Skip to main content
Log in

Prediction of Hepatic Metabolic Clearance

Comparison and Assessment of Prediction Models

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Objective

To perform a comparative quantitative evaluation of the prediction accuracy for human hepatic metabolic clearance of 5 different mathematical models: allometric scaling (multiple species and rat only), physiologically based direct scaling, empirical in vitro-in vivo correlation, and supervised artificial neural networks.

Methods

The mathematical prediction models were implemented with a publicly available dataset of 22 extensively metabolised compounds and compared for their prediction accuracy using 3 quality indicators: prediction error sum of squares (PRESS), r2 and the fold-error.

Results

Approaches such as physiologically based direct scaling, empirical in vitro-in vivo correlation and artificial neural networks, which are based on in vitro data only, yielded an average fold-error ranging from 1.64 to 2.03 and r2 values greater than 0.77, as opposed to r2 values smaller than 0.44 when using allometric scaling combining in vivo and in vitro preclinical data. The percentage of successful predictions (less than 2-fold error) ranged from 55% (rat allometric scaling) to between 64 and 68% with the other approaches.

Conclusions

On the basis of a diverse set of 22 metabolised drug molecules, these studies showed that the most cost-effective and accurate approaches, such as physiologically based direct scaling and empirical in vitro-in vivo correlation, are based on in vitro data alone. Inclusion of in vivo preclinical data did not significantly improve prediction accuracy; the prediction accuracy of the allometric approaches was at the lower end of all methods compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Fig. 2
Table III

Similar content being viewed by others

References

  1. Lavé T, Coassolo P, Reigner B. Prediction of hepatic metabolic clearance based on interspecies allometric scaling techniques and in vitro-in vivo correlations. Clin Pharmacokinet 1999; 36: 211–31

    Article  PubMed  Google Scholar 

  2. Lavé T, Dupin S, Schmitt C, et al. Integration of in vitro data into allometric scaling to predict hepatic metabolic clearance in man: application to 10 extensively metabolized drugs. J Pharm Sci 1997; 86: 584–90

    Article  PubMed  Google Scholar 

  3. Lavé T, Dupin S, Schmitt C, et al. The use of human hepatocytes to select compounds based on their expected hepatic extraction ratios in humans. Pharm Res 1997; 14: 152–5

    Article  PubMed  Google Scholar 

  4. Cross DM, Bayliss MK. A commentary on the use of hepatocytes in drug metabolism studies during drug discovery and development. Drug Metab Rev 2000; 32: 219–40

    Article  PubMed  CAS  Google Scholar 

  5. Bayliss MK, Bell JA, Jenner WN, et al. Utility of hepatocytes to model species differences in the metabolism of loxtidine and to predict pharmacokinetic parameters in rat, dog and man. Xenobiotica 1999; 29: 253–68

    Article  PubMed  CAS  Google Scholar 

  6. Iwatsubo T, Hirota N, Ooie T, et al. Prediction of in vivo drug disposition from in vitro data based on physiological pharmacokinetics. Biopharm Drug Dispos 1996; 17: 273–310

    Article  PubMed  CAS  Google Scholar 

  7. Iwatsubo T. Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol Ther 1997; 73: 147–71

    Article  PubMed  CAS  Google Scholar 

  8. Ito K, Iwatsubo T, Kanamitsu S, et al. Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annu Rev Pharmacol Toxicol 1998; 38: 461–99

    Article  PubMed  CAS  Google Scholar 

  9. Izumi T, Enomoto S, Hosiyama K, et al. Prediction of the human pharmacokinetics of troglitazone, a new and extensively metabolized antidiabetic agent, after oral administration, with an animal scale-up approach. J Pharmacol Exp Ther 1996; 277: 1630–41

    PubMed  CAS  Google Scholar 

  10. Iwatsubo T, Suzuki H, Sugiyama Y. Prediction of species differences (rats, dogs, humans) in the in vivo metabolic clearance of YM796 by the liver from in vitro data. J Pharmacol Exp Ther 1997; 283: 462–9

    PubMed  CAS  Google Scholar 

  11. Iwatsubo T. Prediction of in vivo hepatic metabolic clearance of YM796 from in vitro data by use of human liver microsomes and recombinant P-450 isozymes. J Pharmacol Exp Ther 1997; 282: 909–19

    PubMed  CAS  Google Scholar 

  12. Obach RS, Baxter JG, Liston TE, et al. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther 1997; 283: 46–58

    PubMed  CAS  Google Scholar 

  13. Houston JB. Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem Pharmacol 1994; 47: 1469–79

    Article  PubMed  CAS  Google Scholar 

  14. Obach RS. Prediction of human clearance of 29 drugs from hepatic microsomal intrinsic clearance data: an examiniation of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos 1999; 27: 1350–9

    PubMed  CAS  Google Scholar 

  15. Boxenbaum H, Fertig JB. Scaling of antipyrine intrinsic clearance of unbound drug in 15 mammalian species. Eur J Drug Metab Pharmacokinet 1984; 9: 177–83

    Article  PubMed  CAS  Google Scholar 

  16. Campbell DB. Can allometric interspecies scaling be used to predict human kinetics. Drug Inf J 1994; 28: 235–45

    Article  Google Scholar 

  17. Mordenti J. Man versus beast: pharmacokinetic scaling in mammals. J Pharm Sci 1986; 75: 1028–40

    Article  PubMed  CAS  Google Scholar 

  18. Lavé T, Coassolo P, Ubeaud G, et al. Interspecies scaling of bosentan, a new endothelin receptor antagonist and integration of in vitro data into allometric scaling. Pharm Res 1996; 13: 97–101

    Article  PubMed  Google Scholar 

  19. Lavé T, Dupin S, Schmitt M, et al. Interspecies scaling of tolcapone, a new inhibitor of catechol-O-methyltransferase (COMT): use of in vitro data from hepatocytes to predict metabolic clearance in animals and humans. Xenobiotica 1996; 26: 839–51

    Article  PubMed  Google Scholar 

  20. Schneider G, Coassolo P, Lavé T. Combining in vitro and in vivo pharmacokinetic data for prediction of hepatic drug clearance in humans by artificial neural networks and multivariate statistical techniques. J Med Chem 1999; 42: 5072–6

    Article  PubMed  CAS  Google Scholar 

  21. Kachigan SK. Multivariate statistical analysis: a conceptual introduction. New York: Radius Press, 1991

    Google Scholar 

  22. Mathews JH. Numerical methods for mathematics, science, and engineering. Englewood Cliffs (NJ): Prentice Hall, 1992

    Google Scholar 

  23. Hussain AS, Johnson RD, Vachharajani NN, et al. Feasibility of developing a neural network for prediction of human pharmacokinetic parameters from animal data. Pharm Res 1993; 10: 466–9

    Article  PubMed  CAS  Google Scholar 

  24. Erb RJ. The backpropagation neural network — a Bayesian classifier: introduction and applicability to pharmacokinetics. Clin Pharmacokinet 1995; 29: 69–79

    Article  PubMed  CAS  Google Scholar 

  25. Gobburu JV, Chen EP. Artificial neural networks as a novel approach to integrated pharmacokinetic-pharmacodynamic analysis. J Pharm Sci 1996; 85: 505–10

    Article  PubMed  CAS  Google Scholar 

  26. Schneider G, Wrede P. Artificial neural networks in computer-based molecular design. Prog Biophys Mol Biol 1998; 70: 175–222

    Article  PubMed  CAS  Google Scholar 

  27. Rosenblatt F. Principles of neurodynamics. New York: Spartan, 1962

    Google Scholar 

  28. Minsky ML. Perceptrons. Cambridge: MIT Press, 1969

    Google Scholar 

  29. Hertz J, Krogh A, Palmer RG, eds. Introduction to the theory of neural computation. Redwood City (CA): Addison-Wesley, 1991

    Google Scholar 

  30. Bishop M. Neural networks for pattern recognition. Oxford: Clarendon Press, 1995

    Google Scholar 

  31. Ripley BD. Pattern recognition and neural networks. Cambridge: Cambridge University Press, 1996

    Google Scholar 

  32. Brown PJ. Measurement, regression, and calibration. Oxford: Clarendon Press, 1993

    Google Scholar 

  33. Höskuldsson A. PLS regression models. J Chemother 1988; 2: 211–28

    Google Scholar 

  34. Helland IS. Partial least squares regression and statistical methods. Scand J Stat 1990; 17: 97–114

    Google Scholar 

  35. Garthwaite PH. An interpretation of partial least squares. J Am Stat Assoc 1994; 89: 122–7

    Article  Google Scholar 

  36. Boxenbaum H. Interspecies pharmacokinetic scaling and the evolutionary-comparative paradigm. Drug Metab Rev 1984; 15: 1071–121

    Article  PubMed  CAS  Google Scholar 

  37. Boxenbaum H, Dilea C. First-time-in-human dose selection: allometric thoughts and perspectives. J Clin Pharmacol 1995; 35: 957–66

    PubMed  CAS  Google Scholar 

  38. Rowland M, Tozer T. Clinical pharmacokinetics: concepts and applications. Philadelphia (PA): Lea and Febiger, 1989

    Google Scholar 

  39. Houston JB, Carlile DJ. Prediction of hepatic clearance from microsomes, hepatocytes, and liver slices. Drug Metab Rev 1997; 29: 891–922

    Article  PubMed  CAS  Google Scholar 

  40. Houston JB, Kenworthy KE. In vitro-in vivo scaling of CYP kinetic data not consistent with the classical Michaelis-Menten model. Drug Metab Dispos 2000; 28: 246–54

    PubMed  CAS  Google Scholar 

  41. Reibnegger G, Weiss G, Werner-Felmayer G, et al. Neural networks as a tool for utilizing laboratory information: comparison with linear discriminant analysis and with classification and regression trees. Proc Natl Acad Sci 1991; 88: 11426–30

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Lavé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuegge, J., Schneider, G., Coassolo, P. et al. Prediction of Hepatic Metabolic Clearance. Clin Pharmacokinet 40, 553–563 (2001). https://doi.org/10.2165/00003088-200140070-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200140070-00006

Keywords

Navigation