Clinical Pharmacokinetics

, Volume 44, Issue 9, pp 977–988 | Cite as

Lack of Interaction of Milnacipran with the Cytochrome P450 Isoenzymes Frequently Involved in the Metabolism of Antidepressants

  • Christian Puozzo
  • Simone Lens
  • Christian Reh
  • Karl Michaelis
  • Dominique Rosillon
  • Xavier Deroubaix
  • Dominique Deprez
Original Research Article


Objective: To compare the pharmacokinetics of milnacipran in extensive metabolisers (EMs) and poor metabolisers (PMs) of sparteine and mephenytoin, and to assess the influence of multiple administrations of milnacipran on the activity of cytochrome P450 (CYP) isoenzymes through its own metabolism and through various probes, namely CYP2D6 (sparteine/dextromethorphan), CYP2C19 (mephenytoin), CYP1A2 (caffeine) and CYP3A4 (endogenous 6-β-hydroxy-cortisol excretion).

Methods: Twenty-five healthy subjects, 12 EMs for both sparteine/dextromethorphan and mephenytoin, nine EMs for mephenytoin and PMs for sparteine/dextromethorphan (PM2D6) and four PMs for mephenytoin and EMs for sparteine/dextromethorphan (PM2C19) were administered milnacipran as a single 50mg capsule on day 1 followed by a 50mg capsule twice daily for 7 days. The pharmacokinetics of milnacipran and its oxidative metabolites were assessed after the first dose (day 1) and after multiple administration (day 8), and were compared for differences between CYP2D6 and CYP2C19 PMs and EMs. Metabolic tests were performed before (day —2), during (days 1 and 8) and after (day 20) milnacipran administration.

Results: Milnacipran steady state was rapidly achieved. Metabolism was limited: approximately 50% unchanged drug, 30% as glucuronide and 20% as oxidative metabolite (mainly F2800 the N-dealkyl metabolite). Milnacipran administration to PM2D6 and PM2C19 subjects did not increase parent drug exposure or decrease metabolite exposure. Milnacipran oxidative metabolism is not mediated through CYP2D6 or CYP2C19 polymorphic pathways nor does it significantly interact with CYP1A2, CYP2C19, CYP2D6 or CYP3A4 activities.

Conclusion: Limited reciprocal pharmacokinetic interaction between milnacipran and CYP isoenzymes would confer flexibility in the therapeutic use of the drug when combined with antidepressants. Drug-drug interaction risk would be low, even if the combined treatments were likely to inhibit CYP2D6 and CYP2C19 isoenzyme activities.


Caffeine Dextromethorphan Extensive Metabolisers Metabolic Ratio Milnacipran 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



No sources of funding were used to assist in the preparation of this study. The authors have no conflicts of interest that are directly relevant to the content of this study.


  1. 1.
    Bonnaud B, Cousse H, Mouzin G, et al. 1-Aryl-2- (aminomethyl) cyclopropane-carboxylic acid derivatives: a new series of potential antidepressants. J Med Chem 1987; 30: 318–25PubMedCrossRefGoogle Scholar
  2. 2.
    Moret C, Briley M. Effects of milnacipran and pindolol on extracellular noradrenaline and serotonin levels in guinea pig hypothalamus. J Neurochem 1997; 69: 815–22PubMedCrossRefGoogle Scholar
  3. 3.
    Moret C, Charveron M, Finberg JPM, et al. Biochemical profile of midalcipran (F2207), 1-phenyH-diethyl-aminocarbonyl-2-aminomethyl-cyclopropane (Z) hydrochloride, a potential fourth generation antidepressant drug. Neuropharmacology 1985; 24: 1211–9PubMedCrossRefGoogle Scholar
  4. 4.
    Stenger A, Couzinier JP, Briley M. Psychopharmacology of midalcipran, 1-phenyl-1-diethyl-aminocarbonyl-2-aminoethyl-cyclopropane (Z) hydrochloride (F2207), a new potential antidepressant. Psychopharmacology 1987; 91: 147–53PubMedCrossRefGoogle Scholar
  5. 5.
    Ansseau M, Von Frenckell R, Mertens C, et al. Controlled comparison of two doses of milnacipran (F2207) and amytriptyline in major depressive inpatients. Psychopharmacology 1989; 98: 163–8PubMedCrossRefGoogle Scholar
  6. 6.
    Ansseau M, Von Frenckell R, Papart P, et al. Controlled comparison of milnacipran (F2207) 200mg and amitriptyline in endogenous depressive inpatients. Hum Psychopharmacol 1989; 4: 221–7CrossRefGoogle Scholar
  7. 7.
    Hindmarch I, Rigney U, Stanley N, et al. Pharmacodynamics of milnacipran in young and elderly volunteers. Br J Clin Pharmacol 2000; 49(2): 118–25PubMedCrossRefGoogle Scholar
  8. 8.
    Kasper S, Pletan Y, Solles A, et al. Comparative studies with milnacipran and tricyclic antidepressants in the treatment of patients with major depression: a summary of clinical trial results. Int Clin Psychopharmacol 1996; 11 Suppl. 4: 35–9PubMedCrossRefGoogle Scholar
  9. 9.
    Lecrubier Y, Pletan Y, Solles A, et al. Clinical efficacy of milnacipran: placebo-controlled trials. Int Clin Psychopharmacol 1996; 11 Suppl. 4: 29–33PubMedCrossRefGoogle Scholar
  10. 10.
    Montgomery SA, Prost JF, Solles A, et al. Efficacy and tolerability of milnacipran: an overview. Int Clin Psychopharmacol 1996; 11 Suppl. 4: 47–51PubMedCrossRefGoogle Scholar
  11. 11.
    Rouillon F, Berdeaux G, Bisserbe JC, et al. Prevention of recurrent depressive episodes with milnacipran: consequences on quality of life. J Affect Disord 2000; 58: 171–80PubMedCrossRefGoogle Scholar
  12. 12.
    Rouillon F, Warner B, Pezous N, et al. Milnacipran efficacy in the prevention of recurrent depression: a 12-month placebocontrolled study. Milnacipran Recurrence Prevention Study Group. Int Clin Psychopharmacol 2000; 15: 133–40PubMedCrossRefGoogle Scholar
  13. 13.
    Benard P, Puozzo C. Distribution of midalcipran and its metabolites in rats and mice: whole-body autoradiographic study. Proc Roy Microsc Soc 1986; 21(5): 288–9Google Scholar
  14. 14.
    Benard P, Puozzo C, Roux C, et al. Transplacental passage and milk excretion of radioactivity in laboratory animals dosed with C-F2207: a quantitative whole-body autoradiographic study. In: Baille TA, Jones JR, editors. Synthesis and applications of isotopically labeled compound. Amsterdam: Elsevier Science Publishers, 1988: 637–40Google Scholar
  15. 15.
    Deprez D, Chassard D, Baille P, et al. Which bioequivalence study for a racemic drug? Application to milnacipran. Eur J Drug Metab Pharmacokinet 1998; 23(2): 166–71PubMedCrossRefGoogle Scholar
  16. 16.
    Higuchi H, Yoshida K, Takahashi H, et al. Milnacipran plasma levels and antidepressant response in Japanese major depressive patients. Hum Psychopharmacol 2003; 18(4): 255–9PubMedCrossRefGoogle Scholar
  17. 17.
    Palmier C, Puozzo C, Lenehan T, et al. Monoamine uptake inhibition by plasma from healthy volunteers after single oral doses of the antidepressant milnacipran. Eur J Clin Pharmacol 1989; 37(3): 235–8PubMedCrossRefGoogle Scholar
  18. 18.
    Preskorn SH. Clinically relevant pharmacology of selective serotonin reuptake inhibitors: an overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin Pharmacokinet 1997; 32: 1–21PubMedCrossRefGoogle Scholar
  19. 19.
    Puozzo C, Filaquier C, Briley M. Plasma levels of F2207 midalcipran, a novel antidepressant after single oral administration in volunteers. Br J Pharmacol 1985; 20(3): 291–2Google Scholar
  20. 20.
    Puozzo C, Lambe R, Briley M. Inhibition of tritiated 5 hydroxytryptamine uptake in platelets by plasma from volunteers after a single oral dose of F2207 midalcipran, a novel antidepressant [abstract]. Br J Pharmacol 1985; 20(3): 292Google Scholar
  21. 21.
    Puozzo C, Lambe R, Filaquier C, et al. Plasma levels and (3H)-5HT uptake in platelets after human repeated administration of midalcipran [abstract]. Acta Pharmacol Toxicol 1986; 59(S5): 214Google Scholar
  22. 22.
    Puozzo C, Leonard BE. Pharmacokinetics of milnacipran in comparison with other antidepressants. Int Clin Psychopharmacol 1996; 11 Suppl. 4: 15–27PubMedCrossRefGoogle Scholar
  23. 23.
    Puozzo C, Albin H, Vinçon G, et al. Pharmacokinetics of milnacipran in liver impairment. Eur J Drug Metab Pharmacokinet 1998; 23(2): 273–9PubMedCrossRefGoogle Scholar
  24. 24.
    Puozzo C, Pozet N, Deprez D, et al. Pharmacokinetics of milnacipran in renal impairment. Eur J Drug Metab Pharmacokinet 1998; 23(2): 280–6PubMedCrossRefGoogle Scholar
  25. 25.
    Sawada Y, Ohtani H. Pharmacokinetics and drug interactions of antidepressive agents. Nippon Rinsho 2001; 59(8): 1539–45PubMedGoogle Scholar
  26. 26.
    Nebert DW, Nelson DR, Adesnik M, et al. The P450 superfamily: updated listing of all genes and recommended nomenclature for the chromosomal loci. DNA 1989; 8(1): 1–13PubMedCrossRefGoogle Scholar
  27. 27.
    Nelson DR, Kamataki T, Waxman DJ, et al. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 1993; 12(1): 1–51PubMedCrossRefGoogle Scholar
  28. 28.
    Bertilsson L. Geographical/interracial differences in polymorphic drug oxidation: current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin Pharmacokinet 1995; 29(3): 192–209PubMedCrossRefGoogle Scholar
  29. 29.
    Gonzalez FJ, Ilde JR. Pharmacogenetic phenotyping and genotyping: present status and future potential. Clin Pharmacokinet 1994; 26: 59–70PubMedCrossRefGoogle Scholar
  30. 30.
    Lamba JK, Lin YS, Schuetz EG, et al. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002; 54(10): 1271–94PubMedCrossRefGoogle Scholar
  31. 31.
    Bertilsson L, Dahl ML, Tybring G. Pharmacogenetics of antidepressants: clinical aspects. Acta Psychiatr Scand Suppl 1997; 391: 14–21PubMedCrossRefGoogle Scholar
  32. 32.
    Rodrigues AD. Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes. Biochem Pharmacol 1999; 57: 465–80PubMedCrossRefGoogle Scholar
  33. 33.
    Weber WW. Populations and genetic polymorphisms. Mol Diagn 1999; 4(4): 299–307PubMedCrossRefGoogle Scholar
  34. 34.
    Coutts RT, Su P, Baker GB. Involvement of CYP2D6, CYP3A4, and other cytochrome P-450 isozymes in N-dealkylation reactions. J Pharmacol Toxicol Methods 1994; 31(4): 177–86PubMedCrossRefGoogle Scholar
  35. 35.
    Yokono A, Morita S, Someya T, et al. The effect of CYP2C19 and CYP2D6 genotypes on the metabolism of clomipramine in Japanese psychiatric patients. J Clin Psychopharmacol 2001; 21(6): 549–55PubMedCrossRefGoogle Scholar
  36. 36.
    Koyama E, Chiba K, Tani M, et al. Identification of human cytochrome P450 isoforms involved in the stereoselective metabolism of mianserin enantiomers. J Pharmacol Exp Ther 1996; 278(1): 21–30PubMedGoogle Scholar
  37. 37.
    Freis ED. Ethnics differences in the reactions to drugs and xenobiotics: antihypertensive agents. Prog Clin Biol Res 1986; 214: 313–22PubMedGoogle Scholar
  38. 38.
    Fujieda M, Yamazaki H, Kamataki T. Genetic polymorphisms of drug metabolizing enzymes. Gan To Kagaku Ryoho 2002; 29(5): 663–8PubMedGoogle Scholar
  39. 39.
    Kubota T, Yamaura Y, Ohkawa N, et al. Frequencies of CYP2D6 mutant alleles in a normal Japanese population and metabolic activity of dextromethorphan O-demethylation in different CYP2D6 genotypes. Br J Clin Pharmacol 2000; 50(1): 31–4PubMedCrossRefGoogle Scholar
  40. 40.
    Brosen K, Gram LF. Clinical significance of the sparteine/debrisoquine oxidation polymorphism. Eur J Clin Pharmacol 1989; 36: 537–47PubMedCrossRefGoogle Scholar
  41. 41.
    Fukuda T, Nishida Y, Imaoka S, et al. The decreased in vivo clearance of CYP2D6 substrates by CYP2D6*10 might be caused not only by the low-expression but also by low affinity of CYP2D6. Arch Biochem Biophys 2000; 380(2): 303–8PubMedCrossRefGoogle Scholar
  42. 42.
    Shimoda K, Someya T, Yokono A, et al. The impact of CYP2C19 and CYP2D6 genotypes on metabolism of amitriptyline in Japanese psychiatric patients. J Clin Psychopharmacol 2002; 22(4): 371–8PubMedCrossRefGoogle Scholar
  43. 43.
    Caccia S. Metabolism of the newer antidepressants: an overview of the pharmacological and pharmacokinetic implications. Clin Pharmacokinet 1998; 34: 281–302PubMedCrossRefGoogle Scholar
  44. 44.
    Grzesiak M, Beszlej JA, Kiejna A. Pharmacokinetics of second generation antidepressants. Psychiatr Pol 2000; 34(4): 577–94PubMedGoogle Scholar
  45. 45.
    Kusumoto M, Ueno K, Oda A, et al. Effect of fluvoxamine on the pharmacokinetics of mexiletine in healthy Japanese men. Clin Pharmacol Ther 2001; 69(3): 104–7PubMedCrossRefGoogle Scholar
  46. 46.
    Puozzo C, Agvaz U, Zick M, et al. A new enantioselective GC-MS method for the determination of milnacipran and two of its metabolites in human plasma. Portland (OR): American Society for Mass Spectrometry, 1996Google Scholar
  47. 47.
    Puozzo C, Filaquier C, Zorza G. Determination of milnacipran, a serotonin and noradrenaline reuptake inhibitor, in human plasma using liquid chromatography with spectrofluorimetric detection. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 806(2): 221–8PubMedCrossRefGoogle Scholar
  48. 48.
    Brockmoller J, Roots I. Assessment of liver metabolic function: clinical implications. Clin Pharmacokinet 1994; 27: 216–48PubMedCrossRefGoogle Scholar
  49. 49.
    Sanz EJ, Villen T, Alm C, et al. S-mephenytoin hydroxylation phenotypes in a Swedish populaton determined after coadministration with debrisoquin. Clin Pharmacol Ther 1989; 45(5): 495–9PubMedCrossRefGoogle Scholar
  50. 50.
    Kalow W, Tang BK. Use of caffeine metabolite ratios to explore CYP1A2 and xanthine oxidase activities. Clin Pharmacol Ther 1991; 50(5): 508–19PubMedCrossRefGoogle Scholar
  51. 51.
    Roots I, Hovermann W, Nigam S, et al. Quantitative determination by HPLC of urinary 6β-OH-cortisol, an indicator of enzyme induction by rifampicin and antiepileptic drugs. Eur J Clin Pharmacol 1979; 16: 63–71PubMedCrossRefGoogle Scholar
  52. 52.
    Rowland M, Tozer T. Clinical pharmacokinetics; concepts and application. Philadelphia (PA): Lea & Febiger, 1980Google Scholar
  53. 53.
    Kivisto KT, Kroemer HK. Use of probe drugs as predictors of drug metabolism in humans. J Clin Pharmacol 1997; 37 (1 Suppl.): 40–8SCrossRefGoogle Scholar
  54. 54.
    Droll K, Bruce-Mensah K, Otton SV, et al. Comparison of three CYP2D6 probe substrates and genotype in Ghanaians, Chinese and Caucasians. Pharmacogenetics 1998; 8(4): 325–33PubMedCrossRefGoogle Scholar
  55. 55.
    Regina W, Vandel P, Vandel S, et al. Clinical tolerance of a new antidepressant: milnacipran. Encephale 1999; 25(3): 252–8PubMedGoogle Scholar
  56. 56.
    Fuhr U, Rost KL. Simple and reliable CYP1A2 phenotyping by the paraxanthine/caffeine ratio in plasma and in saliva. Pharmacogenetics 1994; 4(3): 109–16PubMedCrossRefGoogle Scholar
  57. 57.
    Guelfi JD, Ansseau M, Corruble E, et al. A double-blind comparison of the efficacy and safety of milnacipran and fluoxetine in depressed inpatients. Int Clin Psychopharmacol 1998; 13(3): 121–8PubMedCrossRefGoogle Scholar
  58. 58.
    Puozzo C, Panconi E, Deprez D. Pharmacology and pharmacokinetics of milnacipran. Int Clin Psychopharmacol 2002; 17(1): 25–35CrossRefGoogle Scholar
  59. 59.
    Leucht S, Hackl HJ, Steimer W, et al. Effect of adjunctive paroxetine on serum levels and side-effects of tricyclic antidepressants in depressive inpatients. Psychopharmacology (Berl) 2000; 147(4): 378–83CrossRefGoogle Scholar
  60. 60.
    Spigset O, Granberg K, Hagg S, et al. Relationship between fluvoxamine pharmacokinetics and CYP2D6/CYP2C19 phenotype polymorphisms. Eur J Clin Pharmacol 1997; 52: 129–33PubMedCrossRefGoogle Scholar
  61. 61.
    Swanson JR, Jones GR, Krasselt W, et al. Death of two subjects due to imipramine and desipramine metabolite accumulation during chronic therapy: a review of the literature and possible mechanisms. J Forensic Sci 1997; 42(2): 335–9PubMedGoogle Scholar
  62. 62.
    von Moltke LL, Greenblatt DJ, Duan SX, et al. Inhibition of desipramine hydroxylation (cytochrome P450-2D6) in vitro by quinidine and by viral protease inhibitors: relation to drug interactions in vivo. J Pharm Sci 1998; 87(10): 1184–9CrossRefGoogle Scholar
  63. 63.
    Xu Z, Xie H, Zhou H. In vivo inhibition of CYP2C19 but not CYP2D6 by fluvoxamine. Br J Clin Pharmacol 1996; 42: 518–21PubMedCrossRefGoogle Scholar
  64. 64.
    Preskorn SH, Baker B. Fatality associated with combined fluoxetine-amitriptyline therapy [letter]. JAMA 1997; 277(21): 1682PubMedGoogle Scholar
  65. 65.
    Sindrup SH, Brosen K, Gram LF, et al. The relationships between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 51: 278–87PubMedCrossRefGoogle Scholar
  66. 66.
    Albers LJ, Reist C, Helmeste D, et al. Paroxetine shifts imipramine metabolism. Psychiatry Res 1996; 59(3): 189–96PubMedCrossRefGoogle Scholar
  67. 67.
    Albers LJ, Reist C, Vu RL, et al. Effect of venlafaxine on imipramine metabolism. Psychiatry Res 2000; 96(3): 235–43PubMedCrossRefGoogle Scholar
  68. 68.
    Alderman J, Preskorn SH, Greenblatt DJ, et al. Desipramine pharmacokinetics when co-administered with paroxetine or sertraline in extensive metabolizers. J Clin Psychopharmacol 1997; 17(4): 284–91PubMedCrossRefGoogle Scholar
  69. 69.
    Ball SE, Ahern D, Scatina J, et al. Venlafaxine: in vitro inhibition of CYP2D6 dependent imipramine and desipramine metabolism; comparative studies with selected SSRIs, and effects on human hepatic CYP3A4, CYP2C9 and CYP1A2. Br J Clin Pharmacol 1997; 43(6): 619–26PubMedCrossRefGoogle Scholar
  70. 70.
    Brosen K, Hansen JG, Nielsen KK, et al. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 1993; 44(4): 349–55PubMedCrossRefGoogle Scholar
  71. 71.
    Gram LF, Hansen MG, Sindrup SH, et al. Citalopram: interaction studies with levomepromazine, imipramine, and lithium. Ther Drug Monit 1993; 15(1): 18–24PubMedCrossRefGoogle Scholar
  72. 72.
    Kurtz DL, Bergstrom RF, Goldberg MJ, et al. The effect of sertraline on the pharmacokinetics of desipramine and imipramine. Clin Pharmacol Ther 1997; 62(2): 145–56PubMedCrossRefGoogle Scholar
  73. 73.
    Baumann P. Pharmacokinetic-pharmacodynamic relationship of the selective serotonin reuptake inhibitors. Clin Pharmacokinet 1996; 31(6): 444–69PubMedCrossRefGoogle Scholar
  74. 74.
    Ereshefsky L, Riesenman C, Lam YW. Antidepressant drug interactions and the cytochrome P450 system: the role of cytochrome P450 2D6. Clin Pharmacokinet 1995; 29 Suppl. 1: 10–8PubMedCrossRefGoogle Scholar
  75. 75.
    Hemeryck A, Belpaire FM. Selective serotonin reuptake inhibitors and cytochrome P-450 mediated drug-drug interactions: an update. Curr Drug Metab 2002; 3(1): 13–37PubMedCrossRefGoogle Scholar
  76. 76.
    Nemeroff CB, DeVane CL, Pollock BG. Newer antidepressants and the cytochrome P450 system. Am J Psychiatry 1996; 153: 311–20PubMedGoogle Scholar
  77. 77.
    Sallee FR, Pollock BG. Clinical pharmacokinetics of imipramine and desipramine. Clin Pharmacokinet 1990; 18(5): 346–64PubMedCrossRefGoogle Scholar
  78. 78.
    Shin JG, Park JY, Kim MJ, et al. Inhibitory effects of tricyclic antidepressants (TCAs) on human cytochrome P450 enzymes in vitro: mechanism of drug interaction between TCAs and Phenytoin. Drug Metab Dispos 2002; 30(10): 1102–7PubMedCrossRefGoogle Scholar
  79. 79.
    Puozzo C, Deprez D, Gengler C, et al. Lack of pharmacokinetic interaction when switching from fluoxetine to milnacipran. Int Clin Psychopharmacol. In pressGoogle Scholar
  80. 80.
    Crewe HK, Lennard MS, Tucker GT, et al. The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol 1992; 34: 262–5PubMedCrossRefGoogle Scholar
  81. 81.
    Jeppesen U, Gram L, Vistisen K, et al. Dose dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by Citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol 1996; 51: 73–8PubMedCrossRefGoogle Scholar
  82. 82.
    Moller HJ. Are all antidepressants the same? J Clin Psychiatry 2000; 61 Suppl. 6: 24–8PubMedGoogle Scholar
  83. 83.
    Tamminga WJ, Werner J, Oosterhuis B, et al. Polymorphic drug metabolism (CYP2D6) and utilisation of psychotropic drugs in hospitalised psychiatric patients: a retrospective study. Eur J Clin Pharmacol 2003; 59(1): 57–64PubMedGoogle Scholar

Copyright information

© Adis Data Information BV 2005

Authors and Affiliations

  • Christian Puozzo
    • 1
  • Simone Lens
    • 2
  • Christian Reh
    • 3
  • Karl Michaelis
    • 3
  • Dominique Rosillon
    • 2
  • Xavier Deroubaix
    • 2
  • Dominique Deprez
    • 1
  1. 1.Institut de Recherche Pierre FabreBoulogneFrance
  2. 2.SGS BiopharmaWavreBelgium
  3. 3.AAINeu-UlmGermany

Personalised recommendations