artesunate. Bull World Health Organ 1994; 72(1): 83–7PubMedGoogle Scholar
  76. 76.
    Davis TM, England M, Dunlop AM, et al. Assessment of the effect of mefloquine on artesunate pharmacokinetics in healthy male volunteers. Antimicrob Agents Chemother 2007; 51(3): 1099–101PubMedCrossRefGoogle Scholar
  77. 77.
    Rigtitid W, Wongnawa M, Mahatthanatrakul W, et al. Effect of rifampin on plasma concentrations of mefloquine in healthy volunteers. J Pharm Pharmacol 2000; 52(10): 1265–9CrossRefGoogle Scholar
  78. 78.
    Khaliq Y, Gallicano K, Tisdale C, et al. Pharmacokinetic interaction between mefloquine and ritonavir in healthy volunteers. Br J Clin Pharmacol 2001; 51(6): 591–600PubMedCrossRefGoogle Scholar
  79. 79.
    Ridtitid W, Wongnawa M, Mahatthanatrakul W, et al. Ketoconazole increases plasma concentrations of antimalarial mefloquine in healthy human volunteers. J Clin Pharm Ther 2005; 30(3): 285–90PubMedCrossRefGoogle Scholar
  80. 80.
    Taylor WR, White NJ. Antimalarial drug toxicity: a review. Drug Saf 2004; 27(1): 25–61PubMedCrossRefGoogle Scholar
  81. 81.
    Bhoir SI, Bhoir CI, Bhagwat AM, et al. Determination of sulfadoxine in human blood plasma using packed-column supercritical fluid chromatography. J Chromatogr B Biomed Sci Appl 2001; 757(1): 39–47PubMedCrossRefGoogle Scholar
  82. 82.
    Cavallito JC, Nichol CA, Brenckman Jr WD, et al. Lipid-soluble inhibitors of dihydrofolate reductase: I. Kinetics, tissue distribution, and extent of metabolism of pyrimethamine, metoprine, and etoprine in the rat, dog, and man. Drug Metab Dispos 1978; 6(3): 329–37PubMedGoogle Scholar
  83. 83.
    Roche Laboratories Inc. Fansidar® brand of sulfadoxine and pyrimethamine tablets [package insert; online]. Nutley (NJ): Roche Laboratories Inc., 2004. Available from URL: [Accessed 2007 Oct 15]
  84. 84.
    Wiedekamm E, Plozza-Nottebrock H, Forgo I, et al. Plasma concentrations of pyrimethamine and sulfadoxine and evaluation of pharmacokinetic data by computerized curve fitting. Bull World Health Organ 1982; 60(1): 115–22Google Scholar
  85. 85.
    Edstein MD. Pharmacokinetics of suldaoxine and pyrimethamine after Fansidar administration in man. Chemotherapy 1987; 33(4): 229–33PubMedCrossRefGoogle Scholar
  86. 86.
    Hombhanjie FW. Effect of a single oral dose of Fansidar on the pharmacokinetics of halofantrine in healthy volunteers: a preliminary report. Br J Clin Pharmacol 2000; 49(3): 283–4CrossRefGoogle Scholar
  87. 87.
    Ansdell VE, Wright SG, Hutchinson DBA. Megaloblastic anaemia associated with combined pyrimethamine and co-trimoxazole administration. Lancet 1976; II(7997): 1257CrossRefGoogle Scholar
  88. 88.
    Fleming AF, Warrell DA, Dickmeiss H. Co-trimoxazole and the blood [letter]. Lancet 1974; II(7875): 284–5CrossRefGoogle Scholar
  89. 89.
    Briggs M, Briggs M. Pyrimethamine toxicity [letter]. Br Med J 1974; 1(5896): 40PubMedCrossRefGoogle Scholar
  90. 90.
    WHO. The use of antimalarial drugs: report of a WHO informal consultation [online]. Geneva: WHO, 2001. Available from URL: [Accessed 2007 Nov 15]
  91. 91.
    Lefèvre G, Looareesuwan S, Treeprasertsuk S, et al. A clinical and pharmacokinetic trial of six doses of artemether-lumefantrine for multidrug-resistant Plasmodium falciparum malaria in Thailand. Am J Trop Med Hyg 2001; 64(5–6): 247–56PubMedGoogle Scholar
  92. 92.
    Novartis Pharma AG. Product monograph: Coartem®/Riamet®. Basel: Novartis Pharma AG, 1999 MarGoogle Scholar
  93. 93.
    van Agtmael MA, Gupta V, van der Wösten TH, et al. Grapefruit juice increases the bioavailability of artemether. Eur J Clin Pharmacol 1999; 55(5): 405–10PubMedCrossRefGoogle Scholar
  94. 94.
    Leo KU, Grace JM, Li Q, et al. Effects of Plasmodium berghei infection on arteether metabolism and disposition. Pharmacology 1997; 54: 276–84PubMedCrossRefGoogle Scholar
  95. 95.
    Batty KT, Ilett KF, Edwards G, et al. Assessment of the effect of malaria infection on hepatic clearance of dihydroartemisinin using rat liver perfusions and microsomes. Br J Pharmacol 1998; 125: 159–67PubMedCrossRefGoogle Scholar
  96. 96.
    Teja-Isavadharm P, Nosten F, Kyle DE, et al. Comparative bioavailability of oral, rectal, and intramuscular artemether in healthy subjects: use of simultaneous measurement by high performance liquid chromatography and bioassay. Br J Clin Pharmacol 1996 Nov; 42(5): 599–604PubMedGoogle Scholar
  97. 97.
    van Agtmael MA, Dien TK, Van Der Graaf CA, et al. The contribution of the enzymes CYP2D6 and CYP2c19 in the demethylation of artemether in healthy volunteers. Eur J Drug Metab Pharmacokinet 1998; 23(3): 429–36PubMedCrossRefGoogle Scholar
  98. 98.
    Colussi D, Parisot C, Legay F, et al. Binding of artemether and lumefantrine to plasma proteins and erythrocytes. Eur J Pharm Sci 1999; 9(1): 9–16PubMedCrossRefGoogle Scholar
  99. 99.
    White NJ, van Vugt M, Ezzet F. Clinical pharmacokinetics and pharmacodynamics of artemether-lumefantrine. Clin Pharmacokinet 1999 Aug; 37(2): 105–25PubMedCrossRefGoogle Scholar
  100. 100.
    Lefèvre G, Looareesuwan S, Treeprasertsuk S, et al. A clinical and pharmacokinetic trial of six doses of artemether-lumefantrine for multidrug-resistant Plasmodium falciparum malaria in Thailand. Am J Trop Med Hyg 2001; 64(5): 247–56PubMedGoogle Scholar
  101. 101.
    Lefèvre G, Carpenter P, Souppart C, et al. Pharmacokinetics and electrocardiographic pharmacodynamics of artemether-lumefantrine (Riamet) with concomitant administration of ketoconazole in healthy subjects. Br J Clin Pharmacol 2002; 54(5): 485–92PubMedCrossRefGoogle Scholar
  102. 102.
    Lefèvre G, Bindschedler M, Ezzet F, et al. Pharmacokinetic interaction trial between co-artemether and mefloquine. Eur J Pharm Sci 2000; 10: 141–51PubMedCrossRefGoogle Scholar
  103. 103.
    Karunajeewa H, Lim C, Hung TY, et al. Safety evaluation of fixed combination piperaquine plus dihydroartemisinin (Artekin®) in Cambodian children and adults with malaria. Br J Clin Pharmacol 2004; 57(1): 93–9PubMedCrossRefGoogle Scholar
  104. 104.
    Mayxay M, Thongpraseuth V, Khanthavong M, et al. An open randomized comparison of arteusnate plus mefloquine vs dihydroartemisinin-piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in the Lao People’s Democratic Republic (Laos). Trop Med Int Health 2006; 11(8): 1157–65PubMedCrossRefGoogle Scholar
  105. 105.
    Mutabingwa TK. Artemisinin-based combination therapies (ACTs): best hope for malaria treatment but inaccessible to the needy! Acta Trop 2005; 95_(3): 305–15CrossRefGoogle Scholar
  106. 106.
    Lindegårdh N, Giorgi F, Galletti B, et al. Identification of an isomer impurity in piperaquine drug substance. J Chromatogr A 2006; 1135(2): 166–9PubMedCrossRefGoogle Scholar
  107. 107.
    Hung TY, Davis TME, Ilett KF. Measurement of piperaquine in plasma by liquid chromatography with ultraviolet absorbance detection. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 791(1-2): 93–101PubMedCrossRefGoogle Scholar
  108. 108.
    Sim IK, Davis TME, Ilett KF. Effects of a high-fat meal on the relative oral bioavailability of piperaquine. Antimicrob Agents Chemother 2005; 49(6): 2407–11PubMedCrossRefGoogle Scholar
  109. 109.
    Tarning J, Lindegårdh N, Annerberg A, et al. Pitfalls in estimating piperaquine elimination. Antimicrob Agents Chemother 2005; 49(12): 5127–8PubMedCrossRefGoogle Scholar
  110. 110.
    Myint HY, Ashley EA, Day NP, et al. Efficacy and safety of dihydroartemisinin-piperaquine. Trans R Soc Trop Med Hyg; 2007; 101(9): 858–66PubMedCrossRefGoogle Scholar
  111. 111.
    Tarning J, Bergqvist Y, Day NP, et al. Characterization of human urinary metabolites of the antimalarial piperaquine. Drug Metab Dispos 2006; 34(12): 2011–9PubMedCrossRefGoogle Scholar
  112. 112.
    WHO Global Malaria Programme. Procurement of artemether/lumefantrine (Coartem®) through WHO [online]. Available from URL: [Accessed 2007 Oct 15]

Copyright information

© Adis Data Information BV 2008

Authors and Affiliations

  1. 1.Drug Research UnitUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations