Advertisement

Clinical Pharmacokinetics

, Volume 23, Issue 2, pp 161–168 | Cite as

Clinical Pharmacokinetics of α1-Antitrypsin in Homozygous PiZ Deficient Patients

  • Jacques Constans
  • Pierre Carles
  • Andrèe Boneu
  • Jacques Arnaud
  • Ala Eldin Tufenkji
  • Marie-Christine Pujazon
  • Catherine Tavera
Original Research Article

Summary

A pharmacokinetic study of α1-antitrypsin (ATT) was performed in 2 groups of homozygous PiZ-deficient patients (treated and untreated) and 1 group of healthy volunteers. The distribution of the 131I-labelled protein corresponds to a 3-compartment model. The intravenously administered protein diffused quickly to the extravascular compartment where some retention occurred. No significant difference in AAT metabolism was observed between the 3 groups.

The half-life of the injected protein is slightly longer than 2.5 days. The AAT protein was not stored. These results confirm the observations collected during the clinical trials. That is, a weekly infusion is necessary to obtain stable serum AAT concentrations. Monthly infusions are unable to maintain a ‘plateau’ phase. The periodicity may be limited to every 2 weeks.

Keywords

Neutrophil Elastase Pulmonary Emphysema American Review Protein Losing Enteropathy Body Scintigraphy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benet LS, Sheiner LZ. Design and optimization of dosage regiments pharmacokinetic data. In Goodman et al. (Eds) The pharmacological basis of therapeutics, pp. 1675–1737, MacMillan, New York, 1980Google Scholar
  2. Bernier JJ, Florent CH, Desmazures CH, Aymes CH, L’Hirondel CH. Diagnosis of protein losing enteropathy by gastrointestinal clearance of alpha-1-antitrypsin. Lancet 2: 763–764, 1978PubMedCrossRefGoogle Scholar
  3. Berson SA, Yalow RS, Schreiber SS, Post J. Tracer experiments with I131 labeled human serum albumin: distribution and degradation studies. Journal of Clinical Investigation 32: 746–768, 1953PubMedCrossRefGoogle Scholar
  4. Bree F, Houin G, Barre J, Moretti JL, Wirquin V, et al. Pharmacokinetics of intravenously administered 125I-labelled human alpha-1-acid glycoprotein. Clinical Pharmacokinetics 11: 336–342, 1986PubMedCrossRefGoogle Scholar
  5. Burnouf T, Constans J, Clerc A, Descamps J, Martinache L, et al. Biochemical and biological properties of an alpha-1-antitrypsin concentrate. Vox Sanguinis 52: 291–297, 1987PubMedCrossRefGoogle Scholar
  6. Burrows B. A clinical trial of efficacy of antiproteolytic therapy: can it be done? American Review of Respiratory Disease 127: 542–543, 1983Google Scholar
  7. Carles P, Constans J, Pujazon MC, Arnaud J, Lauque D, et al. Results of a two-year substitutive treatment of PiZZ emphysema with alpha-1-antitrypsin. Presse Médicale 19: 514–519, 1990Google Scholar
  8. Carlson TH, Simon TL, Atencio AC. In vivo behavior of human radioiodinated antithrombin III: distribution among three physiologic pools. Blood 66: 13–19, 1985PubMedGoogle Scholar
  9. Constans J, Boneu A, Carles P, Tavera C. Deposition in the lung, liver and digestive tract of alpha-1-antitrypsin injected to PiZZ deficient patients observed after total body scintigraphy. European Respiratory Journal 1 (Suppl. 2): 2165, 1988Google Scholar
  10. Constans J, Burnouf TH, Arnaud J, Goudemand M. Replacement therapy in PiZZ deficiency patients by industrial concentrates: determination of the elastase and trypsin inhibitory activities. American Review of Respiratory Disease 135: A275, 1987Google Scholar
  11. Crossley JR, Elliott RB. Simple method for diagnosing protein losing enteropathies. British Medical Journal 284: 428–429, 1977CrossRefGoogle Scholar
  12. Eriksson S. Pulmonary emphysema and alpha-1-antitrypsin deficiency. Acta Medica Scandinavica 175: 197–205, 1964PubMedCrossRefGoogle Scholar
  13. Fagerhol MK, Cox DW. The Pi polymorphism genetic, biochemical and clinical aspects of human alpha-1-antitrypsin. Advances in Human Genetics 11: 1–62, 1981PubMedGoogle Scholar
  14. Fagerhol MK, Laurell CB. The polymorphism of ‘prealbumins’ and alpha-1-antitrypsin in human sera. Clinica Chimica Acta 16: 199–203, 1967CrossRefGoogle Scholar
  15. Gadek JE, Crystal RG. Alpha-1-antitrypsin deficiency. In Stanbury et al. (Eds) The metabolic basis of inherited disease, 5th ed., pp. 1450–1467, McGraw-Hill, New York, 1983Google Scholar
  16. Gadek JE, Fells GA, Zimmerman RL, Rennard SI, Crystal RG. Antielastases of the human alveolar structures: implications for the protease-antiprotease theory of emphysema. Journal of Clinical Investigation 68: 889–898, 1981bPubMedCrossRefGoogle Scholar
  17. Gadek JE, Klein HG, Holland PV, Crystal RG. Replacement therapy of alpha-1-antitrypsin deficiency: reversal of protease-antiprotease imbalance within the alveolar structures of PiZ subjects. Journal of Clinical Investigation 68: 1158–1195, 1981aPubMedCrossRefGoogle Scholar
  18. Garver RJ, Mornex JF, Nukiwa T, Brantly M, Courtney M, et al. Alpha-1-antitrypsin deficiency and emphysema caused by homozygous inheritance of non-expressing alpha-1-antitrypsin genes. New England Journal of Medicine 314: 762–766, 1986PubMedCrossRefGoogle Scholar
  19. Gibaldi M, Perrier D. Pharmacokinetics, 2nd ed., Marcel Dekker Inc., USA, 1982Google Scholar
  20. Gomeni R. Pharm: an interactive graphic programm for individual and population pharmacokinetic parameter estimation. Computers in Biology and Medicine 14: 25–35, 1984PubMedCrossRefGoogle Scholar
  21. Hubbard RC, Brantly ML, Sellers SE, Mitchell ME, Crystal RG. Antineutrophil elastase defenses of the lower respiratory tract in α1-antitrypsin deficiency directly augmented with an aerosol of α1-antitrypsin. Annals of Internal Medicine 111: 206–212, 1989PubMedGoogle Scholar
  22. Hubbard RC, Sellers S, Czerki D, Stephens L, Crystal RG. Biochemical efficacy and safety of monthly augmentation therapy for alpha-1-antitrypsin deficiency. Journal of the American Medical Association 260: 1259–1264, 1988PubMedCrossRefGoogle Scholar
  23. Hutchison DCS. Alpha-1-antitrypsin deficiency and pulmonary emphysema: the role of proteolytic enzymes and their inhibitors. British Journal of Diseases of the Chest 67: 171–196, 1973PubMedCrossRefGoogle Scholar
  24. Hutchison DCS, Tobin MJ, Cook PJL. Alpha-1-antitrypsin deficiency: clinical and physiological features in heterozygotes of Pi type SZ: a survey by the British Thoracic Association. British Journal of Diseases of the Chest 77: 28–34, 1983PubMedCrossRefGoogle Scholar
  25. Janoff A, Sloan B, Weinbaum G, Damiano V, Sandhaus R, et al. Experimental emphysema induced with purified human neutrophil elastase tissue localization of the instilled protease. American Review of Respiratory Disease 115: 461–478, 1977PubMedGoogle Scholar
  26. Janoff A, White R, Carp H, Harel S, Dearing R, et al. Lung injury induced by leukocytic proteases. American Journal of Pathology 97: 111–136, 1979PubMedGoogle Scholar
  27. Janus ED, Phillips NT, Carrell RW. Smoking lung function and alpha-1-antitrypsin deficiency. Lancet 1: 152–154, 1985PubMedCrossRefGoogle Scholar
  28. Kawakami M, Blum CB, Ramakrishnan R, Dell RB, Goodman DS. Turnover of the plasma binding protein for vitamin D and its metabolites in normal human subjects. Journal of Clinical Endocrinology and Metabolism 53: 1110–1116, 1986CrossRefGoogle Scholar
  29. Kueppers F, Black LF. Alpha-1-antitrypsin and its deficiency. American Review of Respiratory Disease 110: 176–194, 1974PubMedGoogle Scholar
  30. Laurell CB, Eriksson S. The electrophoretic alpha-1-globulin pattern of serum in alpha-1-antitrypsin deficiency. Scandinavian Journal of Clinical Investigations 15: 132–140, 1963Google Scholar
  31. Laurell CB. Antigen antibody crossed electrophoresis. Analytical Biochemistry 10: 358–362, 1965PubMedCrossRefGoogle Scholar
  32. Laemmli UK. Cleavage structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685, 1970PubMedCrossRefGoogle Scholar
  33. Morse JO. Alpha-1-antitrypsin deficiency. New England Journal of Medicine 299: 1099–1105, 1978PubMedCrossRefGoogle Scholar
  34. Powers JC, Bengali ZH. Elastase inhibitors for treatment of emphesema. Approaches to synthesis and biological evaluation. Reviews of Respiratory Disease 134: 1097–1100, 1986Google Scholar
  35. Senior RM, Tegner H, Kuhn C, Ohlsson K, Starcher BC, et al. The induction of pulmonary emphysema with human leucocyte elastase. American Review of Respiratory Disease 116: 469–475, 1977PubMedGoogle Scholar
  36. Tallarida RJ, Murray RB. Manual of pharmacologic calculations with computer programs. Springer Verlag Inc., New York, 1981CrossRefGoogle Scholar
  37. Tobin MJ, Cook PJL, Hutchison DCS. Alpha-1-antitrypsin deficiency the clinical and physiological features of pulmonary emphysema in subjects homozygous for Pi type Z. British Journal of Diseases of the Chest 77: 14–27, 1983PubMedCrossRefGoogle Scholar
  38. Wewers MD, Casolaro MA, Crystal RG. Comparison of alpha-1-antitrypsin levels and anti-neutrophil elastase capacity of blood and lung in a patient with the alpha-1-antitrypsin phenotype null-null before and during alpha-1-antitrypsin augmentation therapy. American Review of Respiratory Disease 135: 539–543, 1987PubMedGoogle Scholar

Copyright information

© Adis International Limited 1992

Authors and Affiliations

  • Jacques Constans
    • 1
    • 2
  • Pierre Carles
    • 1
    • 2
  • Andrèe Boneu
    • 1
    • 2
  • Jacques Arnaud
    • 1
    • 2
  • Ala Eldin Tufenkji
    • 1
    • 2
  • Marie-Christine Pujazon
    • 1
    • 2
  • Catherine Tavera
    • 1
    • 2
  1. 1.Faculty of Medicine, Internal Medicine Department, Clinical Pharmacokinetic Department and Centre de Recherches sur le Polymorphisme Génétique des Populations HumainesCentre National de la Recherche Scientifique, Purpan HospitalFrance
  2. 2.Institut C. Regaud, Department of HaematologyHôpital La GraveToulouseFrance

Personalised recommendations