Advertisement

Clinical Pharmacokinetics

, Volume 46, Issue 2, pp 133–157 | Cite as

Pharmacokinetic Drug Interactions Involving 17α-Ethinylestradiol

A New Look at an Old Drug
  • Hongjian Zhang
  • Donghui Cui
  • Bonnie Wang
  • Yong-Hae Han
  • Praveen Balimane
  • Zheng Yang
  • Michael Sinz
  • A. David Rodrigues
Review Article

Abstract

17α-Ethinylestradiol (EE) is widely used as the estrogenic component of oral contraceptives (OC). In vitro and in vivo metabolism studies indicate that EE is extensively metabolised, primarily via intestinal sulfation and hepatic oxidation, glucuronidation and sulfation. Cytochrome P450 (CYP)3A4-mediated EE 2-hydroxylation is the major pathway of oxidative metabolism of EE. For some time it has been known that inducers of drug-metabolising enzymes (such as the CYP3A4 inducer rifampicin [rifampin]) can lead to breakthrough bleeding and contraceptive failure. Conversely, inhibitors of drug-metabolising enzymes can give rise to elevated EE plasma concentrations and increased risks of vascular disease and hypertension. In vitro studies have also shown that EE inhibits a number of human CYP enzymes, such as CYP2C19, CYP3A4 and CYP2B6. Consequently, there are numerous reports in the literature describing EE-containing OC formulations as perpetrators of pharmacokinetic drug interactions. Because EE may participate in multiple pharmacokinetic drug interactions as either a victim or perpetrator, pharmaceutical companies routinely conduct clinical drug interaction studies with EE-containing OCs when evaluating new chemical entities in development. It is therefore critical to understand the mechanisms underlying these drug interactions. Such an understanding can enable the interpretation of clinical data and lead to a greater appreciation of the profile of the drug by physicians, clinicians and regulators. This article summarises what is known of the drug-metabolising enzymes and transporters governing the metabolism, disposition and excretion of EE. An effort is made to relate this information to known clinical drug-drug interactions. The inhibition and induction of drug-metabolising enzymes by EE is also reviewed.

Keywords

Progestin Selegiline Human Liver Microsome Breast Cancer Resistance Protein Pharmacokinetic Drug Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

All authors are employees of Bristol-Myers Squibb USA. The authors have no conflicts of interest that are directly relevant to the content of this review.

References

  1. 1.
    Woutersz TB. Benefits of oral contraception: thirty years’ experience. Int J Fertil 1991; 36 Suppl. 3: 26–31PubMedGoogle Scholar
  2. 2.
    Yuzpe AA. Oral contraception: trends over time. J Reprod Med 2002; 47 (11 Suppl.): 967–73PubMedGoogle Scholar
  3. 3.
    Fotherby K. Pharmacokinetics of ethynyloestradiol in humans. Methods Find Exp Clin Pharmacol 1982; 4(2): 133–41PubMedGoogle Scholar
  4. 4.
    Fotherby K, Akpoviroro J, Abdel-Rahman HA, et al. Pharmacokinetics of ethynyloestradiol in women for different populations. Contraception 1981; 23(5): 487–96PubMedCrossRefGoogle Scholar
  5. 5.
    Orme ML, Back DJ, Ball S. Interindividual variation in the metabolism of ethynylestradiol. Pharmacol Ther 1989; 43(2): 251–60PubMedCrossRefGoogle Scholar
  6. 6.
    Orme ML, Back DJ, Breckenridge AM. Clinical pharmacokinetics of oral contraceptive steroids. Clin Pharmacokinet 1983; 8(2): 95–136PubMedCrossRefGoogle Scholar
  7. 7.
    Tauber U, Kuhnz W, Humpel M. Pharmacokinetics of gestodene and ethinyl estradiol after oral administration of a monophasic contraceptive. Am J Obstet Gynecol 1990; 163(4 Pt 2): 1414–20PubMedGoogle Scholar
  8. 8.
    Rogers SM, Back DJ, Orme ML. Intestinal metabolism of ethinyloestradiol and paracetamol in vitro: studies using Ussing chambers. Br J Clin Pharmacol 1987; 23(6): 727–34PubMedCrossRefGoogle Scholar
  9. 9.
    Guengerich FP. Metabolism of 17 alpha-ethynylestradiol in humans. Life Sci 1990; 47(22): 1981–8PubMedCrossRefGoogle Scholar
  10. 10.
    Back DJ, Orme ML. Pharmacokinetic drug interactions with oral contraceptives. Clin Pharmacokinet 1990; 18(6): 472–84PubMedCrossRefGoogle Scholar
  11. 11.
    Weisberg E. Interactions between oral contraceptives and antifungals/antibacterials: is contraceptive failure the result? Clin Pharmacokinet 1999; 36(5): 309–13PubMedCrossRefGoogle Scholar
  12. 12.
    Forinash AB, Evans SL. New hormonal contraceptives: a comprehensive review of the literature. Pharmacotherapy 2003; 23(12): 1573–91PubMedCrossRefGoogle Scholar
  13. 13.
    Hall SD, Wang Z, Huang SM, et al. The interaction between St John’s wort and an oral contraceptive. Clin Pharmacol Ther 2003; 74(6): 525–35PubMedCrossRefGoogle Scholar
  14. 14.
    Ahluwalia BS, Curry CL, Crocker CL, et al. Evidence of higher ethynylestradiol blood levels in human hypertensive oral contraceptive users. Fertil Steril 1977; 28(6): 627–30PubMedGoogle Scholar
  15. 15.
    Stadel BV. Oral contraceptives and cardiovascular disease (first of two parts). N Engl J Med 1981; 305(11): 612–8PubMedCrossRefGoogle Scholar
  16. 16.
    Tamminga WJ, Wemer J, Oosterhuis B, et al. CYP2D6 and CYP2C19 activity in a large population of Dutch healthy volunteers: indications for oral contraceptive-related gender differences. Eur J Clin Pharmacol 1999; 55(3): 177–84PubMedCrossRefGoogle Scholar
  17. 17.
    Hagg S, Spigset O, Dahlqvist R. Influence of gender and oral contraceptives on CYP2D6 and CYP2C19 activity in healthy volunteers. Br J Clin Pharmacol 2001; 51(2): 169–73PubMedCrossRefGoogle Scholar
  18. 18.
    Shenfield GM. Oral contraceptives: are drug interactions of clinical significance? Drug Saf 1993; 9(1): 21–37PubMedCrossRefGoogle Scholar
  19. 19.
    Shenfield GM, Griffin JM. Clinical pharmacokinetics of contraceptive steroids: an update. Clin Pharmacokinet 1991; 20(1): 15–37PubMedCrossRefGoogle Scholar
  20. 20.
    Dickinson BD, Altman RD, Nielsen NH, et al. Drug interactions between oral contraceptives and antibiotics. Obstet Gynecol 2001; 98(5 Pt 1): 853–60PubMedCrossRefGoogle Scholar
  21. 21.
    Balogh A, Gessinger S, Svarovsky U, et al. Can oral contraceptive steroids influence the elimination of nifedipine and its primary pryidine metabolite in humans? Eur J Clin Pharmacol 1998; 54(9-10): 729–34PubMedCrossRefGoogle Scholar
  22. 22.
    Palovaara S, Kivisto KT, Tapanainen P, et al. Effect of an oral contraceptive preparation containing ethinylestradiol and gestodene on CYP3A4 activity as measured by midazolam 1′-hydroxylation. Br J Clin Pharmacol 2000; 50(4): 333–7PubMedCrossRefGoogle Scholar
  23. 23.
    Laine K, Tybring G, Bertilsson L. No sex-related differences but significant inhibition by oral contraceptives of CYP2C19 activity as measured by the probe drugs mephenytoin and omeprazole in healthy Swedish white subjects. Clin Pharmacol Ther 2000; 68(2): 151–9PubMedCrossRefGoogle Scholar
  24. 24.
    Kent UM, Mills DE, Rajnarayanan RV, et al. Effect of 17-alpha-ethynylestradiol on activities of cytochrome P450 2B (P450 2B) enzymes: characterization of inactivation of P450s 2B1 and 2B6 and identification of metabolites. J Pharmacol Exp Ther 2002; 300(2): 549–58PubMedCrossRefGoogle Scholar
  25. 25.
    Lin HL, Kent UM, Hollenberg PF. Mechanism-based inactivation of cytochrome P450 3A4 by 17 alpha-ethynylestradiol: evidence for heme destruction and covalent binding to protein. J Pharmacol Exp Ther 2002; 301(1): 160–7PubMedCrossRefGoogle Scholar
  26. 26.
    Laine K, Yasar U, Widen J, et al. A screening study on the liability of eight different female sex steroids to inhibit CYP2C9, 2C19 and 3A4 activities in human liver microsomes. Pharmacol Toxicol 2003; 93(2): 77–81PubMedCrossRefGoogle Scholar
  27. 27.
    Palovaara S, Pelkonen O, Uusitalo J, et al. Inhibition of cytochrome P450 2B6 activity by hormone replacement therapy and oral contraceptive as measured by bupropion hydroxylation. Clin Pharmacol Ther 2003; 74(4): 326–33PubMedCrossRefGoogle Scholar
  28. 28.
    Palovaara S, Tybring G, Laine K. The effect of ethinyloestradiol and levonorgestrel on the CYP2C19-mediated metabolism of omeprazole in healthy female subjects. Br J Clin Pharmacol 2003; 56(2): 232–7PubMedCrossRefGoogle Scholar
  29. 29.
    Bolt WH, Kappus H, Bolt HM. Ring A oxidation of 17alpha-ethynylestradiol in man. Horm Metab Res 1974; 6(5): 432PubMedCrossRefGoogle Scholar
  30. 30.
    Purba HS, Maggs JL, Orme ML, et al. The metabolism of 17 alpha-ethinyloestradiol by human liver microsomes: formation of catechol and chemically reactive metabolites. Br J Clin Pharmacol 1987; 23(4): 447–53PubMedCrossRefGoogle Scholar
  31. 31.
    Schmid SE, Au WY, Hill DE, et al. Cytochrome P-450-dependent oxidation of the 17 alpha-ethynyl group of synthetic steroids: D-homoannulation or enzyme inactivation. Drug Metab Dispos 1983; 11(6): 531–6PubMedGoogle Scholar
  32. 32.
    Helton ED, Goldzieher JW. Metabolism of ethynyl estrogens. J Toxicol Environ Health 1977; 3(1–2): 231–41PubMedCrossRefGoogle Scholar
  33. 33.
    Li AP, Hartman NR, Lu C, et al. Effects of cytochrome P450 inducers on 17alpha-ethinyloestradiol (EE2) conjugation by primary human hepatocytes. Br J Clin Pharmacol 1999; 48(5): 733–42PubMedCrossRefGoogle Scholar
  34. 34.
    Back DJ, Bates M, Brechenridge AM, et al. The in vitro metabolism of ethinyloestradiol, mestranol and levonorgestrel by human jejunal mucosa. Br J Clin Pharmacol 1981; 11(3): 275–8PubMedCrossRefGoogle Scholar
  35. 35.
    Guengerich FP. Oxidation of 17 alpha-ethynylestradiol by human liver cytochrome P-450. Mol Pharmacol 1988; 33(5): 500–8PubMedGoogle Scholar
  36. 36.
    Ball SE, Forrester LM, Wolf CR, et al. Differences in the cytochrome P-450 isoenzymes involved in the 2-hydroxylation of oestradiol and 17 alpha-ethinyloestradiol: relative activities of rat and human liver enzymes. Biochem J 1990; 267(1): 221–6PubMedGoogle Scholar
  37. 37.
    Wang B, Sanchez RI, Franklin RB, et al. The involvement of CYP3A4 and CYP2C9 in the metabolism of 17 alpha-ethinylestradiol. Drug Metab Dispos 2004; 32(11): 1209–12PubMedCrossRefGoogle Scholar
  38. 38.
    Wild MJ, Rudland PS, Back DJ. Metabolism of the oral contraceptive steroids ethynylestradiol and norgestimate by normal (Huma 7) and malignant (MCF-7 and ZR-75-1) human breast cells in culture. J Steroid Biochem Mol Biol 1991; 39(4A): 535–43PubMedCrossRefGoogle Scholar
  39. 39.
    Shiraga T, Niwa T, Ohno Y, et al. Interindividual variability in 2-hydroxylation, 3-sulfation, and 3-glucuronidation of ethynylestradiol in human liver. Biol Pharm Bull 2004; 27(12): 1900–6PubMedCrossRefGoogle Scholar
  40. 40.
    Grimmer SF, Back DJ, Orme ML, et al. The in-vitro mucosal conjugation of ethinyloestradiol and the bioavailability of oral contraceptive steroids in patients with treated and untreated coeliac disease. Aliment Pharmacol Ther 1992; 6(1): 79–85PubMedCrossRefGoogle Scholar
  41. 41.
    Coughtrie MW, Bamforth KJ, Sharp S, et al. Sulfation of endogenous compounds and xenobiotics: interactions and function in health and disease. Chem Biol Interact 1994; 92(1–3): 247–56PubMedCrossRefGoogle Scholar
  42. 42.
    Tamura HO, Taniguchi K, Hayashi E, et al. Expression profiling of sulfotransferases in human cell lines derived from extra-hepatic tissues. Biol Pharm Bull 2001; 24(11): 1258–62PubMedCrossRefGoogle Scholar
  43. 43.
    Pacifici GM, Back DJ. Sulphation and glucuronidation of ethinyloestradiol in human liver in vitro. J Steroid Biochem 1988; 31(3): 345–9PubMedCrossRefGoogle Scholar
  44. 44.
    Ebner T, Remmel RP, Burchell B. Human bilirubin UDP-glucuronosyltransferase catalyzes the glucuronidation of ethinylestradiol. Mol Pharmacol 1993; 43(4): 649–54PubMedGoogle Scholar
  45. 45.
    Ciotti M, Owens IS. Evidence for overlapping active sites for 17 alpha-ethinylestradiol and bilirubin in the human major bilirubin UDPglucuronosyltransferase. Biochemistry 1996; 35(31): 10119–24PubMedCrossRefGoogle Scholar
  46. 46.
    Soars MG, Petullo DM, Eckstein JA, et al. An assessment of UDP-glucuronosyltransferase induction using primary human hepatocytes. Drug Metab Dispos 2004; 32(1): 140–8PubMedCrossRefGoogle Scholar
  47. 47.
    Soars MG, Ring BJ, Wrighton SA. The effect of incubation conditions on the enzyme kinetics of UDP-glucuronosyltransferases. Drug Metab Dispos 2003; 31(6): 762–7PubMedCrossRefGoogle Scholar
  48. 48.
    Back DJ, Breckenridge AM, Crawford FE, et al. An investigation of the pharmacokinetics of ethynylestradiol in women using radioimmunoassay. Contraception 1979; 20(3): 263–73PubMedCrossRefGoogle Scholar
  49. 49.
    Humpel M, Nieuweboer B, Wendt H, et al. Investigations of pharmacokinetics of ethinyloestradiol to specific consideration of a possible first-pass effect in women. Contraception 1979; 19(4): 421–32PubMedCrossRefGoogle Scholar
  50. 50.
    Schrag ML, Cui D, Rushmore TH, et al. Sulfotransferase 1E1 is a low km isoform mediating the 3-O-sulfation of ethinyl estradiol. Drug Metab Dispos 2004; 32(11): 1299–303PubMedGoogle Scholar
  51. 51.
    Cui D, Booth-Genthe CL, Carlini E, et al. Heterotropic modulation of sulfotransferase 2A1 activity by celecoxib: product ratio switching of ethynylestradiol sulfation. Drug Metab Dispos 2004; 32(11): 1260–4PubMedCrossRefGoogle Scholar
  52. 52.
    Helton ED, Williams MC, Goldzieher JW. Human urinary and liver conjugates of 17alpha-ethinylestradiol. Steroids 1976; 27(6): 851–67PubMedCrossRefGoogle Scholar
  53. 53.
    Strassburg CP, Manns MP, Tukey RH. Expression of the UDP-glucuronosyltransferase 1A locus in human colon: identification and characterization of the novel extrahepatic UGT1A8. J Biol Chem 1998; 273(15): 8719–26PubMedCrossRefGoogle Scholar
  54. 54.
    Watanabe Y, Nakajima M, Yokoi T. Troglitazone glucuronidation in human liver and intestine microsomes: high catalytic activity of UGT1A8 and UGT1A10. Drug Metab Dispos 2002; 30(12): 1462–9PubMedCrossRefGoogle Scholar
  55. 55.
    Maggs JL, Grimmer SFM, Orme ML, et al. The biliary and urinary metabolites of [3H]17 alpha-ethynylestradiol in women. Xenobiotica 1983; 13(7): 421–31PubMedCrossRefGoogle Scholar
  56. 56.
    Kamyab S, Fotherby K, Steele SJ. Metabolism of 4-14C-ethynyl oestradiol in women. Nature 1969; 221(178): 360–1CrossRefGoogle Scholar
  57. 57.
    Cargill DI, Steinetz BG, Gosnell E, et al. Fate of ingested radiolabeled ethynylestradiol and its 3-cyclopentyl ether in patients with bile fistulas. J Clin Endocrinol Metab 1969; 29(8): 1051–61PubMedCrossRefGoogle Scholar
  58. 58.
    Williams MC, Helton ED, Goldzieher JW. The urinary metabolites of 17alpha-ethynylestradiol-9alpha,11xi-3H in women: chromatographic profiling and identification of ethynyl and non-ethynyl compounds. Steroids 1975; 25(2): 229–46PubMedCrossRefGoogle Scholar
  59. 59.
    Maggs JL, Park BK. A comparative study of biliary and urinary 2-hydroxylated metabolites of [6,7-3H]17 alpha-ethynylestradiol in women. Contraception 1985; 32(2): 173–82PubMedCrossRefGoogle Scholar
  60. 60.
    Back DJ, Breckenridge AM, MacIver M, et al. The gut wall metabolism of ethinyloestradiol and its contribution to the pre-systemic metabolism of ethinyloestradiol in humans. Br J Clin Pharmacol 1982; 13(3): 325–30PubMedCrossRefGoogle Scholar
  61. 61.
    Bolt HM, Bolt M, Kappus H. Interaction of rifampicin treatment with pharmacokinetics and metabolism of ethinyloestradiol in man. Acta Endocrinol (Copenh) 1977; 85(1): 189–97Google Scholar
  62. 62.
    Cortes-Gallegos V, Carranco A, Sojo I, et al. Accumulation of ethinylestradiol in blood and endometrium of women taking oral contraceptives: the sequential therapy. Fertil Steril 1979; 32(5): 524–7PubMedGoogle Scholar
  63. 63.
    Dusterberg B, Humpel M, Wendt H. Plasma levels of active ingredients after single and repeated administration of a new oral contraceptive containing 2mg of cyproterone acetate and 50 micrograms of ethinyl estradiol (Diane) to five young women. Acta Obstet Gynecol Scand Suppl 1979; 88: 27–31PubMedCrossRefGoogle Scholar
  64. 64.
    Back DJ, Bolt HM, Breckenridge AM, et al. The pharmacokinetics of a large (3mg) oral dose of ethynylestradiol in women. Contraception 1980; 21(2): 145–53PubMedCrossRefGoogle Scholar
  65. 65.
    Akpoviroro J, Fotherby K. Assay of ethynyloestradiol in human serum and its binding to plasma proteins. J Steroid Biochem 1980; 13(7): 773–9PubMedCrossRefGoogle Scholar
  66. 66.
    van den Heuvel MW, van Bragt AJ, Alnabawy AK, et al. Comparison of ethinylestradiol pharmacokinetics in three hormonal contraceptive formulations: the vaginal ring, the transdermal patch and an oral contraceptive. Contraception 2005; 72(3): 168–74PubMedCrossRefGoogle Scholar
  67. 67.
    Akpoviroro JO, Mangalam M, Jenkins N, et al. Binding of the contraceptive steroids medroxyprogesterone acetate and ethynyloestradiol in blood of various species. J Steroid Biochem 1981; 14(5): 493–8PubMedCrossRefGoogle Scholar
  68. 68.
    Pacifici GM, Viani A, Rizzo G, et al. Plasma protein binding of ethinyloestradiol: effect of disease and interaction with drugs. Int J Clin Pharmacol Ther Toxicol 1989; 27(7): 362–5PubMedGoogle Scholar
  69. 69.
    Di Padova C, Tritapepe R, Cammareri G, et al. S-adenosyl-L-methionine antagonizes ethynylestradiol-induced bile cholesterol supersaturation in humans without modifying the estrogen plasma kinetics. Gastroenterology 1982; 82(2): 223–7PubMedGoogle Scholar
  70. 70.
    Nilsson S, Nygren KG, Johansson ED. Ethinyl estradiol in human milk and plasma after oral administration. Contraception 1978; 17(2): 131–9PubMedCrossRefGoogle Scholar
  71. 71.
    Fotherby K. Variability of pharmacokinetic parameters for contraceptive steroids. J Steroid Biochem 1983; 19(1C): 817–20PubMedCrossRefGoogle Scholar
  72. 72.
    Kuhl H. Comparative pharmacology of newer progestogens. Drugs 1996; 51(2): 188–215PubMedCrossRefGoogle Scholar
  73. 73.
    Humpel M, Tuber U, Kuhnz W, et al. Comparison of serum ethinyl estradiol, sex-hormone-binding globulin, corticoid-binding globulin and cortisol levels in women using two low-dose combined oral contraceptives. Horm Res 1990; 33(1): 35–9PubMedCrossRefGoogle Scholar
  74. 74.
    Fotherby K. Levonorgestrel: clinical pharmacokinetics. Clin Pharmacokinet 1995; 28(3): 203–15PubMedCrossRefGoogle Scholar
  75. 75.
    Kuhl H, Jung-Hoffmann C, Heidt F. Alterations in the serum levels of gestodene and SHBG during 12 cycles of treatment with 30 micrograms ethinylestradiol and 75 micrograms gestodene. Contraception 1988; 38(4): 477–86PubMedCrossRefGoogle Scholar
  76. 76.
    Ortiz de Montellano PR, Kunze KL. Self-catalyzed inactivation of hepatic cytochrome P-450 by ethynyl substrates. J Biol Chem 1980; 255(12): 5578–85PubMedGoogle Scholar
  77. 77.
    Ortiz de Montellano PR, Kunze KL, Yost GS, et al. Self-catalyzed destruction of cytochrome P-450: covalent binding of ethynyl sterols to prosthetic heme. Proc Natl Acad Sci U S A 1979; 76(2): 746–9PubMedCrossRefGoogle Scholar
  78. 78.
    White IN, Muller-Eberhard U. Decreased liver cytochrome P-450 in rats caused by norethindrone or ethynyloestradiol. Biochem J 1977; 166(1): 57–64PubMedGoogle Scholar
  79. 79.
    Guengerich FP. Inhibition of oral contraceptive steroid-metabolizing enzymes by steroids and drugs. Am J Obstet Gynecol 1990; 163(6 Pt 2): 2159–63PubMedGoogle Scholar
  80. 80.
    Kunze KL, Mangold BL, Wheeler C, et al. The cytochrome P-450 active site: regiospecificity of prosthetic heme alkylation by olefins and acetylenes. J Biol Chem 1983; 258(7): 4202–7PubMedGoogle Scholar
  81. 81.
    Walsky RL, Gaman EA, Obach RS. Examination of 209 drugs for inhibition of cytochrome P450 2C8. J Clin Pharmacol 2005; 45(1): 68–78PubMedCrossRefGoogle Scholar
  82. 82.
    Jurima M, Inaba T, Kalow W. Mephenytoin hydroxylase activity in human liver: inhibition by steroids. Drug Metab Dispos 1985; 13(6): 746–9PubMedGoogle Scholar
  83. 83.
    Rodrigues AD, Lu P. Is 17alpha-ethinyl estradiol an inhibitor of cytochrome P450 2C19? Drug Metab Dispos 2004; 32(3): 364–5PubMedCrossRefGoogle Scholar
  84. 84.
    Haehner T, Refaie MO, Muller-Enoch D. Drug-drug interactions evaluated by a highly active reconstituted native human cytochrome P4503A4 and human NADPH-cytochrome P450 reductase system. Arzneimittelforschung 2004; 54(1): 78–83PubMedGoogle Scholar
  85. 85.
    Madden S, Back DJ, Martin CA, et al. Metabolism of the contraceptive steroid desogestrel by the intestinal mucosa. Br J Clin Pharmacol 1989; 27(3): 295–9PubMedCrossRefGoogle Scholar
  86. 86.
    Gilissen RA, Barnaby RJ, Kajbaf M. Identification of UDP-glucuronosyltransferases involved in the human hepatic metabolism of GV150526, a novel glycine antagonist. Drug Metabol Drug Interact 2000; 16(3): 173–89PubMedCrossRefGoogle Scholar
  87. 87.
    Gorrill MJ, Marshall JR. Pharmacology of estrogens and estrogen-induced effects on nonreproductive organs and systems. J Reprod Med 1986; 31(9 Suppl.): 842–7PubMedGoogle Scholar
  88. 88.
    Machishi H, Higashi S, Hibasami H, et al. Role of activation of ornithine decarboxylase and DNA synthesis on ethynylestradiol-induced hepatocarcinogenesis. Carcinogenesis 1995; 16(12): 2965–71PubMedCrossRefGoogle Scholar
  89. 89.
    Reilly PE, Mason SR, Hooper WD. Effects of ethinylestradiol and testosterone implants on hepatic microsomal cytochrome P450 monooxygenases of birth gonadectomized male and female Dark Agouti rats. J Steroid Biochem Mol Biol 1991; 39(5A): 741–9PubMedCrossRefGoogle Scholar
  90. 90.
    Kocarek TA, Schuetz EG, Guzelian PS. Regulation of cytochrome P450 2B1/2 mRNAs by Kepone (chlordecone) and potent estrogens in primary cultures of adult rat hepatocytes on Matrigel. Toxicol Lett 1994; 71(2): 183–96PubMedCrossRefGoogle Scholar
  91. 91.
    Jager W, Correia MA, Bornheim LM, et al. Ethynylestradiol-mediated induction of hepatic CYP3A9 in female rats: implication for cyclosporine metabolism. Drug Metab Dispos 1999; 27(12): 1505–11PubMedGoogle Scholar
  92. 92.
    LeCluyse EL. Pregnane X receptor: molecular basis for species differences in CYP3A induction by xenobiotics. Chem Biol Interact 2001; 134(3): 283–9PubMedCrossRefGoogle Scholar
  93. 93.
    Niemi M, Backman JT, Fromm MF, et al. Pharmacokinetic interactions with rifampicin: clinical relevance. Clin Pharmacokinet 2003; 42(9): 819–50PubMedCrossRefGoogle Scholar
  94. 94.
    Chen Y, Ferguson SS, Nehishi M, et al. Induction of human CYP2C9 by rifampicin, hyperforin, and phenobarbital is mediated by the pregnane X receptor. J Pharmacol Exp Ther 2004; 308(2): 495–501PubMedCrossRefGoogle Scholar
  95. 95.
    Xu C, Li CY, Kong AN. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res 2005; 28(3): 249–68PubMedCrossRefGoogle Scholar
  96. 96.
    Zhu Z, Kim S, Chen T, et al. Correlation of high-throughput pregnane X receptor (PXR) transactivation and binding assays. J Biomol Screen 2004; 9(6): 533–40PubMedCrossRefGoogle Scholar
  97. 97.
    Mills JB, Rose KA, Sadagopan N, et al. Induction of drug metabolism enzymes and MDR1 using a novel human hepatocyte cell line. J Pharmacol Exp Ther 2004; 309(1): 303–9PubMedCrossRefGoogle Scholar
  98. 98.
    Barditch-Crovo P, Trapnell CB, Ette E, et al. The effects of rifampin and rifabutin on the pharmacokinetics and pharmacodynamics of a combination oral contraceptive. Clin Pharmacol Ther 1999; 65(4): 428–38PubMedCrossRefGoogle Scholar
  99. 99.
    Fattore C, Cipolla G, Gatti G, et al. Induction of ethinylestradiol and levonorgestrel metabolism by oxcarbazepine in healthy women. Epilepsia 1999; 40(6): 783–7PubMedCrossRefGoogle Scholar
  100. 100.
    Mildvan D, Tarrish R, Marshak A, et al. Pharmacokinetic interaction between nevirapine and ethinyl estradiol/norethindrone when administered concurrently to HIV-infected women. J Acquir Immune Defic Syndr 2002; 29(5): 471–7PubMedGoogle Scholar
  101. 101.
    Robertson Jr P, Hellriegel ET, Arora S, et al. Effect of modafinil on the pharmacokinetics of ethinyl estradiol and triazolam in healthy volunteers. Clin Pharmacol Ther 2002; 71(1): 46–56PubMedCrossRefGoogle Scholar
  102. 102.
    Loi CM, Stern R, Koup JR, et al. Effect of troglitazone on the pharmacokinetics of an oral contraceptive agent. J Clin Pharmacol 1999; 39(4): 410–7PubMedCrossRefGoogle Scholar
  103. 103.
    Sinofsky FE, Pasquale SA. The effect of fluconazole on circulating ethinyl estradiol levels in women taking oral contraceptives. Am J Obstet Gynecol 1998; 178(2): 300–4PubMedCrossRefGoogle Scholar
  104. 104.
    Hilbert J, Messig M, Kuye O, et al. Evaluation of interaction between fluconazole and an oral contraceptive in healthy women. Obstet Gynecol 2001; 98(2): 218–23PubMedCrossRefGoogle Scholar
  105. 105.
    Doose DR, Wang SS, Padmanabhan M, et al. Effect of topiramate or carbamazepine on the pharmacokinetics of an oral contraceptive containing norethindrone and ethinyl estradiol in healthy obese and nonobese female subjects. Epilepsia 2003; 44(4): 540–9PubMedCrossRefGoogle Scholar
  106. 106.
    Ouellet D, Hsu A, Qian J, et al. Effect of ritonavir on the pharmacokinetics of ethinyl oestradiol in healthy female volunteers. Br J Clin Pharmacol 1998; 46(2): 111–6PubMedCrossRefGoogle Scholar
  107. 107.
    Rogers SM, Back DJ, Stevenson PJ, et al. Paracetamol interaction with oral contraceptive steroids: increased plasma concentrations of ethinyloestradiol. Br J Clin Pharmacol 1987; 23(6): 721–5PubMedCrossRefGoogle Scholar
  108. 108.
    Zamah NM, Humpel M, Kuhnz W, et al. Absence of an effect of high vitamin C dosage on the systemic availability of ethinyl estradiol in women using a combination oral contraceptive. Contraception 1993; 48(4): 377–91PubMedCrossRefGoogle Scholar
  109. 109.
    Weber A, Jager R, Borner A, et al. Can grapefruit juice influence ethinylestradiol bioavailability? Contraception 1996; 53(1): 41–7PubMedCrossRefGoogle Scholar
  110. 110.
    Roberts RK, Grice J, McGuffie C, et al. Oral contraceptive steroids impair the elimination of theophylline. J Lab Clin Med 1983; 101(6): 821–5PubMedGoogle Scholar
  111. 111.
    Balogh A, Klinger G, Henschel L, et al. Influence of ethinylestradiol-containing combination oral contraceptives with gestodene or levonorgestrel on caffeine elimination. Eur J Clin Pharmacol 1995; 48(2): 161–6PubMedCrossRefGoogle Scholar
  112. 112.
    Walle T, Fagan TC, Walle UK, et al. Stimulatory as well as inhibitory effects of ethinyloestradiol on the metabolic clearances of propranolol in young women. Br J Clin Pharmacol 1996; 41(4): 305–9PubMedCrossRefGoogle Scholar
  113. 113.
    Granfors MT, Backman JT, Laitila J, et al. Oral contraceptives containing ethinyl estradiol and gestodene markedly increase plasma concentrations and effects of tizanidine by inhibiting cytochrome P450 1A2. Clin Pharmacol Ther 2005; 78(4): 400–11PubMedCrossRefGoogle Scholar
  114. 114.
    Benowitz NL, Lessov-Schlaggar CN, Swan GE, et al. Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther 2006; 79(5): 480–8PubMedCrossRefGoogle Scholar
  115. 115.
    Birkett DJ, Rees D, Andersson T, et al. In vitro proguanil activation to cycloguanil by human liver microsomes is mediated by CYP3A isoforms as well as by S-mephenytoin hydroxylase. Br J Clin Pharmacol 1994; 37(5): 413–20PubMedCrossRefGoogle Scholar
  116. 116.
    Laine K, Anttila M, Helminen A, et al. Dose linearity study of selegiline pharmacokinetics after oral administration: evidence for strong drug interaction with female sex steroids. Br J Clin Pharmacol 1999; 47(3): 249–54PubMedCrossRefGoogle Scholar
  117. 117.
    Belle DJ, Callaghan JT, Gorski JC, et al. The effects of an oral contraceptive containing ethinyloestradiol and norgestrel on CYP3A activity. Br J Clin Pharmacol 2002; 53(1): 67–74PubMedCrossRefGoogle Scholar
  118. 118.
    Reimers A, Helde G, Brodtkorb E. Ethinyl estradiol, not progestogens, reduces lamotrigine serum concentrations. Epilepsia 2005; 46(9): 1414–7PubMedCrossRefGoogle Scholar
  119. 119.
    Sidhu J, Job S, Singh S, et al. The pharmacokinetic and pharmacodynamic consequences of the co-administration of lamotrigine and a combined oral contraceptive in healthy female subjects. Br J Clin Pharmacol 2006; 61(2): 191–9PubMedCrossRefGoogle Scholar
  120. 120.
    Hendrix CW, Jackson KA, Whitmore E, et al. The effect of isotretinoin on the pharmacokinetics and pharmacodynamics of ethinyl estradiol and norethindrone. Clin Pharmacol Ther 2004; 75(5): 464–75PubMedCrossRefGoogle Scholar
  121. 121.
    Jurima-Romet M, Crawford K, Cyr T, et al. Terfenadine metabolism in human liver: in vitro inhibition by macrolide antibiotics and azole antifungals. Drug Metab Dispos 1994; 22(6): 849–57PubMedGoogle Scholar
  122. 122.
    von Moltke LL, Greenblatt DJ, Schmider J, et al. Midazolam hydroxylation by human liver microsomes in vitro: inhibition by fluoxetine, norfluoxetine, and by azole antifungal agents. J Clin Pharmacol 1996; 36(9): 783–91Google Scholar
  123. 123.
    Gibbs MA, Thummel KE, Shen DD, et al. Inhibition of cytochrome P-450 3A (CYP3A) in human intestinal and liver microsomes: comparison of Ki values and impact of CYP3A5 expression. Drug Metab Dispos 1999; 27(2): 180–7PubMedGoogle Scholar
  124. 124.
    Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Effects of the antifungal agents on oxidative drug metabolism: clinical relevance. Clin Pharmacokinet 2000; 38(2): 111–80PubMedCrossRefGoogle Scholar
  125. 125.
    Neal JM, Kunze KL, Levy RH, et al. Kiiv, an in vivo parameter for predicting the magnitude of a drug interaction arising from competitive enzyme inhibition. Drug Metab Dispos 2003; 31(8): 1043–8PubMedCrossRefGoogle Scholar
  126. 126.
    Veronese ML, Gillen LP, Burke JP, et al. Exposure-dependent inhibition of intestinal and hepatic CYP3A4 in vivo by grapefruit juice. J Clin Pharmacol 2003; 43(8): 831–9PubMedCrossRefGoogle Scholar
  127. 127.
    Paine MF, Criss AB, Watkins PB. Two major grapefruit juice components differ in intestinal CYP3A4 inhibition kinetic and binding properties. Drug Metab Dispos 2004; 32(10): 1146–53PubMedCrossRefGoogle Scholar
  128. 128.
    Kaminsky LS, Zhang QY. The small intestine as a xenobiotic-metabolizing organ. Drug Metab Dispos 2003; 31(12): 1520–5PubMedCrossRefGoogle Scholar
  129. 129.
    Blanchard RL, Freimuth RR, Buck J, et al. A proposed nomenclature system for the cytosolic sulfotransferase (SULT) super-family. Pharmacogenetics 2004; 14(3): 199–211PubMedCrossRefGoogle Scholar
  130. 130.
    Pacifici GM. Inhibition of human liver and duodenum sulfotransferases by drugs and dietary chemicals: a review of the literature. Int J Clin Pharmacol Ther 2004; 42(9): 488–95PubMedGoogle Scholar
  131. 131.
    Back DJ, Breckenridge AM, MacIver M, et al. Interaction of ethinyloestradiol with ascorbic acid in man. BMJ (Clin Res Ed) 1981; 282(6275): 1516CrossRefGoogle Scholar
  132. 132.
    Gardner-Stephen D, Heydel JM, Goyal A, et al. Human PXR variants and their differential effects on the regulation of human UDP-glucuronosyltransferase gene expression. Drug Metab Dispos 2004; 32(3): 340–7PubMedCrossRefGoogle Scholar
  133. 133.
    Sugatani J, Nishitani S, Yamakawa K, et al. Transcriptional regulation of human UGT1A1 gene expression: activated glucocorticoid receptor enhances constitutive androstane receptor/pregnane X receptor-mediated UDP-glucuronosyltransferase 1A1 regulation with glucocorticoid receptor-interacting protein 1. Mol Pharmacol 2005; 67(3): 845–55PubMedCrossRefGoogle Scholar
  134. 134.
    Williams JA, Hyland R, Jones BC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/ AUC) ratios. Drug Metab Dispos 2004; 32(11): 1201–8PubMedCrossRefGoogle Scholar
  135. 135.
    Eagling VA, Back DJ, Barry MG. Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br J Clin Pharmacol 1997; 44(2): 190–4PubMedCrossRefGoogle Scholar
  136. 136.
    Ernest II CS, Hall SD, Jones DR. Mechanism-based inactivation of CYP3A by HIV protease inhibitors. J Pharmacol Exp Ther 2005; 312(2): 583–91PubMedCrossRefGoogle Scholar
  137. 137.
    Luo G, Cunningham M, Kim S, et al. CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab Dispos 2002; 30(7): 795–804PubMedCrossRefGoogle Scholar
  138. 138.
    Perloff MD, von Moltke LL, Greenblatt DJ. Ritonavir and dexamethasone induce expression of CYP3A and P-glycoprotein in rats. Xenobiotica 2004; 34(2): 133–50PubMedCrossRefGoogle Scholar
  139. 139.
    Rae JM, Johnson MD, Lippman ME, et al. Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: studies with cDNA and oligonucleotide expression arrays. J Pharmacol Exp Ther 2001; 299(3): 849–57PubMedGoogle Scholar
  140. 140.
    Vavricka SR, Van Montfoort J, Ha HR, et al. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology 2002; 36(1): 164–72PubMedCrossRefGoogle Scholar
  141. 141.
    Lau YY, Wu CY, Okochi H, et al. Ex situ inhibition of hepatic uptake and efflux significantly changes metabolism: hepatic enzyme-transporter interplay. J Pharmacol Exp Ther 2004; 308(3): 1040–5PubMedCrossRefGoogle Scholar
  142. 142.
    Ito K, Iwatsubo T, Kanamitsu S, et al. Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annu Rev Pharmacol Toxicol 1998; 38: 461–99PubMedCrossRefGoogle Scholar
  143. 143.
    Lu P, Schrag ML, Slaughter DE, et al. Mechanism-based inhibition of human liver microsomal cytochrome P450 1A2 by zileuton, a 5-lipoxygenase inhibitor. Drug Metab Dispos 2003; 31(11): 1352–60PubMedCrossRefGoogle Scholar
  144. 144.
    Ito K, Brown HS, Houston JB. Database analyses for the prediction of in vivo drug-drug interactions from in vitro data. Br J Clin Pharmacol 2004; 57(4): 473–86PubMedCrossRefGoogle Scholar
  145. 145.
    Ito K, Chiba K, Horikawa M, et al. Which concentration of the inhibitor should be used to predict in vivo drug interactions from in vitro data? AAPS Pharm Sci 2002; 4(4): E25CrossRefGoogle Scholar
  146. 146.
    Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res 1993; 10(7): 1093–5PubMedCrossRefGoogle Scholar
  147. 147.
    Yu LX. An integrated model for determining causes of poor oral drug absorption. Pharm Res 1999; 16(12): 1883–7PubMedCrossRefGoogle Scholar
  148. 148.
    Sun D, Lennernas H, Welage LS, et al. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm Res 2002; 19(10): 1400–16PubMedCrossRefGoogle Scholar
  149. 149.
    McGready R, Stepniewska K, Seaton E, et al. Pregnancy and use of oral contraceptives reduces the biotransformation of proguanil to cycloguanil. Eur J Clin Pharmacol 2003; 59(7): 553–7PubMedCrossRefGoogle Scholar
  150. 150.
    Yoshimoto K, Echizen H, Chiba K, et al. Identification of human CYP isoforms involved in the metabolism of propranolol enantiomers: N-desisopropylation is mediated mainly by CYP1A2. Br J Clin Pharmacol 1995; 39(4): 421–31PubMedCrossRefGoogle Scholar
  151. 151.
    Jung F, Richardson TH, Raucy JL, et al. Diazepam metabolism by cDNA-expressed human 2C P450s: identification of P4502C18 and P4502C19 as low K (M) diazepam N-demethylases. Drug Metab Dispos 1997; 25(2): 133–9PubMedGoogle Scholar
  152. 152.
    Yamazaki H, Inoue K, Shaw PM, et al. Different contributions of cytochrome P450 2C19 and 3A4 in the oxidation of omeprazole by human liver microsomes: effects of contents of these two forms in individual human samples. J Pharmacol Exp Ther 1997; 283(2): 434–42PubMedGoogle Scholar
  153. 153.
    Rodrigues AD, Rushmore TH. Cytochrome P450 pharmacogenetics in drug development: in vitro studies and clinical consequences. Curr Drug Metab 2002; 3(3): 289–309PubMedCrossRefGoogle Scholar
  154. 154.
    Shelepova T, Nafziger AN, Victory J, et al. Effect of a triphasic oral contraceptive on drug-metabolizing enzyme activity as measured by the validated Cooperstown 5+1 cocktail. J Clin Pharmacol 2005; 45(12): 1413–21PubMedCrossRefGoogle Scholar
  155. 155.
    Heinonen EH, Anttila MI, Lammintausta RA. Pharmacokinetic aspects of l-deprenyl (selegiline) and its metabolites. Clin Pharmacol Ther 1994; 56(6 Pt 2): 742–9PubMedCrossRefGoogle Scholar
  156. 156.
    Mahmood I. Clinical pharmacokinetics and pharmacodynamics of selegiline: an update. Clin Pharmacokinet 1997; 33(2): 91–102PubMedCrossRefGoogle Scholar
  157. 157.
    Shin HS. Metabolism of selegiline in humans: identification, excretion, and stereochemistry of urine metabolites. Drug Metab Dispos 1997; 25(6): 657–62PubMedGoogle Scholar
  158. 158.
    Hidestrand M, Oscarson M, Salonen JS, et al. CYP2B6 and CYP2C19 as the major enzymes responsible for the metabolism of selegiline, a drug used in the treatment of Parkinson’s disease, as revealed from experiments with recombinant enzymes. Drug Metab Dispos 2001; 29(11): 1480–4PubMedGoogle Scholar
  159. 159.
    Yao C, Kunze KL, Trager WF, et al. Comparison of in vitro and in vivo inhibition potencies of fluvoxamine toward CYP2C19. Drug Metab Dispos 2003; 31(5): 565–71PubMedCrossRefGoogle Scholar
  160. 160.
    Patwardhan RV, Mitchell MC, Johnson RF, et al. Differential effects of oral contraceptive steroids on the metabolism of benzodiazepines. Hepatology 1983; 3(2): 248–53PubMedCrossRefGoogle Scholar
  161. 161.
    Miners JO, Robson RA, Birkett DJ. Gender and oral contraceptive steroids as determinants of drug glucuronidation: effects on clofibric acid elimination. Br J Clin Pharmacol 1984; 18(2): 240–3PubMedCrossRefGoogle Scholar
  162. 162.
    Fischer G, Schauer A, Hartmann H, et al. Increased UDP-glucuronyltransferase in putative preneoplastic foci of human liver after long-term use of oral contraceptives. Naturwissenschaften 1985; 72(5): 277–8PubMedCrossRefGoogle Scholar
  163. 163.
    Liu HF, Magdalou J, Nicolas A, et al. Oral contraceptives stimulate the excretion of clofibric acid glucuronide in women and female rats. Gen Pharmacol 1991; 22(2): 393–7PubMedCrossRefGoogle Scholar
  164. 164.
    Fotherby K, Caldwell AD. New progestogens in oral contraception. Contraception 1994; 49(1): 1–32PubMedCrossRefGoogle Scholar
  165. 165.
    Stanczyk FZ. All progestins are not created equal. Steroids 2003; 68(10-13): 879–90PubMedCrossRefGoogle Scholar
  166. 166.
    Benagiano G, Primiero FM, Farris M. Clinical profile of contraceptive progestins. Eur J Contracept Reprod Health Care 2004; 9(3): 182–93PubMedCrossRefGoogle Scholar
  167. 167.
    Guengerich FP. Mechanism-based inactivation of human liver microsomal cytochrome P-450 IIIA4 by gestodene. Chem Res Toxicol 1990; 3(4): 363–71PubMedCrossRefGoogle Scholar
  168. 168.
    Back DJ, Houlgrave R, Tjia JF, et al. Effect of the progestogens, gestodene, 3-keto desogestrel, levonorgestrel, norethisterone and norgestimate on the oxidation of ethinyloestradiol and other substrates by human liver microsomes. J Steroid Biochem Mol Biol 1991; 38(2): 219–25PubMedCrossRefGoogle Scholar
  169. 169.
    Jung-Hoffmann C, Kuhl H. Interaction with the pharmacokinetics of ethinylestradiol and progestogens contained in oral contraceptives. Contraception 1989; 40(3): 299–312PubMedCrossRefGoogle Scholar
  170. 170.
    Orme M, Back DJ, Ward S, et al. The pharmacokinetics of ethynylestradiol in the presence and absence of gestodene and desogestrel. Contraception 1991; 43(4): 305–16PubMedCrossRefGoogle Scholar
  171. 171.
    Stanczyk FZ. Pharmacokinetics of the new progestogens and influence of gestodene and desogestrel on ethinylestradiol metabolism. Contraception 1997; 55(5): 273–82PubMedCrossRefGoogle Scholar
  172. 172.
    Reed MJ, Fotherby F. Intestinal absorption of synthetic steroids. J Steroid Biochem 1979; 11(2): 1107–12PubMedCrossRefGoogle Scholar
  173. 173.
    Han YH, Kato Y, Watanabe Y, et al. Carrier-mediated hepatobiliary transport of a novel antifolate, N-[4-[(2,4-dianninopteridine-6-yl)methyl]-3,4-dihydro-2H-1,4-benzothiazin-7-yl]carbonyl-L-homoglutamic acid, in rats. Drug Metab Dispos 2001; 29(4 Pt 1): 394–400PubMedGoogle Scholar
  174. 174.
    Eisenfeld AJ, Aten R, Weinberger M, et al. Estrogen receptor in the mammalian liver. Science 1976; 191(4229): 862–5PubMedCrossRefGoogle Scholar
  175. 175.
    Chu XY, Huskey SE, Braun MP, et al. Transport of ethinylestradiol glucuronide and ethinylestradiol sulfate by the multidrug resistance proteins MRP1, MRP2, and MRP3. J Pharmacol Exp Ther 2004; 309(1): 156–64PubMedCrossRefGoogle Scholar
  176. 176.
    Haimeur A, Conseil G, Deeley RG, et al. The MRP-related and BCRP/ABCG2 multidrug resistance proteins: biology, substrate specificity and regulation. Curr Drug Metab 2004; 5(1): 21–53PubMedCrossRefGoogle Scholar
  177. 177.
    Imai Y, Asada S, Tsukahara S, et al. Breast cancer resistance protein exports sulfated estrogens but not free estrogens. Mol Pharmacol 2003; 64(3): 610–8PubMedCrossRefGoogle Scholar
  178. 178.
    Tsuji A. Transporter-mediated drug interactions. Drug Metab Pharmacokinet 2002; 17(4): 253–74PubMedCrossRefGoogle Scholar
  179. 179.
    Lee W, Kim RB. Transporters and renal drug elimination. Annu Rev Pharmacol Toxicol 2004; 44: 137–66PubMedCrossRefGoogle Scholar
  180. 180.
    Benet LZ, Cummins CL, Wu CY. Transporter-enzyme interactions: implications for predicting drug-drug interactions from in vitro data. Curr Drug Metab 2003; 4(5): 393–8PubMedCrossRefGoogle Scholar
  181. 181.
    Reed MJ, Beranek PA, Bonney RC, et al. The effect of ethynyloestradiol and medroxyprogesterone acetate on the in vivo uptake and metabolism of 3H-oestradiol by breast tumour tissue in postmenopausal women. Anticancer Res 1987; 7(6): 1265–9PubMedGoogle Scholar
  182. 182.
    Bossard R, Stieger B, O’Neill B, et al. Ethinylestradiol treatment induces multiple canalicular membrane transport alterations in rat liver. J Clin Invest 1993; 91(6): 2714–20PubMedCrossRefGoogle Scholar
  183. 183.
    Simon FR, Fortune J, Iwahashi M, et al. Ethinyl estradiol cholestasis involves alterations in expression of liver sinusoidal transporters. Am J Physiol 1996; 271(6 Pt 1): G1043–52PubMedGoogle Scholar
  184. 184.
    Trauner M, Arrese M, Soroka CJ, et al. The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis. Gastroenterology 1997; 113(1): 255–64PubMedCrossRefGoogle Scholar
  185. 185.
    Koopen NR, Wolters H, Havinga R, et al. Impaired activity of the bile canalicular organic anion transporter (Mrp2/cmoat) is not the main cause of ethinylestradiol-induced cholestasis in the rat. Hepatology 1998; 27(2): 537–45PubMedCrossRefGoogle Scholar
  186. 186.
    Takikawa H, Takamori Y, Sano N, et al. Changes in biliary excretory mechanisms in rats with ethinyloestradiol-induced cholestasis. J Gastroenterol Hepatol 1998; 13(2): 186–91PubMedCrossRefGoogle Scholar
  187. 187.
    Lee JM, Trauner M, Soroka CJ, et al. Expression of the bile salt export pump is maintained after chronic cholestasis in the rat. Gastroenterology 2000; 118(1): 163–72PubMedCrossRefGoogle Scholar
  188. 188.
    Micheline D, Emmanuel J, Serge E. Effect of ursodeoxycholic acid on the expression of the hepatocellular bile acid transporters (Ntcp and bsep) in rats with estrogen-induced cholestasis. J Pediatr Gastroenterol Nutr 2002; 35(2): 185–91PubMedCrossRefGoogle Scholar
  189. 189.
    Geier A, Dietrich CG, Gerloff T, et al. Regulation of basolateral organic anion transporters in ethinylestradiol-induced cholestasis in the rat. Biochim Biophys Acta 2003; 1609(1): 87–94PubMedCrossRefGoogle Scholar
  190. 190.
    Kivisto KT, Neuvonen PJ, Klotz U. Inhibition of terfenadine metabolism: pharmacokinetic and pharmacodynamic consequences. Clin Pharmacokinet 1994; 27(1): 1–5PubMedCrossRefGoogle Scholar
  191. 191.
    Backman JT, Kyrklund C, Neuvonen M, et al. Gemfibrozil greatly increases plasma concentrations of cerivastatin. Clin Pharmacol Ther 2002; 72(6): 685–91PubMedCrossRefGoogle Scholar
  192. 192.
    Backman JT, Wang JS, Wen X, et al. Mibefradil but not isradipine substantially elevates the plasma concentrations of the CYP3A4 substrate triazolam. Clin Pharmacol Ther 1999; 66(4): 401–7PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2007

Authors and Affiliations

  • Hongjian Zhang
    • 1
  • Donghui Cui
    • 2
  • Bonnie Wang
    • 1
  • Yong-Hae Han
    • 1
  • Praveen Balimane
    • 1
  • Zheng Yang
    • 1
  • Michael Sinz
    • 3
  • A. David Rodrigues
    • 1
  1. 1.Metabolism and Pharmacokinetics, Pharmaceutical Candidate OptimizationBristol-Myers Squibb Pharmaceutical Research InstitutePrincetonUSA
  2. 2.Biotransformation, Pharmaceutical Candidate OptimizationBristol-Myers Squibb Pharmaceutical Research InstitutePrincetonUSA
  3. 3.Metabolism and PharmacokineticsBristol-Myers Squibb Pharmaceutical Research InstituteWalingfordUSA

Personalised recommendations