Advertisement

Clinical Pharmacokinetics

, Volume 27, Issue 5, pp 345–367 | Cite as

Pharmacokinetics of Cardiovascular Drugs in Children

Inotropes and Vasopressors
  • Charlotte Steinberg
  • Daniel A. Notterman
Review Article Clinical Pharmacokinetics in Special Populations

Summary

Infants and children with congenital or acquired heart disease and children with systemic disease often require pharmacological support of their failing circulation. Catecholamines may serve as inotropic (enhance myocardial contractility) or vasopressor (elevate systemic vascular resistance) agents. Noncatecholamine inotropic agents, such as the cardiac glycosides or the bipyridines, may be used in place of, or in addition to, catecholamines.

Developmental changes in neonates, infants and children will affect the response to inotropic or pressor therapy. Maturation of the gastrointestinal tract, liver and kidneys alters absorption, metabolism and elimination of drugs, although there are few clear examples of this among the vasoactive drugs considered in this review. Changes in body composition affect the volume of distribution (Vd) and clearance (CL) of drugs. Developmentally based pharmacodynamic differences also affect the responses to both therapeutic and toxic effects of inotropes. These pharmacodynamic differences are based in part upon developmental changes in myocardial structure, cardiac innervation and adrenergic receptor function. For example, the immature myocardium has fewer contractile elements and therefore a decreased ability to increase contractility; it also responds poorly to standard techniques of manipulating preload.

Available data suggest that dopamine and dobutamine pharmacokinetics are similar to those in adults. Wide interindividual variability has been noted. A consistent relationship between CL and age has not been demonstrated, although one investigator demonstrated an almost 2-fold increase in the CL of dopamine in children under the age of 2 years. The CL of dopamine appears to be reduced in children with renal and hepatic failure. Fewer data are available regarding the pharmacokinetics of epinephrine (adrenaline), norepinephrine (noradrenaline) and isoprenaline (isoproterenol).

Digoxin pharmacokinetics have been extensively evaluated in infants and children. The Vd for digoxin is increased in infants and children. Children beyond the neonatal period display increased CL of digoxin, approaching adult values during puberty. Although it was previously thought that children both needed and tolerated higher serum concentrations of digoxin than adults, more recent studies indicate that adequate clinical response can be achieved with serum concentrations similar to those aimed for in adults, with decreased toxicity. Evaluation of studies of digoxin pharmacokinetics is complicated by the presence of an endogenous substance with digoxin-like activity on radioimmunoassay.

Limited studies of amrinone pharmacokinetics in infants and children indicate a dramatically larger Vd, and a decreased elimination half-life in older infants and children, compared with values observed in adults.

Keywords

Dopamine Epinephrine Catecholamine Adis International Limited Digoxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heiman G. Enteral absorption and bioavailability in children in relation to age. Eur. J Clin Pharmacol 1980; 18: 43–50CrossRefGoogle Scholar
  2. 2.
    Kearns GL, Reed MD. Clinical pharmacokinetics in infants and children: A reappraisal. Clin Pharmacokinet 1989; 17 Suppl. 1: 29–67PubMedCrossRefGoogle Scholar
  3. 3.
    Danon A, Sapira JD. Binding of catecholamines to human serum albumin. J Pharmacol Exp Ther 1972; 182: 295–302PubMedGoogle Scholar
  4. 4.
    Banner Jr W, Vernon DD, Dean JM, et al. Nonlinear dopamine pharmacokinetics in pediatric patients. J Pharmacol Exp Ther 1989; 249: 131–3PubMedGoogle Scholar
  5. 5.
    Notterman, D. Pediatric pharmacotherapy. In: Chernow B, editor. The pharmacologic approach to the critically ill patient. Baltimore: Williams and Wilkins, 1994: 139–55Google Scholar
  6. 6.
    Besunder JB, Reed MD, Blumer JL. Principles of drug biodisposition in the neonate: a critical evaluation of the pharmacokinetic-pharmacodynamic interface (Part 1). Clin Pharmacokinet 1988; 14: 189–216PubMedCrossRefGoogle Scholar
  7. 7.
    Garson A. Medicolegal problems in the management of cardiac arrhythmias in children. Pediatrics 1987; 79: 4–8Google Scholar
  8. 8.
    Epstein ML, Kiel EA, Victorica BE. Cardiac decompensation following verapamil therapy in infants with supraventricular tachycardia. Pediatrics 1985; 75: 737–40PubMedGoogle Scholar
  9. 9.
    Radford D. Side-effects of verapamil in infants. Arch Dis Child 1983; 58: 465–6PubMedCrossRefGoogle Scholar
  10. 10.
    Garland JS, Berens RJ, Losek JD, et al. An infant fatality following verapamil therapy for supraventricular tachycardia: Cardiovascular collapse following intravenous verapamil. Pediatr Emerg Care 1985; 1(4): 198–200PubMedCrossRefGoogle Scholar
  11. 11.
    Kopin IJ. Plasma levels of catecholamines and dopamine-β-hydroxylase. In: Trendelenburg U, Weiner N, editors. Catecholamines II. Berlin: Springer-Verlag, 1986: 211–75Google Scholar
  12. 12.
    Stein H, Kotaro O, Martinez A, et al. Plasma epinephrine appearance and clearance rates in fetal and newborn sheep. Am J Physiol 1993; 265 (Regulatory Integrative Comp Physiol 34): R756–60PubMedGoogle Scholar
  13. 13.
    Eliot RJ, Lam R, Leake RD, et al. Plasma catecholamine concentrations in infants at birth and during the first 48 hours of life. J Pediatr 1980; 96: 311–5PubMedCrossRefGoogle Scholar
  14. 14.
    Sumikawa K, Hayashi Y, Yamatodani A, et al. Contribution of the lungs to the clearance of exogenous dopamine in humans. Anesth Analg 1991; 72: 662–6CrossRefGoogle Scholar
  15. 15.
    Russel WJ, Frewin DB, Jonsson JR. Pulmonary extraction of catecholamines in critically ill patients. Anaesth Intensive Care 1982; 10: 319–23Google Scholar
  16. 16.
    Iverson LL. The uptake of catechol amines at high perfusion concentrations in the rat isolated heart: A novel catechol amine uptake process. Br J Pharmacol 1965; 25: 18–33Google Scholar
  17. 17.
    Trendelenburg U. The extraneuronal uptake and metabolism of catecholamines in the heart. In: Paton DM, editor. The mechanism of neuronal and extraneuronal transport of catecholamines. New York: Raven Press, 1976Google Scholar
  18. 18.
    Perloff WH. Physiology of the heart and circulation. In: Swedlow DB, Raphaely RC, editors. Cardiovascular problems in pediatric critical care. New York: Livingstone, 1986: 1–86Google Scholar
  19. 19.
    Legato MJ. Cellular mechanisms of normal growth in the mammalian heart. I. Qualitative and quantitative features of ventricular architecture in the dog from birth to five months of age. Circ Res 1979; 44: 250–62PubMedCrossRefGoogle Scholar
  20. 20.
    Reinhardt D, Zehmisch T, Becker B, et al. Age dependency of α and β adrenoreceptor on thrombocytes and lymphocytes of asthmatic and non-asthmatic children. Eur J Pediatr 1984; 142: 111–6PubMedCrossRefGoogle Scholar
  21. 21.
    Roan Y, Galant SP. Decreased neutrophil β adrenergic receptors in the neonate. Pediatr Res 1982; 16: 591–3PubMedCrossRefGoogle Scholar
  22. 22.
    Rockson SG, Homey CJ, Quinn P, et al. Cellular mechanisms of impaired adrenergic responsiveness in neonatal dogs. J Clin Invest 1981; 67: 319–27PubMedCrossRefGoogle Scholar
  23. 23.
    Driscoll DJ. Use of inotropic and chronotropic agents in neonates. Clin Perinatol 1987; 14(4): 931–49PubMedGoogle Scholar
  24. 24.
    Geis WP, Tatooles CJ, Priola DV, et al. Factors influencing neurohumoral control of the heart in the newborn dog. Am J Physiol 1975; 228: 1685–9PubMedGoogle Scholar
  25. 25.
    Orlowski JP, Porembka DT, Gallagher JM, et al. Comparison study of intraosseous, central intravenous, and peripheral intravenous infusions of emergency drugs. Am J Dis Child 1990; 144: 112–7PubMedGoogle Scholar
  26. 26.
    Warren DW, Kissoon N, Mattar A, et al. Pharmacokinetics from multiple intraosseous and peripheral intravenous site injections in normovolemic and hypovolemic pigs. Crit Care Med 1994; 22: 838–43PubMedCrossRefGoogle Scholar
  27. 27.
    Welik R, LaGana GM. Successful ET administration of atropine. Ann Emerg Med 1983; 12: 516PubMedCrossRefGoogle Scholar
  28. 28.
    Greenberg MI, Mayeda DV, Chrzanowski R, et al. Endotracheal administration of atropine sulfate. Ann Emerg Med 1982; 11: 546–8PubMedCrossRefGoogle Scholar
  29. 29.
    Prengel AW, Lindner KH, Hähnel J, et al. Endotracheal and endobronchial lidocaine administration: Effect on plasma lidocaine concentration and blood gases. Crit Care Med 1991; 19: 911–5PubMedCrossRefGoogle Scholar
  30. 30.
    Greenberg MI, Roberts JR, Baskin SI. Endotracheal naloxone reversal of morphine-induced respiratory depression in rabbits. Ann Emerg Med 1980; 9(6): 289–92PubMedCrossRefGoogle Scholar
  31. 31.
    Basar WC, Ward JT, Oher EJ. Blood levels of diazepam after endotracheal administration in dogs. Ann Emerg Med 1982; 11: 242–7CrossRefGoogle Scholar
  32. 32.
    Redding JS, Asuncion JS, Pearson JW. Effective routes of drug administration during cardiac arrest. Anesth Analg 1967; 46(2): 253–8PubMedCrossRefGoogle Scholar
  33. 33.
    Greenberg MI, Roberts JR, Baskin SI. Use of endotracheally administered epinephrine in a pediatric patient. Am J Dis Child 1981; 135: 767–8PubMedGoogle Scholar
  34. 34.
    Lindemann R. Endotracheal administration of epinephrine during cardiopulmonary resuscitation [letter]. Am J Dis Child 1982; 136: 753PubMedGoogle Scholar
  35. 35.
    Polin K, Harper Brown D, Leikin JB. Endotracheal administration of epinephrine and atropine. Pediatr Emerg Care 1986; 2(3): 168–9PubMedCrossRefGoogle Scholar
  36. 36.
    Lindemann R. Resuscitation of the newborn: Endotracheal administration of epinephrine. Acta Paediatr Scand 1984; 73: 210–2PubMedCrossRefGoogle Scholar
  37. 37.
    Roberts JR, Greenberg MI, Knaub M, et al. Blood levels following intravenous and endotracheal epinephrine administration. J Am Coll Emerg Phys 1979; 8(2): 53–6CrossRefGoogle Scholar
  38. 38.
    Roberts JR, Greenberg MI, Knaub M, et al. Comparison of the pharmacologic effects of epinephrine administered by the intravenous and endotracheal routes. J Am Coll Emerg Phys 1978; 7(7): 260–4CrossRefGoogle Scholar
  39. 39.
    Chernow B, Holbrook P, D’Angona DS, et al. Epinephrine absorption after intratracheal administration. Anesth Analg 1984; 63: 829–32PubMedCrossRefGoogle Scholar
  40. 40.
    Schüttler J, Hörnchen U, Stoeckel H. Pharmacokinetics and -dynamics of epinephrine administered endobronchially. Anesthesiology 1985; 63(3A): A117CrossRefGoogle Scholar
  41. 41.
    Mazkereth R, Paret G, Ezra D, et al. Epinephrine blood concentrations after peripheral bronchial versus endotracheal administration of epinephrine in dogs. Crit Care Med 1992; 20(11): 1582–7PubMedCrossRefGoogle Scholar
  42. 42.
    Greenberg MI, Spivey W. A comparison of deep versus shallow administration of ET dionosil in dogs and the effect of forced manual hyperventilation. Ann Emerg Med 1983; 12: 242CrossRefGoogle Scholar
  43. 43.
    Jasani MS, Nadkarni VM, Finkelstein MS, et al. Effects of different techniques of endotracheal epinephrine administration in pediatric porcine hypoxic-hypercarbic cardiopulmonary arrest. Crit Care Med 1994; 22: 1174–80PubMedCrossRefGoogle Scholar
  44. 44.
    Quinton DN, O’Byrne G, Aitkenhead AR. Comparison of the endotracheal and peripheral intravenous adrenaline in cardiac arrest: is the endotracheal route reliable? Lancet 1987; 1: 828–9PubMedCrossRefGoogle Scholar
  45. 45.
    Emergency Cardiac Care Committee and Subcommittees, American Heart Association. Guidelines for cardiopulmonary resuscitation and emergency cardiac care. JAMA 1992; 268: 2172–299CrossRefGoogle Scholar
  46. 46.
    Nahata MC, Powell DA, Durrell DE, et al. Effect of infusion methods on tobramycin serum concentrations in newborn infants. J Pediatr 1984; 104: 136–8PubMedCrossRefGoogle Scholar
  47. 47.
    Leff RD, Roberts RJ. Methods for intravenous drug administration in the pediatric patient. J Pediatr 1981; 98: 631–5PubMedCrossRefGoogle Scholar
  48. 48.
    Roberts RJ. Intravenous administration of medication in pediatric patients: problems and solutions. Pediatr Clin North Am 1981; 28: 23–34PubMedGoogle Scholar
  49. 49.
    Gould T, Roberts RJ. Therapeutic problems arising from the use of the intravenous route for drug administration. J Pediatr 1979; 95: 465–71PubMedCrossRefGoogle Scholar
  50. 50.
    Nahata MC. Influence of infusion methods on therapeutic drug monitoring in pediatric patients. Drug Intell Clin Pharm 1986; 20: 367–9PubMedGoogle Scholar
  51. 51.
    Berman Jr W, Whitman V, Marks KH, et al. Inadvertent over administration of digoxin to low-birth-weight infants. J Pediatr 1978; 92: 1024–5PubMedCrossRefGoogle Scholar
  52. 52.
    Schulze KF, Graff M, Schimmel MS, et al. Physiologic oscillations produced by an infusion pump. J Pediatr 1983; 103(5): 796–8PubMedCrossRefGoogle Scholar
  53. 53.
    Leff RD, Roberts RJ. Problems in drug therapy for pediatric patients. Am J Hosp Pharm 1987; 44: 865–70PubMedGoogle Scholar
  54. 54.
    Hurlbut JC, Thompson A, Reed MD, et al. Influence of infusion pumps on the pharmacologic response to nitroprusside. Crit Care Med 1991; 19: 98–101PubMedCrossRefGoogle Scholar
  55. 55.
    Klem SA, Farrington JM, Leff RD. Influence of infusion pump operation and flow rate on hemodynamic stability during epinephrine infusion. Crit Care Med 1993; 21(8): 111. 213-7CrossRefGoogle Scholar
  56. 56.
    Stull JC, Erenberg A, Leff RD. Flow rate variability from electronic infusion devices. Crit Care Med 1988; 16: 888–91PubMedCrossRefGoogle Scholar
  57. 57.
    Rooke GA, Bowdle TA. Syringe pumps for infusion of vasoactive drugs: mechanical idiosyncrasies and recommended operating procedures. Anesth Analg 1994; 78: 150–6PubMedCrossRefGoogle Scholar
  58. 58.
    Notterman DA, Greenwald BM, Moran F, et al. Dopamine clearance in critically ill infants and children: effect of age and organ system dysfunction. Clin Pharmacol Ther 1990; 48: 138–47PubMedCrossRefGoogle Scholar
  59. 59.
    Engelman K, Portnoy B. Sensitive double-isotope derivative assay for norepinephrine and epinephrine. Circ Res 1970; 26: 53–7PubMedCrossRefGoogle Scholar
  60. 60.
    Passon PG, Peuler JD. A simplified radiometric assay for plasma norepinephrine and epinephrine. Anal Biochem 1973; 51: 518–631CrossRefGoogle Scholar
  61. 61.
    Kennedy B, Ziegler MG. A more sensitive and specific radioenzymatic assay for catecholamines. Life Sci 1990; 47: 2143–53PubMedCrossRefGoogle Scholar
  62. 62.
    Ewy GA, Plachetka JR. Dopamine and dobutamine: Pharmacology and use in advanced heart failure. In: Ewy GA, Bressler R, editors. Cardiovascular drugs and the management of heart disease. New York: Raven Press, 1992: 65–82Google Scholar
  63. 63.
    Bhatt-Mehta V, Nahata MC, McClead RE, et al. Dopamine pharmacokinetics in critically ill newborn infants. Eur J Clin Pharmacokinet 1991; 40: 593–7Google Scholar
  64. 64.
    Perez CA, Reimer JM, Schreiber MD, et al. Effect of high dose dopamine on urine output in newborn infants. Crit Care Med 1986; 14: 1045–9PubMedCrossRefGoogle Scholar
  65. 65.
    Park IS, Michael LH, Driscoll DJ. Comparative response of the developing canine myocardium to inotropic agents. Am J Physiol 1982; 242: H13–8PubMedGoogle Scholar
  66. 66.
    Driscoll DJ, Fukushige J, Hartley CJ, et al. The comparative hemodynamic effects of isoproterenol in chronically instrumented puppies and adult dogs. Dev Pharmacol Ther 1981; 2: 91–103PubMedGoogle Scholar
  67. 67.
    Friedman WF. The intrinsic physiologic properties of the developing heart. In: Friedman WF, Lesch M, Sonneblick EH, editors. Neonatal heart disease. New York: Grune and Stratton, 1973Google Scholar
  68. 68.
    Driscoll DJ, Gillette PC, Ezrailson EG, et al. Inotropic response of the neonatal canine myocardium to dopamine. Pediatr Res 1978; 12: 42–5PubMedCrossRefGoogle Scholar
  69. 69.
    Zaritsky A, Chernow B. Use of catecholamines in pediatrics. J Pediatr 1984; 105: 341–50PubMedCrossRefGoogle Scholar
  70. 70.
    Goodall McC, Alton H. Dopamine (3-hydroxy-tyramine) replacement in metabolism in sympathetic nerve and adrenal medullary depletions after prolonged thermal injury. J Clin Invest 1969; 48: 1761–7PubMedCrossRefGoogle Scholar
  71. 71.
    Tyce GM, Van Dyke RA, Rettke SR, et al. Human liver and conjugation of catecholamines. J Lab Clin Med 1987; 109: 532–7PubMedGoogle Scholar
  72. 72.
    Fisher DG, Schwartz PH, Davis AL. Pharmacokinetics of exogenous epinephrine in critically ill children. Crit Care Med 1993; 21: 111–7PubMedCrossRefGoogle Scholar
  73. 73.
    Padbury JF, Youtaro A, Baylen BG, et al. Dopamine pharmacokinetics in critically ill newborn infants. J Pediatr 1987; 110: 293–8PubMedCrossRefGoogle Scholar
  74. 74.
    Eldadah MK, Schwartz PH, Harrison R, et al. Pharmacokinetics of dopamine in infants and children. Crit Care Med 1991; 19(8): 1008–11PubMedCrossRefGoogle Scholar
  75. 75.
    Zaritsky A, Lotze A, Stull R, et al. Steady-state dopamine clearance in critically ill infants and children. Crit Care Med 1988; 16(3): 217–20PubMedCrossRefGoogle Scholar
  76. 76.
    Jarnberg PO, Bengtsson L, Edstrand J, et al. Dopamine infusion in man. Plasma catecholamine levels and pharmacokinetics. Acta Anaesthesiol Scand 1981; 25: 328–31PubMedCrossRefGoogle Scholar
  77. 77.
    Perkin RM, Levin DL. Dobutamine: a hemodynamic evaluation in children with shock. J Pediatr 1982; 100: 977–83PubMedCrossRefGoogle Scholar
  78. 78.
    Berg RA, Donnerstein RL, Padbury JF. Dobutamine infusions in stable, critically ill children: Pharmacokinetics and hemodynamic actions. Critical Care Medicine 1993; 21: 678–86PubMedCrossRefGoogle Scholar
  79. 79.
    Leier CV, Unverferth DV, Kates RE. The relationship between plasma dobutamine concentrations and cardiovascular responses in cardiac failure. Am J Med 1979; 66: 238–42PubMedCrossRefGoogle Scholar
  80. 80.
    Martinez AM, Padbury JF, Thio S. Dobutamine pharmacokinetics and cardiovascular responses in critically ill neonates. Pediatrics 1992; 89: 47–51PubMedGoogle Scholar
  81. 81.
    Berg RA, Padbury JF, Donnerstein RL, et al. Dobutamine pharmacokinetics and pharmacodynamics in normal children and adolescents. J Pharmacol Exp Ther 1993; 265(3): 1232–8PubMedGoogle Scholar
  82. 82.
    Habib DM, Padbury JF, Anas NG, et al. Dobutamine pharmacokinetics and pharmacodynamics in pediatric intensive care patients. Crit Care Med 1992; 20: 601–8PubMedCrossRefGoogle Scholar
  83. 83.
    Kates R, Leier CV. Dobutamine pharmacokinetics in severe heart failure. Clin Pharmacol Ther 1978; 24: 537–41PubMedGoogle Scholar
  84. 84.
    Murphy P, Williams T, Kau D. Disposition of dobutamine in the dog. J Pharmacol Exp Ther 1976; 199: 423–31PubMedGoogle Scholar
  85. 85.
    Schwartz PH, Eldadah MK, Newth CJL. The pharmacokinetics of dobutamine in pediatric intensive care unit patients. Drug Metab Dispos 1991; 19: 614–9PubMedGoogle Scholar
  86. 86.
    Banner Jr W, Vernon DD, Minton SD, et al. Nonlinear dobutamine pharmacokinetics in a pediatric population. Crit Care Med 1991; 19: 871–3PubMedCrossRefGoogle Scholar
  87. 87.
    Notterman D, Metakis L, Steinberg C. Isoproterenol pharmacokinetics in children with status asthmaticus: pronounced β-adrenergic receptor desensitization [abstract 185]. Pediatr Res 1992; 31 (4 Pt 2): 33AGoogle Scholar
  88. 88.
    Reyes G, Schwartz PH, Newth CJL, et al. The pharmacokinetics of isoproterenol in critically ill pediatric patients. J Clin Pharmacol 1993; 33: 29–34PubMedGoogle Scholar
  89. 89.
    Parry WH, Martorano F, Cotton EK. Management of life-threatening asthma with intravenous isoproterenol infusions. Am J Dis Child 1976; 130: 39–42PubMedGoogle Scholar
  90. 90.
    Kurland G, Williams J, Lewiston NJ. Fatal myocardial toxicity during continuous infusion intravenous isoproterenol therapy of asthma. J Allergy Clin Immunol 1979; 63: 407–11PubMedCrossRefGoogle Scholar
  91. 91.
    Matson JR, Loughlin GM, Strunk RC. Myocardial ischemia complicating the use of isoproterenol in asthmatic children. J Pediatr 1978; 92: 776–8PubMedCrossRefGoogle Scholar
  92. 92.
    Conolly ME, Davies DS, Dollery CT, et al. Metabolism of isoprenaline in dog and man. Br J Pharmacol 1972; 46: 458–72PubMedCrossRefGoogle Scholar
  93. 93.
    Conway WD, Minatoya H, Lands AM, et al. Absorption and elimination profile of isoproterenol III. J Pharm Sci 1968; 57: 1135–41PubMedCrossRefGoogle Scholar
  94. 94.
    Best JD, Halter JB. Release and clearance rates of epinephrine in man: Importance of arterial measurements. J Clin Endocrinol Metab 1982; 55: 263–8PubMedCrossRefGoogle Scholar
  95. 95.
    Clutter WE, Bier DM, Shah SD, et al. Epinephrine plasma metabolic clearance rates and physiologic thresholds for metabolic and hemodynamic actions in man. J Clin Invest 1980; 66: 94–101PubMedCrossRefGoogle Scholar
  96. 96.
    Desjars P, Pinaud M, Potel G, et al. A reappraisal of norepinephrine therapy in human septic shock. Crit Care Med 1987; 15: 134–7PubMedCrossRefGoogle Scholar
  97. 97.
    Cryer PE. Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med 1980; 303: 436–44PubMedCrossRefGoogle Scholar
  98. 98.
    Weiner N. Norepinephrine, epinephrine, and the sympathomimetic amines. In: Gilman AG, Goodman LS, Rall TW, et al., editors. The pharmacologic basis of therapeutics, 7th ed. New York: Macmillan, 1985: 145–80Google Scholar
  99. 99.
    Boakes AJ, Laurence DR, Teoh PC, et al. Interactions between sympathomimetic amines and antidepressant agents in man. BMJ 1973; 1: 311–5PubMedCrossRefGoogle Scholar
  100. 100.
    Elis J, Laurence DR, Mattie H, et al. Modification by monoamine oxidase inhibitors of the effect of some sympathomimetics on blood pressure. BMJ 1967; 2: 75–8PubMedCrossRefGoogle Scholar
  101. 101.
    Sjoqvist F. Psychotropic drugs (2). Interaction between monoamine oxidase (MAO) inhibitors and other substances. Proc R Soc Med 1965; 58: 967–78PubMedGoogle Scholar
  102. 102.
    Horwitz D, Goldberg LI, Sjoerdsma A. Increased blood pressure responses to dopamine and norepinephrine produced by monoamine oxidase inhibitors in man. J Lab Clin Med 1960; 56: 747–53PubMedGoogle Scholar
  103. 103.
    Houben H, Thien T, van’t Laar A. Effect of low-dose epinephrine infusion on hemodynamics after selective and nonselective β-blockade in hypertension. Clin Pharmacol Ther 1982; 31(6): 685–90PubMedCrossRefGoogle Scholar
  104. 104.
    Reeves RA, Boer WH, DeLeve L, et al. Nonselective beta-blockade enhances pressor responsiveness to epinephrine, norepinephrine, and angiotensin II in normal man. Clin Pharmacol Ther 1984; 35: 461–6PubMedCrossRefGoogle Scholar
  105. 105.
    Newman BR, Schultz LK. Epinephrine-resistant anaphylaxis in a patient taking propranolol hydrochloride. Ann Allergy 1981; 47: 35–7PubMedGoogle Scholar
  106. 106.
    Johnston RR, Eger II EI, Wilson C. A comparative interaction of epinephrine with enflurane, isoflurane and halothane in man. Anesth Analg 1976; 55: 709–12PubMedCrossRefGoogle Scholar
  107. 107.
    Hirsch IA, Zauder HL. Chloral hydrate: A potential cause of arrhythmias. Anesth Analg 1986; 65: 691–2PubMedGoogle Scholar
  108. 108.
    Wettrell G, Andersson KE. Pharmacokinetics of digoxin in infants. Clin Pharmacokinet 1977; 2: 17–31PubMedCrossRefGoogle Scholar
  109. 109.
    Iisalo E. Clinical Pharmacokinetics of Digoxin. Clin Pharmacokinet 1977; 2: 1–16PubMedCrossRefGoogle Scholar
  110. 110.
    Lindenbaum J, Mellow MH, Blackstone MO, et al. Variation in biologic availability of digoxin from four preparations. N Engl J Med 1971; 285: 1344–7PubMedCrossRefGoogle Scholar
  111. 111.
    Hernandez A, Burton RM, Pagtakhan RD, et al. Pharmacodynamics of 3H-digoxin in infants. Pediatrics 1969; 44: 418–28PubMedGoogle Scholar
  112. 112.
    Wettrell G, Andersson KE. Absorption of digoxin in infants. Eur J Clin Pharmacol 1975; 9: 44–55CrossRefGoogle Scholar
  113. 113.
    Larese RJ, Mirkin BL. Kinetics of digoxin absorption and relation of serum levels to cardiac arrhythmias in children. Clin Pharmacol Ther 1974; 15: 387–69PubMedGoogle Scholar
  114. 114.
    Dobkin JF, Saha JR, Butler VP, et al. Digoxin-inactivating bacteria: Identification in human gut flora. Science 1983; 220: 325–7CrossRefGoogle Scholar
  115. 115.
    Linday LA, Dobkin JF, Wang TC, et al. Digoxin inactivation by the gut flora in infancy and childhood. Pediatrics 1987; 79: 544–8PubMedGoogle Scholar
  116. 116.
    Greenblatt DJ, Duhme DW, Koch-Weser J, et al. Evaluation of digoxin bioavailability in single-dose studies. N Engl J Med 1973; 289: 651–4PubMedCrossRefGoogle Scholar
  117. 117.
    Dohlemann C, Buhlmeyer K. Ergebnisse vergleichender oraler und intravenoser Digitalis-Therapie bei Saulgingen. Monatsschr Kinderheilkd 1972; 120: 458–61PubMedGoogle Scholar
  118. 118.
    Oliver GG, Taxman R, Frederickson R. Influence of congestive heart failure on digoxin blood levels. In: Storstein O, Nitter-Hauge S, Storstein L, editors. Symposium on digitalis, Oslo, Norway. Oslo: Gyldendal Norsk Forlag, 1973: 336–47Google Scholar
  119. 119.
    Rietbrock N, Woodcock BG. Pharmacokinetics of digoxin and derivatives. In: Greef K, editor. Cardiac glycosides: pharmacokinetics and clinical pharmacology. Berlin: Springer-Verlag, 1981: 31–56Google Scholar
  120. 120.
    Wettrell G. Distribution and elimination of digoxin in infants. Eur J Clin Pharmacol 1977; 11: 329–35PubMedCrossRefGoogle Scholar
  121. 121.
    Morselli PL, Assael BM, Gomeni R, et al. Digoxin pharmacokinetics during human development. In: Morselli PL, Garatini S, Sereni F, editors. Basic and therapeutic aspects of perinatal pharmacology. New York: Raven Press, 1975: 377–92Google Scholar
  122. 122.
    Andersson KE, Nyberg L, Dencker H, et al. Absorption of digoxin in man after oral and intrasigmoid administration studied by portal vein catheterization. Eur J Clin Pharmacol 1975; 9: 39–47PubMedCrossRefGoogle Scholar
  123. 123.
    Lang D, von Bernuth G. Serum concentration and serum half-life of digoxin in premature and mature newborns. Pediatrics 1977; 59: 902–6PubMedGoogle Scholar
  124. 124.
    Iisalo E, Dahl M. Serum levels and renal excretion of digoxin during maintenance therapy in children. Acta Paediatr Scand 1974; 63: 699–704PubMedCrossRefGoogle Scholar
  125. 125.
    Yanagi R, Kim WP, Krasula RW, et al. Urinary excretion of digoxin in infants and children [abstract 484]. Circulation 1974; 123 Suppl. 3: 123: 49–50Google Scholar
  126. 126.
    Halkin H, Radomsky M, Millman P, et al. Steady state serum concentrations and renal clearance of digoxin in neonates, infants, and children. Eur J Clin Pharmacol 1978; 13: 113–7PubMedCrossRefGoogle Scholar
  127. 127.
    Linday LA, Engle MA, Reidenberg MM. Maturation and renal digoxin clearance. Clin Pharmacol Ther 1981; 30: 735–8PubMedCrossRefGoogle Scholar
  128. 128.
    Koren G. Clinical pharmacokinetic significance of the renal tubular secretion of digoxin. Clin Pharmacokinet 1987; 13: 334–43PubMedCrossRefGoogle Scholar
  129. 129.
    Park MK. Use of digoxin in infants and children with specific emphasis on dosage. J Pediatr 1986; 108: 871–7PubMedCrossRefGoogle Scholar
  130. 130.
    Boerth RC. Decreased sensitivity of newborn myocardium to the positive inotropic effects of ouabain. In: Morselli PL, Garatini S, Sereni F, editors. Basic and therapeutic aspects of perinatal pharmacology. New York: Raven Press, 1975: 191–9Google Scholar
  131. 131.
    Levy AM, Leaman DM, Hanson JS. Effects of digoxin on systolic time intervals of neonates and infants. Circulation 1972; 46: 816–23PubMedCrossRefGoogle Scholar
  132. 132.
    Park MK, Ludden T, Arom KV, et al. Myocardial vs serum digoxin concentrations in infants and adults. Am J Dis Child 1982; 136: 418–20PubMedGoogle Scholar
  133. 133.
    Halkin H, Radomsky M, Blieden L, et al. Steady state serum digoxin concentration in relation to digitalis toxicity in neonates and infants. Pediatrics 1978; 61: 184–8PubMedGoogle Scholar
  134. 134.
    Valdes Jr R, Graves SW, Brown BA, et al. Endogenous substance in newborn infants causing false positive digoxin measurements. J Pediatr 1983; 102: 947–50PubMedCrossRefGoogle Scholar
  135. 135.
    Phelps SJ, Kamper CA, Bottorff MB, et al. Effect of age and serum creatinine on endogenous digoxin-like substances in infants and children. J Pediatr 1987; 110: 136–9PubMedCrossRefGoogle Scholar
  136. 136.
    Alousi A, Farah A, Lesher G, et al. Cardiotonic activity of amrinone-WIN 40680 (5-amino-3,4′-bipyridine-6-(IH)-one). Circ Res 1979; 45: 666–77PubMedCrossRefGoogle Scholar
  137. 137.
    Hayes J, Bowling N, Boden G, et al. Molecular basis for the cardiovascular activities of amrinone and AR-L57. J Pharmacol Exp Ther 1984; 230: 124–32PubMedGoogle Scholar
  138. 138.
    Mancini D, LeJemtel T, Sonnenblick E. Intravenous use of amrinone for the treatment of the failing heart. Am J Cardiol 1985; 56: 8B–15BPubMedCrossRefGoogle Scholar
  139. 139.
    Edelson H, LeJemtel TH, Alousi AA, et al. Relationship between amrinone plasma concentration and cardiac index. Clin Pharmacol Ther 1981; 29(6): 723–8PubMedCrossRefGoogle Scholar
  140. 140.
    Hamilton RA, Kowalsky SF, Wright EM, et al. Effect of the acetylator phenotype on amrinone pharmacokinetics. Clin Pharmacol Ther 1986; 40: 615–9PubMedCrossRefGoogle Scholar
  141. 141.
    Kullberg MP, Freeman GB, Biddlecome C, et al. Amrinone metabolism. Clin Pharmacol Ther 1981; 29: 394–401PubMedCrossRefGoogle Scholar
  142. 142.
    Ward A, Brogden RN, Heel RC, et al. Amrinone: a preliminary review of it pharmacological properties and therapeutic use. Drugs 1983; 26: 468–502PubMedCrossRefGoogle Scholar
  143. 143.
    Lawless S, Burckart G, Diven W, et al. Amrinone pharmacokinetics in neonates and infants. J Clin Pharmacol 1988; 28: 283–4PubMedGoogle Scholar
  144. 144.
    Lawless S, Burckart G, Diven W, et al. Amrinone in neonates and infants after cardiac surgery. Crit Care Med 1989; 17(8): 751–4PubMedCrossRefGoogle Scholar
  145. 145.
    Allen-Webb EM, Ross MP, Pappas JB, et al. Age-related amrinone pharmacokinetics in a pediatric population. Crit Care Med 1994; 22: 1016–24PubMedCrossRefGoogle Scholar
  146. 146.
    Neal W, Pierpoint M. Effect of amrinone on cardiac function in children with severe congestive heart failure[abstract175]. Pediatr Res 1981; 15: 469CrossRefGoogle Scholar
  147. 147.
    Coe J, Olley P, Vella G, et al. Bipyridine derivatives lower arteriolar resistance and improve left ventricular function in newborn lambs. Pediatr Res 1987; 22: 422–8PubMedCrossRefGoogle Scholar
  148. 148.
    Binah O, Sodowick B, Vulliemox Y. The inotropic effects of amrinone and milrinone on neonatal and young canine cardiac muscle. Circulation 1986; 73 Suppl. 3: 46–51Google Scholar
  149. 149.
    Ross-Ascuitto N, Ascuitto R, Chen V, et al. Negative inotropic effects of amrinone in the neonatal piglet heart. Circ Res 1987; 61(6): 847–52PubMedCrossRefGoogle Scholar
  150. 150.
    Binah O, Legato MJ, Danilo P, et al. Developmental changes in the cardiac effects of amrinone in the dog. Circ Res 1983; 52: 747–52PubMedCrossRefGoogle Scholar
  151. 151.
    Wilmshurst PT, Al-Hasani SFA, Semple MJ, et al. The effects of amrinone on platelet count, survival, and function in patients with congestive cardiac failure. Br J Clin Pharmacol 1984; 17: 317–24PubMedCrossRefGoogle Scholar
  152. 152.
    Ross MP, Allen-Webb EM, Pappas JB, et al. Amrinone-associated thrombocytopenia: pharmacokinetic analysis. Clin Pharmacol Ther 1993; 53: 661–7PubMedCrossRefGoogle Scholar
  153. 153.
    Wilmshurst PT, Webb-Peploe MM. Side effects of amrinone therapy. Br Heart J 1983; 49: 447–51CrossRefGoogle Scholar

Copyright information

© Adis International Limited 1994

Authors and Affiliations

  • Charlotte Steinberg
    • 1
  • Daniel A. Notterman
    • 1
  1. 1.Departments of Pediatrics and PharmacologyThe New York Hospital - Cornell Medical CollegeNew YorkUSA

Personalised recommendations