Clinical Pharmacokinetics

, Volume 41, Issue 2, pp 115–135 | Cite as

Immunosuppressive Therapy for Paediatric Transplant Patients

Pharmacokinetic Considerations
  • María del Mar Fernández de Gatta
  • Dolores Santos-Buelga
  • Alfonso Domínguez-Gil
  • María José García
Review Articles Special Populations

Abstract

Immunosuppressive therapy in paediatric transplant recipients is changing as a consequence of the increasing number of available immunosuppressive agents. Generic and other new formulations are now emerging onto the market, clinical experience is growing, and it is expected that clinicians should tailor immunosuppressive protocols to individual patients by optimising dosages and drugs according to the maturation and clinical status of the child. Most information about the clinical pharmacokinetics of immunosuppressive drugs in paediatrics is centred on cyclosporin, tacrolimus and mycophenolate mofetil in renal and liver transplant recipients; data regarding other immunosuppressants and transplant types are limited.

Although the clinical pharmacokinetics of these drugs in paediatric transplant recipients are still under investigation, it is evident that the pharmacokinetic parameters observed in adults may not be applicable to children, especially in younger age groups. In general, patients younger than 5 years old show higher clearance rates irrespective of the organ transplanted or drug used. Another important factor that frequently affects clearance in this patient population is the post-transplant time. In accordance with these findings, and in contrast with the usual under-dosage in children, the need for higher dosages in younger recipients and during the early post-transplant period seems evident.

To achieve the best compromise between prevention of rejection and toxicity, dosage individualisation is required and this can be achieved through therapeutic drug monitoring (TDM). This approach is particularly useful to ensure the costeffective management of paediatric transplant recipients in whom the pharmacokinetic behaviour, target concentrations for clinical use and optimal dosage strategies of a particular drug may not yet be well defined. Although TDM may be a tool for improving immunosuppressive therapy, there is little information concerning its positive contribution to clinical events, including outcomes, for paediatric patients. Substantial information to support the use of TDM exists for cyclosporin and, to a lesser extent, for tacrolimus, but a diversity of options affects their implementation in the clinical setting. The role of TDM in therapy with mycophenolate mofetil and sirolimus has yet to be defined regarding both methods and clinical indications. Pharmacodynamic monitoring appears more suited to other immunosuppressants such as azathioprine, corticosteroids and monoclonal or polyclonal antibodies. If coupled with pharmacokinetic measurements, such monitoring would allow earlier and more precise optimisation of therapy.

Very few population pharmacokinetic studies have been carried out in paediatric transplant patients. This type of study is needed so that techniques such as Bayesian forecasting can be applied to optimise immunosuppressive therapy in paediatric transplant patients.

Keywords

Tacrolimus Acute Rejection Sirolimus Therapeutic Drug Monitoring Mycophenolate Mofetil 

Notes

Acknowledgements

This work is supported by the University of Salamanca, Spain.

References

  1. 1.
    Borei JF, Feurer C, Bubler HU, et al. Biological effects of cyclosporine A: a new antilymphocyte agent. Agent Actions 1976; 6: 468–75CrossRefGoogle Scholar
  2. 2.
    Calne RY, White DJG, Thiru S, et al. Cyclosporine A in patients receiving renal allografts from cadaver donors. Lancet 1978 Dec; II: 1323–7CrossRefGoogle Scholar
  3. 3.
    Transplant Patient Datasource. Richmond (VA): United Network for Organ Sharing [online]. Available from URL: http://www.patients.unos.org/data.htm [Accessed 2000 July 10]
  4. 4.
    Burdelski M, Nolkemper D, Ganschow R, et al. Liver transplantation in children: long-term outcome and quality of life. Eur J Pediatr 1999 Dec; 158 Suppl. 2: S34–42PubMedCrossRefGoogle Scholar
  5. 5.
    Braun F, Lorf T, Ringe B. Update of current immunosuppressive drugs used in clinical organ transplantation. Transpl Int 1998; 11(2): 77–81PubMedCrossRefGoogle Scholar
  6. 6.
    Keown PA. Therapeutic strategies for optimal use of novel immunosuppressants. Transplant Proc 1999 Jun; 31(4): 1790–2PubMedCrossRefGoogle Scholar
  7. 7.
    Ettenger RB. New immunosuppressive agents in pediatric renal transplantation. Transplant Proc 1998 Aug; 30(5): 1956–8PubMedCrossRefGoogle Scholar
  8. 8.
    Benfield MR, Stablein D, Tejani A. Trends in immunosuppressive therapy: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Pediatr Transplant 1999 Feb; 3(1): 27–32PubMedCrossRefGoogle Scholar
  9. 9.
    Ettenger R, Blifeld C, Prince H, et al. The pediatric nephrologist s dilemma: growth after renal transplantation and its interactions with age as a possible immunologie variable. J Pediatr 1987 Dec; 111(6): 1022–5PubMedCrossRefGoogle Scholar
  10. 10.
    Dharnidharka VR, Sullivan EK, Tejani AH, et al. Risk factors for post transplant lymphoproliferative disorder (PTLD): an analysis of the cases in the North American Pediatrie Renal Transplant Cooperative Study (NAPRTCS). American Association of Transplantation. Abstracts [online]. Available from URL: http://www.a-s-t.org/astpscope/abstracts99/835.htm [Accessed 2000 Sep 14]
  11. 11.
    Tsunoda SM, Aweeka FT. The use of therapeutic drug monitoring to optimise immunosuppressive therapy. Clin Pharmacokinet 1996 Feb; 30(1): 107–40PubMedCrossRefGoogle Scholar
  12. 12.
    Yatscoff RW, Aspeslet LJ. The monitoring of immunosuppressive drugs: a pharmacodynamic approach. Ther Drug Monit 1998 Oct; 20(5): 459–63PubMedCrossRefGoogle Scholar
  13. 13.
    Dumont RJ, Ensom MHH. Methods for clinical monitoring of cyclosporin in transplant patients. Clin Pharmacokinet 2000 May; 38(5): 427–47PubMedCrossRefGoogle Scholar
  14. 14.
    Venkataramanan R, Habucky K, Burckart GJ, et al. Clinical pharmacokinetics in organ transplant patients. Clin Pharmacokinet 1989 Mar; 16(3): 134–61PubMedCrossRefGoogle Scholar
  15. 15.
    Brodehl J. Consensus statements on the optimal use of cyclosporine in pediatric patients. Transplant Proc 1994 Oct; 26(5): 2759–62PubMedGoogle Scholar
  16. 16.
    Cooney GF, Habucky K, Hoppu K. Cyclosporine pharmacokinetics in paediatric transplant recipients. Clin Pharmacokinet 1997 Jun; 32(6): 481–95PubMedCrossRefGoogle Scholar
  17. 17.
    McDiarmid SV. The use of tacrolimus in pediatric liver transplantation. J Pediatr Gastroenterol Nutr 1998 Jan; 26(1): 90–102PubMedCrossRefGoogle Scholar
  18. 18.
    Van Mourik I, Kelly D. Immunosuppressive drugs in paediatric liver transplantation. Paediatr Drugs 2001; 3(1): 43–60PubMedCrossRefGoogle Scholar
  19. 19.
    Wallemacq PE, Verbeeck RK. Comparative clinical pharmacokinetics of tacrolimus in paediatric and adult patients. Clin Pharmacokinet 2001; 40(4): 283–95PubMedCrossRefGoogle Scholar
  20. 20.
    Johnston A, Holt DW. Therapeutic monitoring of immunosuppressant drugs. Br J Clin Pharmacol 1999 Apr; 47(4): 339–50PubMedCrossRefGoogle Scholar
  21. 21.
    Fahr A. Cyclosporin clinical pharmacokinetics. Clin Pharmacokinet 1993 Jun; 24(6): 472–95PubMedCrossRefGoogle Scholar
  22. 22.
    Yee GC. Recent advances in cyclosporine pharmacokinetics. Pharmacotherapy 1991; 11(5): 130S–4SPubMedGoogle Scholar
  23. 23.
    Ptachcinski RJ, Burckart GJ, Venkataramanan R. Cyclosporine. Drug Intell Clin Pharm 1985 Feb; 19(2): 90–100PubMedGoogle Scholar
  24. 24.
    Christians U, First MR, Benet LZ. Recommendations for bioequivalence of cyclosporine generics revisited. Ther Drug Monit 2000 Jun; 22(3): 330–45PubMedCrossRefGoogle Scholar
  25. 25.
    Rodighiero V. Therapeutic drug monitoring of cyclosporin: practical applications and limitations. Clin Pharmacokinet 1989 Jan; 16(1): 27–37PubMedCrossRefGoogle Scholar
  26. 26.
    Mochon M, Cooney G, Lum B, et al. Pharmacokinetics of cyclosporine after renal transplant in children. J Clin Pharmacol 1996 Jul; 36(7): 580–6PubMedGoogle Scholar
  27. 27.
    Lares-Asseff I, Zaltzman S, Pérez Guillé MG, et al. Pharmacokinetics of cyclosporine as a function of energy-protein deficiency in children with chronic failure. J Clin Pharmacol 1997 Mar; 37(3): 179–85PubMedGoogle Scholar
  28. 28.
    Foradori A, Pinto MV, Elberg A. A critical appraisal of cyclosporine A pharmacokinetics in pediatric kidney transplantation using a microemulsion galenic formulation (Neo-ral). Transplant Proc 1998 Aug; 30(5): 1666–7PubMedCrossRefGoogle Scholar
  29. 29.
    De Palma MT, Giordano M, Colella V, et al. Sandimmun and Neoral treatment: pharmacokinetics and kidney function in paediatric and adolescent renal transplant. Transplant Proc 1998 Aug; 30(5): 1677PubMedCrossRefGoogle Scholar
  30. 30.
    Portman RJ, Meier-Kriesche HU, Swinford R, et al. Reduced variability of Neoral pharmacokinetic studies in pediatric renal transplantation. Pediatr Nephrol 2000 15:2–6PubMedCrossRefGoogle Scholar
  31. 31.
    Keiles A, Herman J, Tjandra-Maga TB, et al. Sandimmune® to Neoral® conversion and value of abbreviated AUC monitoring in stable pediatric kidney transplant recipients. Pediatr Transplant 1999 Nov; 3(4): 282–7CrossRefGoogle Scholar
  32. 32.
    Medeiros M, Gómez AC, Urizar JP, et al. Bioavability of two oral formulations of cyclosporin A in uremie children before renal transplantation. Pediatr Transplant 1998 May; 2(2): 145–9PubMedGoogle Scholar
  33. 33.
    Gusmano R, Basile GC, Perfumo F, et al. Pharmacokinetics of oral cyclosporine microemulsion formulation (Neoral) in children awaiting renal transplantation. Transplant Proc 1998 Aug; 30(5): 1985–7PubMedCrossRefGoogle Scholar
  34. 34.
    Melter M, Rodeck B, Kardorff R, et al. Pharmacokinetics of cyclosporine in pediatric long-term liver transplant recipients converted from Sandimmun to Neoral. Transpl Int 1997; 10(6): 419–25PubMedCrossRefGoogle Scholar
  35. 35.
    Van Mourik IDM, Thomson M, Kelly DA. Comparison of pharmacokinetics of Neoral and Sandimmune in stable pediatrie liver transplant recipients. Liver Transp Surg 1999 Mar; 5(2): 107–11CrossRefGoogle Scholar
  36. 36.
    Dunn S, Cooney G, Sommerauer J, et al. Pharmacokinetics of an oral solution of the microemulsion formulation of cyclosporine in maintenance pediatric liver transplant recipients. Transplantation 1997 Jun; 63(12): 1762–7PubMedCrossRefGoogle Scholar
  37. 37.
    Laine J, Hoppu K, Jalanko H, et al. Kidney function after 1:1 conversion to the cyclosporine microemulsion formulation in children with liver allografts. Transplantation 1997 Jun; 63(12): 1768–72PubMedCrossRefGoogle Scholar
  38. 38.
    Dunn SP, Kulinsky A, Falkenstein K, et al. Area under the concentration curve values in pediatric liver transplant recipients on cyclosporin microemulsion formulation. Transplant Proc 1998 Aug; 30(5): 1678–9PubMedCrossRefGoogle Scholar
  39. 39.
    Cooney GF, Dunn SP, Sommerauer J, et al. Improved cyclosporine bioavailability in black pediatric liver transplant recipients after administration of the microemulsion formulation. Liver Transpl Surg 1999 Mar; 5(2): 112–8PubMedCrossRefGoogle Scholar
  40. 40.
    Van Mourik IDM, Vilca Melendez H, Thomson M, et al. Efficacy of Neoral in the immediate postoperative period in children post-liver transplantation. Liver Transpl Surg 1998 Nov; 4(6): 491–8PubMedCrossRefGoogle Scholar
  41. 41.
    Wallemacq PE, Reding R, Sokal EM, et al. Clinical pharmacokinetics of Neoral in pediatric recipients of primary liver transplants. Transpl Int 1997; 10(6): 466–70PubMedCrossRefGoogle Scholar
  42. 42.
    Schultz KR, Nevill TJ, Toze CL, et al. The pharmacokinetics of oral cyclosporin A (Neoral) during the first month after bone marrow transplantation. Transplant Proc 1998 Aug; 30(5): 1668–70PubMedCrossRefGoogle Scholar
  43. 43.
    Filler G, Mai I, Filler S, et al.. Abbreviated cyclosporine AUCs on Neoral —the search continues. Pediatr Nephrol 1999 Feb; 13(2): 98–102PubMedCrossRefGoogle Scholar
  44. 44.
    Hoyer PF. Cyclosporin A (Neoral) in pediatric organ transplantation. Neoral Pediatrie Study Group. Pediatr Transplant 1998 Feb; 2(1): 35–9PubMedGoogle Scholar
  45. 45.
    Bunchman TE, Parekh RS, Flynn JT, et al. Neoral induction in pediatric renal transplantation. Pediatr Nephrol 1998 Jan; 12(1): 2–5PubMedCrossRefGoogle Scholar
  46. 46.
    Humbert H, Guest G, Said MB, et al. Steady-state pharmacokinetics of cyclosporine in renal transplant patients: does an influence of age or body weight exist? Transplant Proc 1994 Oct; 26(5): 2791–7PubMedGoogle Scholar
  47. 47.
    Keiles A, Van Damme-Lombaerts R, Tjandra-Maga TB, et al. Long-term cyclosporin A pharmacokinetic profiles in pediatric renal transplant recipients. Transpl Int 1996; 9(6): 546–50CrossRefGoogle Scholar
  48. 48.
    Milanian I, Ghods AJ, Mahmoudian M, et al. Study of circadian variation of cyclosporine pharmacokinetics. Transplant Proc 1997 Nov; 29(7): 2930–1PubMedCrossRefGoogle Scholar
  49. 49.
    Dunn SP, Cooney GF, Kulinsky A, et al. Absorption characteristics of a microemulsion formulation of cyclosporine in de novo paediatric liver transplant recipients. Transplantation 1995 Dec; 60(12): 1438–42PubMedCrossRefGoogle Scholar
  50. 50.
    Cao S, Cox KL, Berquist W, et al. Increased dosage requirement and rejection after Neoral conversion in pediatric liver transplant patients. Transplant Proc 1998 Dec; 30(8): 4322–4PubMedCrossRefGoogle Scholar
  51. 51.
    Edreesi MA, Caillé G, Dupuis C, et al. Safety, tolerability, and pharmacokinetic action of diltiazem in pediatric liver transplant recipients on cyclosporine. Liver Transpl Surg 1995 Nov; 1(6): 283–8Google Scholar
  52. 52.
    Pan SH, López RR, Sher LS, et al. Enhanced oral cyclosporine absorption with water-soluble vitamin E early after liver transplantation. Pharmacotherapy 1996 Jan; 16(1): 59–65PubMedGoogle Scholar
  53. 53.
    Clardy CW, Schroeder TJ, Myre SA, et al. Clinical variability of cyclosporine pharmacokinetics in adult and pediatric patients after renal, cardiac, hepatic and bone-marrow transplants. Clin Chem 1988 Oct; 34(10): 2012–5PubMedGoogle Scholar
  54. 54.
    Parke J, Charles BG. NONMEM population pharmacokinetic modeling of orally administered cyclosporine from routine drug monitoring data after heart transplantation. Ther Drug Monit 1998 Jun; 20(3): 284–93PubMedCrossRefGoogle Scholar
  55. 55.
    Yee GC, Lennon TP, Gmur DJ, et al. Age-dependent cyclosporine A pharmacokinetics in marrow transplant recipients. Clin Pharmacol Ther 1986 Oct; 40(4): 438–43PubMedCrossRefGoogle Scholar
  56. 56.
    Oellerich M, Armstrong VW, Kahan B, et al. Lake Louise consensus conference on cyclosporin monitoring in organ transplantation: report of the consensus panel. Ther Drug Monit 1995 Dec; 17(6): 642–54PubMedCrossRefGoogle Scholar
  57. 57.
    Warrens AN, Waters JB, Salam AD, et al. Improving the therapeutic monitoring of cyclosporin A. Clin Transplant 1999 Apr; 13(2): 193–200PubMedCrossRefGoogle Scholar
  58. 58.
    Morris R. Target concentration strategy for cyclosporine monitoring. Clin Pharmacokinet 1997 Mar; 32(3): 175–9PubMedCrossRefGoogle Scholar
  59. 59.
    Morris RG, Tett SE, Ray JE. Cyclosporin A monitoring in Australia: consensus recommendations. Ther Drug Monit 1994 Dec; 16(6): 570–6PubMedCrossRefGoogle Scholar
  60. 60.
    Shaw LM, Yatscoff RW, Bowers LD, et al. Canadian consensus meeting on cyclosporine monitoring: report of the consensus panel. Clin Chem 1990 Oct; 36(10): 1841–6PubMedGoogle Scholar
  61. 61.
    Keown P, Kahan BD, Johnston A, et al. Optimization of cyclosporine therapy with new therapeutic drug monitoring strategies: Report from the International Neoral® TDM Advisory Consensus Meeting (Vancouver, November 1997). Transplant Proc 1998 Aug; 30(5): 1645–4PubMedCrossRefGoogle Scholar
  62. 62.
    Belitsky P, Dunn S, Johnston A, et al. Impact of absorption profiling on efficacy and safety of cyclosporin therapy in transplant recipients. Clin Pharmacokinet 2000 Aug; 39(2): 117–25PubMedCrossRefGoogle Scholar
  63. 63.
    DelloStrologo L, Campagnano P, Federici G, et al. Cyclosporine A monitoring in children: abbreviated area under curve formulas and C2 level. PediatrNephrol 1999 Feb; 13(2): 95–7Google Scholar
  64. 64.
    Medeiros M, Pérez-Urizar J, Muñoz R, et al. Limited sampling model for area-under-the-curve monitoring in pediatric patients receiving either Sandimmune® or Neoral® cyclosporin A oral formulations. Pediatr Transplant 1999 Aug; 3(3): 225–30PubMedCrossRefGoogle Scholar
  65. 65.
    McDiarmid SV, Busulti RW, Ascher NL, et al. FK506 (tacrolimus) compared with cyclosporin for primary immunosuppression after pediatric liver transplantation. Results from the US multicenter trial. Transplantation 1995 Feb; 59(4): 530–6PubMedGoogle Scholar
  66. 66.
    Plosker GL, Foster RH. Tacrolimus: a further update of its pharmacology and therapeutic use in the management of organ transplantation. Drugs 2000 Feb; 59(2): 323–89PubMedCrossRefGoogle Scholar
  67. 67.
    Venkataramanan R, Swaminathan A, Prasad T, et al., Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet 1995 Dec; 29(6): 404–30PubMedCrossRefGoogle Scholar
  68. 68.
    Hooks MA. Tacrolimus, a new immunosuppressant: a review of the literature. Ann Pharmacother 1994 Apr; 28(4): 501–10PubMedGoogle Scholar
  69. 69.
    Christiaans M, Beysens T, Undre N, et al., The effect of food on the oral bioavailability of tacrolimus and the changes in pharmacokinetics with time post transplant in renal transplant patients. American Association of Transplantation. Abstracts [online]. Available from URL: http://www.a-s-t.org/astpscope/abstracts97/cg106184.htm [Accessed 2000 Sep 14]
  70. 70.
    Sewing K-FR. Pharmacokinetics, dosing principles, and blood level monitoring of FK506. Transplant Proc 1994 Dec; 26(6): 3267–9PubMedGoogle Scholar
  71. 71.
    Jusko WJ, Thomson AW, Fung J, et al. Consensus document: therapeutic monitoring of tacrolimus. Ther Drug Monit 1995 Dec; 17(6): 606–14PubMedCrossRefGoogle Scholar
  72. 72.
    Shapiro R. Tacrolimus in pediatric renal transplantation: a review. Pediatr Transplant 1998; 2: 270–6PubMedGoogle Scholar
  73. 73.
    Wallemacq PE, Furlan V, Moller A, et al. Pharmacokinetics of tacrolimus (FK506) in paediatric liver transplant recipients. Eur J Drug Metab Pharmacokinet 1998 Jul; 23(3): 367–70PubMedCrossRefGoogle Scholar
  74. 74.
    Yasuhara M, Hashida T, Toraguchi M. Pharmacokinetics and pharmacodynamics of FK506 in pediatric patients receiving living-related donor liver transplantations. Transplant Proc 1995 Feb; 27(1): 1108–10PubMedGoogle Scholar
  75. 75.
    García MJ, Manzanares C, Santos-Buelga D, et al. Covariate effects on tacrolimus apparent clearance in paediatric liver transplant patients under “conversion” therapy. Clin Pharmacokinet 2001; 40: 63–71Google Scholar
  76. 76.
    Filler G, Grygas R, Mai I, et al. Pharmacokinetics of tacrolimus (FK 506) in children and adolescents with renal transplants. Nephrol Dial Transplant 1997 Aug; 12(8): 1668–71PubMedCrossRefGoogle Scholar
  77. 77.
    Mehta P, Beltz S, Kedar A, et al. Increased clearance of tacrolimus in children: need for higher doses and earlier initiation prior to bone marrow transplantation. Bone Marrow Transplant 1999 Dec; 24(12): 1323–7PubMedCrossRefGoogle Scholar
  78. 78.
    Jain A, Fung JJ, Venkataramam R, et al. Comparative study of cyclosporine and FK506 dosage requirement in adult and pediatric orthotopic liver transplantation. Transplant Proc 1991 Dec; 23(6): 2763–6PubMedGoogle Scholar
  79. 79.
    Moreno M, Manzanares C, Castellano F, et al. Monitoring of tacrolimus as rescue therapy in pediatric liver transplantation. Ther Drug Monit 1998 Aug; 20(4): 376–9PubMedCrossRefGoogle Scholar
  80. 80.
    McDiarmid SV, Colonna JO, Shaked A, et al. Differences in oral FK506 dose requirements between adult and pediatric liver transplant patients. Transplantation 1993 Jun; 55(6): 1328–32PubMedCrossRefGoogle Scholar
  81. 81.
    Cantarovich M, Fridell J, Barkun J, et al. Optimal time points for the prediction of the area-under-the-curve in liver transplant patients receiving tacrolimus. Transplant Proc 1998 Jun; 30(4): 1460–1PubMedCrossRefGoogle Scholar
  82. 82.
    Weber LT, Schütz E, Lamersdorf T, et al. Pharmacokinetics of mycophenolic acid (MPA) and free MPA in paediatric renai transplant recipients: a multicentre study. The German Study Group on Mycophenolate Mofetil (MMF) Therapy. Nephrol Dial Transplant 1999; 14 Suppl. 4: 33–4PubMedCrossRefGoogle Scholar
  83. 83.
    Shaw LM, Nowak I. Mycophenolic acid: measurement and relationship to pharmacologic effects. Ther Drug Monit 1995 Dec; 17(6): 685–8PubMedCrossRefGoogle Scholar
  84. 84.
    Jacqz Aigrain E, Khan Shaghaghi E, Baudouin V, et al. Pharmacokinetics and tolerance of mycophenolate mofetil in renal transplant children. Pediatr Nephrol 2000 Feb; 14(2): 95–9PubMedCrossRefGoogle Scholar
  85. 85.
    Weber LT, Lamersdorf T, Shipkova M, et al. Area under the plasma concentration-time curve for total, but not for free, mycophenolic acid increases in the stable phase after renal transplantation: a longitudinal study in pediatric patients. German Study Group on Mycophenolate Mofetil Therapy in Pediatrie Renal Transplant Recipients. Ther Drug Monit 1999 Oct; 21(5): 498–506PubMedCrossRefGoogle Scholar
  86. 86.
    Bullingham RES, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 1998 Jun; 34(5): 429–55PubMedCrossRefGoogle Scholar
  87. 87.
    Sherbotie J, Bunchman T, Navarro M, et al. Mycophenolate mofetil (MMF) oral suspension in pediatric renal transplantation. American Association of Transplantation. Abstracts [online]. Available from URL: http://www.a-s-t.org/astpscope/abstracts99/473.htm [Accessed 2000 Sep 14]
  88. 88.
    Weber LT, Shipkova M, Lamersdorf T, et al. Pharmacokinetics of mycophenolic acid (MPA) and determinants of MPA free fraction in pediatric and adult renal transplant recipients. German Study Group on Mycophenolate Mofetil Therapy in Pediatric Renal Transplant Recipients. J Am Soc Nephrol 1998 Aug; 9(8): 1511–20PubMedGoogle Scholar
  89. 89.
    Filler G, Lampe D, Mai I, et al. Dosing of MMF in combination with tacrolimus for steroid-resistant vascular rejection in pediatric renal allografts. Transpl Int 1998; 11 Suppl. 1: S82–5PubMedCrossRefGoogle Scholar
  90. 90.
    Filler G, Zimmering M, Mai I. Pharmacokinetics of mycophenolate mofetil are influenced by concomitant immunosuppression. Pediatr Nephrol 2000 Feb; 14(2): 100–4PubMedCrossRefGoogle Scholar
  91. 91.
    Oellerich M, Shipkova M, Schtz E, et al. Pharmacokinetic and metabolic investigations of mycophenolic acid in pediatric patients after renal transplantation: implications for therapeutic drug monitoring. Ther Drug Monit 2000 Feb; 22(1): 20–6PubMedCrossRefGoogle Scholar
  92. 92.
    Dipchand AI, Biagio MD, Pietra A, et al. Mycophenolic acid (MPA) levels in pediatric heart transplant recipients receiving mycophenolate mofetil. American Association of Transplantation. Abstracts [online]. Available from URL: http://www.a-s-t.org/astpscope/abstracts99/472.htm [Accessed 2000 Sep 14]Google Scholar
  93. 93.
    Zucker K, Rosen A, Tsaroucha A, et al. Unexpected augmentation of mycophenolic acid pharmacokinetics in renal transplant patients receiving tacrolimus and mycophenolate mofetil in combination therapy, and analogous in vitro findings. Transpl Immunol 1997 Sep; 5(3): 225–32PubMedCrossRefGoogle Scholar
  94. 94.
    Filler G, Mai I. Limited sampling strategy for mycophenolic acid area under the curve. Ther Drug Monit 2000 Apr; 22(2): 169–73PubMedCrossRefGoogle Scholar
  95. 95.
    Filler G, Ehrich J. Mycophenolate mofetil for rescue in acute renal transplant rejection in children should always be monitoring by measurement of trough concentration. Nephrol Dial Transplant 1997 Feb; 12(2): 374–5PubMedCrossRefGoogle Scholar
  96. 96.
    Hale MD, Nicholls AJ, Bullingham RE, et al. The pharmacokinetic-pharmacodynamic relationship for mycophenolate mofetil in renal transplantation. Clin Pharmacol Ther 1998 Dec; 64(6): 672–83PubMedCrossRefGoogle Scholar
  97. 97.
    Aigrain EJ, Shaghaghi EK, Baudouin V, et al. Pharmacokinetics of mycophenolate mofetil in eight pediatric renal transplant patients. Transplant Proc 2000 Mar; 32(2): 388–90PubMedCrossRefGoogle Scholar
  98. 98.
    De Mattos AM, Olyaei AJ, Bennett WM. Pharmacology of immunosuppressive medications used in renal diseases and transplantation. Am J Kidney Dis 1996 Nov; 28(5): 631–67PubMedCrossRefGoogle Scholar
  99. 99.
    Chan GLC, Canafax DM, Johnson CA. The therapeutic use of azathioprine in renal transplantation. Pharmacotherapy 1987; 7(5): 165–77PubMedGoogle Scholar
  100. 100.
    Escousse A, Guedon F, Mounie J, et al. 6-Mercaptopurine pharmacokinetics after use of azathioprine in renal transplant recipients with intermediate or high thiopurine methyl transferase activity phenotype. J Pharm Pharmacol 1998 Nov; 50(11): 1261–6PubMedCrossRefGoogle Scholar
  101. 101.
    El-Yazigi A, Wohob FA. Pharmacokinetics of azathioprine after repeated oral and single intravenous administration. J Clin Pharmacol 1993 Jun; 33(6): 522–6PubMedGoogle Scholar
  102. 102.
    Lennard L, Van Loon JA, Weinshilboum RM. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther 1989 Aug; 46(2): 149–54PubMedCrossRefGoogle Scholar
  103. 103.
    Chocair PR, Duley JA, Simmonds HA, et al. The importance of thiopurine methyltransferase activity for the use of azathioprine in transplant recipients. Transplantation 1992 May; 53(3): 1051–6PubMedCrossRefGoogle Scholar
  104. 104.
    Bergan S, Rugstad HE, Bentdal O, et al. Monitoring of azathioprine treatment by determination of 6-thioguanine nucleotide concentrations in erythrocytes. Transplantation 1994 Oct; 58(7): 803–8PubMedGoogle Scholar
  105. 105.
    Schmiegelow K, Kriegbaum NJ. Thioguanine nucleotide accumulation in erythrocytes during azathioprine treatment for systemic connective tissue diseases: a possible index for monitoring treatment. Ann Rheum Dis 1993 Feb; 52(2): 152–4PubMedCrossRefGoogle Scholar
  106. 106.
    Vazquez MA. Southwestern Internal Medicine Conference. New advances in immunosuppression therapy for renal transplantation. Am J Med Sci 1997 Dec; 314(6): 415–35PubMedCrossRefGoogle Scholar
  107. 107.
    Tornatore KM, Walshe JJ, Reed KA, et al. Comparative methylprednisolone pharmacokinetics in renal transplant patients receiving double- or triple-drug immunosuppression. Ann Pharmacother 1993 May; 27(5): 545–9PubMedGoogle Scholar
  108. 108.
    Keller F, Hemmen T, Schoneshofer M, et al. Pharmacokinetics of methylprednisolone and rejection episodes in kidney transplant patients. Transplantation 1995 Aug; 60(4): 330–3PubMedCrossRefGoogle Scholar
  109. 109.
    Jusko WJ, Ludwig EA. Corticosteroids. In: Evans WE, Schentag JJ, Jusko WJ, editors. Applied pharmacokinetics. Principles of therapeutic drug monitoring. 3rd ed. Vancouver: Applied Therapeutics, 1992; 27: 1–34Google Scholar
  110. 110.
    Wald JA, Law RM, Ludwig EA, et al. Evaluation of dose-related pharmacokinetics and pharmacodynamics of prednisolone in man. J Pharmacokinet Biopharm 1992 Dec; 20(6): 567–89PubMedGoogle Scholar
  111. 111.
    Jusko WJ, Ferron GM, Mis SM, et al. Pharmacokinetics of prednisolone during administration of sirolimus in patients with renal transplants. J Clin Pharmacol 1996 Dec; 36(6): 1100–6PubMedGoogle Scholar
  112. 112.
    Imani S, Jusko WJ, Steiner R. Diltiazem retards the metabolism of oral prednisone with effects on T-cell markers. Pediatr Transplant 1999 May; 3(2): 126–30PubMedCrossRefGoogle Scholar
  113. 113.
    McDonald R, Donalson L, Emmett L, et al. A decade of living donor transplantation in North American children: the 1998 Annual Report of the North American Pediatrie Renal Transplant Cooperative Study (NAPRTCS). Pediatr Transplant 2000 Aug; 4(3): 221–34PubMedCrossRefGoogle Scholar
  114. 114.
    Hill MR, Szefler SJ, Ball BD, et al. Monitoring glucocorticoid therapy. A pharmacokinetic approach. Clin Pharmacol Ther 1990 Oct; 48(8): 390–8PubMedCrossRefGoogle Scholar
  115. 115.
    Ferraris J, Krmar R, Flores D, et al. Pharmacokinetics of deflazacort in renal transplantated and hemodialyzed children. Clin Nephrol 1998; 30(3): 172–7Google Scholar
  116. 116.
    Ettenger RB. Antibody therapy as an induction regimen in pediatric renal transplantation. Transplant Proc 1999 Sep; 31: 677–8CrossRefGoogle Scholar
  117. 117.
    Burk ML, Matuszewski KA. Muromonab-CD3 and antithymocyte globulin in renal transplantation. Ann Pharmacother 1997 Nov; 31(11): 1370–7PubMedGoogle Scholar
  118. 118.
    Hooks MA, Wade CS, Millikan WJ. Muromonab CD-3: a review of its pharmacology, pharmacokinetics, and clinical use in transplantation. Pharmacotherapy 1991; 11(1): 26–37PubMedGoogle Scholar
  119. 119.
    Vasquez EM, Pollak R. OKT3 therapy increases cyclosporine blood levels. Clin Transplant 1997; 11: 38–41PubMedGoogle Scholar
  120. 120.
    Hyrose R, Roberts JP, Quan D, et al. Experience with daclizumab in liver transplantation. Transplantation 2000 Jan; 69(2): 307–11CrossRefGoogle Scholar
  121. 121.
    Beniamonovitz A, Itescu S, Lietz K, et al. Prevention of rejection in cardiac transplantation by blockade of the interleukin-2 receptor with monoclonal antibody. N Engl J Med 2000 Mar; 342(9): 613–9CrossRefGoogle Scholar
  122. 122.
    Nashan B, Light S, Hardie IR, et al. Reduction of acute renal allograft rejection by daclizumab. Daclizumab Double Therapy Study Group. Transplantation 1999 Jan; 67(1): 110–5PubMedCrossRefGoogle Scholar
  123. 123.
    Nevins T, Ettenger R, Potter D, et al. Daclizumab (Zenapax) in pediatric renal allografts: final data. American Association of Transplantation. Abstracts [online]. Available from URL: http://www.a-s-t.org/astpscope/abstracts99/469.htm [Accessed 2000 Sep 14]
  124. 124.
    Kovarik JM, Moore R, Wolf P, et al. Screening for basiliximab exposure-response relationships in renal allotransplantation. Clin Transplant 1999 Feb; 13(1): 32–8PubMedCrossRefGoogle Scholar
  125. 125.
    Kovarik J, Breidenbach T, Gerbeau C, et al. Disposition and immunodynamics of basiliximab in liver allograft recipients. Clin Pharmacol Ther 1998 Jul; 64(1): 66–72PubMedCrossRefGoogle Scholar
  126. 126.
    Kovarik JM, Melter M, Dunn S, et al. Disposition of basiliximab, an IL-2 receptor (CD25) chimeric monoclonal antibody, in pediatric liver transplant patients. American Association of Transplantation. Abstracts [online]. Available from URL: http://www.a-s-t.org/astpscope/abstracts99/470.htm [Accessed 2000 Sep 14]
  127. 127.
    Mentre F, Kovarik J, Gerbeau C. Constructing a prediction interval for time to reach a threshold concentration based on a population pharmacokinetic analysis: an application to basiliximab in renal transplantation. J Pharmacokinet Biopharm 1999 Apr; 27(2): 213–30PubMedGoogle Scholar
  128. 128.
    Kovarik JM, Kahan BD, Rajagopalan PR, et al. Population pharmacokinetics and exposure-response relationship for basiliximab in kidney transplantation. Transplantation 1999 Nov; 68(9): 1288–94PubMedCrossRefGoogle Scholar
  129. 129.
    Vasquez EM. Sirolimus: a new agent for prevention of renal allograft rejection. Am J Health Syst Pharm 2000 Mar; 57(7): 437–48PubMedGoogle Scholar
  130. 130.
    Trepanier DJ, Gallant H, Legatt DF, et al. Rapamycin: distribution, pharmacokinetics and therapeutic range investigations: an update. Clin Biochem 1998 Jul; 31(5): 345–51PubMedCrossRefGoogle Scholar
  131. 131.
    Ferron GM, Mishina EV, Zimmerman JJ, et al. Population pharmacokinetics of sirolimus in kidney transplant patients. Clin Pharmacol Ther 1997 Apr; 61(4): 416–28PubMedCrossRefGoogle Scholar
  132. 132.
    Gallant-Haidner HL, Trepanier DJ, Freitag DG, et al. Pharmacokinetics and metabolism of sirolimus. Ther Drug Monit 2000 Feb; 22(1): 31–5PubMedCrossRefGoogle Scholar
  133. 133.
    Ingle GR, Sievers TM, Holt CD. Sirolimus: continuing the evolution of transplant immunosuppression. Ann Pharmacother 2000 Sep; 34: 1044–55PubMedCrossRefGoogle Scholar
  134. 134.
    Tejani A, Alexander S, Koaut E, et al. Safety and pharmacokinetic profile of ascending single doses of an oral liquid sirolimus (rapamycin) in pediatric patients with stable chronic renal failure. American Association of Transplantation. Abstracts [online]. Available from URL: http://www.a-s-t.org/astpscope/abstracts99/475.htm [Accessed 2000 Sep 14]
  135. 135.
    Kahan BD, Napoli KL. Role of therapeutic monitoring of rapamycin. Transplant Proc 1998 Aug; 30(5): 2189–91PubMedCrossRefGoogle Scholar
  136. 136.
    Shaw LM, Kaplan B, Brayman KL. Advances in therapeutic drug monitoring for immunosuppressants; a review of sirolimus: introduction and overview. Clin Ther 2000; 22 Suppl. B: 1–13CrossRefGoogle Scholar
  137. 137.
    Kahan BD, Napoli KL, Kelly PA, et al. Therapeutic drug monitoring of sirolimus: correlations with efficacy and toxicity. Clin Transplant 2000 Apr; 14(2): 97–109PubMedCrossRefGoogle Scholar
  138. 138.
    Hong JC, Kahan BD. Sirolimus-induced thrombocytopenia and leukopenia in renal transplant recipients: risk factors, incidence, progression and management. Transplantation 2000 May; 69(10): 2085–90PubMedCrossRefGoogle Scholar
  139. 139.
    Hughes SE, Gruber SA. New immunosuppressive drugs in organ transplantation. J Clin Pharmacol 1996 Dec; 36(12): 1081–92PubMedGoogle Scholar
  140. 140.
    Takada K, Asada S, Ichikawa Y, et al. Pharmacokinetics of bredinin in renal transplant patients. Eur J Clin Pharmacol 1983; 24(4): 457–61PubMedCrossRefGoogle Scholar
  141. 141.
    Zaoui P, Serre Debeauvais F, Bayle F, et al. Clinical use of mizoribine (Bredinin) and pharmacologic monitoring assessment in renal transplantation. Transplant Proc 1995 Feb; 27(1): 1064–5PubMedGoogle Scholar
  142. 142.
    Kokado Y, Takahara S, Ishibashi M, et al. Pharmacokinetics of mizoribine in renal transplant patients. Transplant Proc 1994 Aug; 26(4): 2111–3PubMedGoogle Scholar
  143. 143.
    Ramos EL, Nadler SG, Grasela DM, et al. Deoxyspergualin: mechanism and pharmacokinetics. Transplant Proc 1996 Apr; 28(2): 873–5PubMedGoogle Scholar
  144. 144.
    Joshi AS, King SY, Zajac BA, et al. Phase I safety and pharmacokinetics studies of brequinar sodium after single ascending oral doses in stable renal, hepatic, and cardiac allograft recipients. J Clin Pharmacol 1997 Dec; 37(12): 1121–8PubMedGoogle Scholar
  145. 145.
    Lucien J, Dias VC, LeGatt DF, et al. Blood distribution and single-dose pharmacokinetics of leflunomide. Ther Drug Monit 1995 Oct; 17(5): 454–9PubMedCrossRefGoogle Scholar
  146. 146.
    Kahan BD. High variability of drug exposure: a biopharmaceutic risk factor for chronic rejection. Transplant Proc 1998; 30: 1639–41PubMedCrossRefGoogle Scholar
  147. 147.
    Potter JM. Pharmacoeconomics of therapeutic drug monitoring in transplantation. Ther Drug Monit 2000 Jan; 22(1): 36–9PubMedCrossRefGoogle Scholar
  148. 148.
    Swanson MA, Palmeri D, Vossler ED, et al. Noncompliance in organ transplant recipients. Pharmacotherapy 1991; 11(6): 1735–45Google Scholar
  149. 149.
    Sigfusson G, Fricker FJ, Bernstein D, et al. Long-term survivors of pediatric heart transplantation: a multicenter report of sixty-eight children who have survived longer than five years. J Pediatr 1997 Jun; 130(6): 862–71PubMedCrossRefGoogle Scholar
  150. 150.
    Holford NHG. A size standard for Pharmacokinetics. Clin Pharmacokinet 1996; 30: 329–32PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2002

Authors and Affiliations

  • María del Mar Fernández de Gatta
    • 1
  • Dolores Santos-Buelga
    • 1
  • Alfonso Domínguez-Gil
    • 1
    • 2
  • María José García
    • 1
  1. 1.Pharmacy DepartmentUniversity of SalamancaSalamancaSpain
  2. 2.Pharmacy ServiceUniversity Clinical HospitalSalamancaSpain

Personalised recommendations