Clinical Pharmacokinetics

, Volume 20, Issue 5, pp 411–419 | Cite as

Pharmacokinetic Analysis of Azelaic Acid Disodium Salt

A Proposed Substrate for Total Parenteral Nutrition
  • Alessandro Bertuzzi
  • Alberto Gandolfi
  • Serenella Salinari
  • Geltrude Mingrone
  • Emma Arcieri-Mastromattei
  • Enrico Finotti
  • Aldo V. Greco
Original Research Article

Summary

Azelaic acid was the first dicarboxylic acid proposed as an alternative energy substrate in total parenteral nutrition. In this study, the pharmacokinetics of azelaic acid were investigated in 12 healthy volunteers, 7 receiving a constant infusion (10g over 90 min) and 5 a bolus dose (1g). The 24h urinary excretion and plasma concentration in blood samples taken at regular intervals were assayed by gas-liquid chromatography. Experimental data were analysed by a 2-compartment nonlinear model that describes both tubular secretion and cellular uptake in Michaelis-Menten terms. A high value of urinary excretion (mean 76.9% of infused dose) and a mean clearance of 8.42 L/h were found, suggesting the presence of tubular secretion. Estimating the population mean of the pharmacokinetic model parameters gave a maximal cellular uptake of 0.657 g/h. The model predicts that 90% of the maximal uptake should be reached in the plateau phase of a constant infusion of 2.2 g/h. The presence of extensive and rapid losses through urinary excretion, and the low estimated value of the maximal cellular uptake, indicate that azelaic acid is not suitable as an energy substrate for total parenteral nutrition.

Keywords

Dicarboxylic Acid Total Parenteral Nutrition Tubular Secretion Azelaic Acid Tissue Uptake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Askanazi J, Carpentier YA, Elwyn DH, Nordenström J, Jeevanandam M, et al. Influence of total parenteral nutrition on fuel utilization in injury and sepsis. Annals of Surgery 191: 40–46, 1980PubMedCrossRefGoogle Scholar
  2. Beal SL, Sheiner LB, NONMEM user’s guide. Division of Clinical Pharmacology, University of California, San Francisco, 1985Google Scholar
  3. Bischoff KG. Some fundamental considerations of the applications of pharmacokinetics to cancer chemotherapy. Cancer Chemotherapy Reports 59: 777–793, 1975Google Scholar
  4. Bohmer T, Bergrem H, Eiklid K. Carnitine deficiency induced during intermittent hemodialysis for renal failure. Lancet 1: 126, 1978PubMedCrossRefGoogle Scholar
  5. Carson ER, Cobelli C, Finkelstein L. The mathematical modeling of metabolic and endocrine systems, John Wiley & Sons, New York, 1983Google Scholar
  6. Chambers JM. Fitting nonlinear models: numerical techniques. Biometrika 60: 1–13, 1973CrossRefGoogle Scholar
  7. Grevel J, Thomas P, Whiting B. Population pharmacokinetic analysis of bisoprolol. Clinical Pharmacokinetics 17: 53–63, 1989PubMedCrossRefGoogle Scholar
  8. Karpati GS. The syndrome of systemic carnitine deficiency. Neurology 25: 16–28, 1975PubMedCrossRefGoogle Scholar
  9. Kshirsagar AM. Multivariate analysis, Marcel Dekker, New York, 1972Google Scholar
  10. McGarry JD, Foster DW. The regulation of ketogenesis from octanoic acid. The role of tricarboxylic acid cycle and fatty acid synthesis. Journal of Biological Chemistry 246: 1149–1159, 1971aPubMedGoogle Scholar
  11. McGarry JD, Foster DW. The regulation of ketogenesis from oleic acid and the influence of anti-ketogenic agents. Journal of Biological Chemistry 246: 6247–6253, 1971bPubMedGoogle Scholar
  12. Mingrone G, Greco AV, Nazzaro-Porro M, Passi S. Toxicity of azelaic acid. Drugs Under Experimental and Clinical Research 9: 447–455, 1983Google Scholar
  13. Mingrone G, Tacchino RM, Castagneto M, Arcieri-Mastromattei E, Marino F, et al. Use of even numbered carbon atoms dicarboxylic salts in parenteral nutrition as fuel substrate. Journal of Parenteral and Enteral Nutrition, in press, 1990Google Scholar
  14. Mingrone G, Tacchino RM, Greco AV, Arcieri-Mastromattei E, Marino F, et al. Preliminary studies of a dicarboxylic acid as an energy substrate in man. Journal of Parenteral and Enteral Nutrition 13: 299–305, 1989PubMedCrossRefGoogle Scholar
  15. Mortensen PB, Kolvraa S, Gregersen N. Cyanide insensitive and clofibrate enhanced β-oxidation of dodecandioic acid: evidence of peroxisomal β-oxidation of dicarboxylic acids. Biochimica et Biophysica Acta 713: 393–397, 1982PubMedCrossRefGoogle Scholar
  16. Nanni G, Siegel J, Coleman B, Fader P, Castiglione R. Increased lipid fuel dependence in the critically ill septic patient. Journal of Trauma 24: 14–30, 1984PubMedCrossRefGoogle Scholar
  17. Passi S, Nazzaro-Porro M, Picardo M, Mingrone G, Fasella P. Metabolism of straight, saturated, medium chain-length (C9 to C12) dicarboxylic acids. Journal of Lipid Research 24: 1140–1147, 1983PubMedGoogle Scholar
  18. Robin AP, Askanazi J, Greenwood MRC, Carpentier YA, Gump FE, et al. Lipoprotein lipase activity in surgical patients: influence of trauma and infection. Surgery 90: 401–408, 1981PubMedGoogle Scholar
  19. Rudman D, Sewell CW, Ansley JD. Deficiency of carnitine in cachetic cirrhotic patients. Journal of Clinical Investigation 60: 716, 1977PubMedCrossRefGoogle Scholar
  20. Saint-Macary M, Foucher B. Comparative partial purification of the active dicarboxylate transport system of rat liver, kidney and heart mitochondria. Biochemical and Biophysical Research Communications 133: 498–504, 1985PubMedCrossRefGoogle Scholar
  21. Schmidt-Sommerfield E, Penn D, Wolf H. Carnitine blood concentration and utilization in parenterally alimented premature newborn infants. Journal of Pediatrics 100: 260–264, 1982CrossRefGoogle Scholar
  22. Sheiner LB, Rosenberg B, Marathe VV. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. Journal of Pharmacokinetics and Biopharmaceutics 5: 445–479, 1977PubMedGoogle Scholar
  23. Tacchino RM, Mingrone G, Marino F, Arcieri-Mastromattei E, Greco AV, et al. Short term infusion of azelaic acid versus intralipid in healthy subjects evaluated by indirect calorimetry. Journal of Parenteral and Enteral Nutrition 14: 169–175, 1990PubMedCrossRefGoogle Scholar
  24. Tonsgard JH, Mendelson SA, Meredith SC. Binding of straight-chain saturated dicarboxylic acids to albumin. Journal of Clinical Investigation 82: 1567–1573, 1988PubMedCrossRefGoogle Scholar
  25. Tremmel W. Fatty acid uptake by isolated rat heart myocytes represents a carrier-mediated transport process. Journal of Clinical Investigation 81: 844–852, 1988CrossRefGoogle Scholar
  26. Ullrich KJ, Fasold H, Rumrich G, Klöss S. Secretion and contraluminal uptake of dicarboxylic acids in the proximal convolution of rat kidney. Pflügers Archiv 400: 241–249, 1984PubMedCrossRefGoogle Scholar
  27. Ullrich KJ, Rumrich G, Fritzsch G, Klöss S. Contraluminal para-aminohippurate (PAH) transport in the proximal tubule of the rat kidney: II. Specificity: aliphatic dicarboxylic acids. Pflügers Archiv 408: 38–45, 1987PubMedCrossRefGoogle Scholar
  28. van Ginneken CAM, Russel FGM. Saturable pharmacokinetics in the renal excretion of drugs. Clinical Pharmacokinetics 16: 38–54, 1989PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 1991

Authors and Affiliations

  • Alessandro Bertuzzi
    • 1
    • 2
    • 3
  • Alberto Gandolfi
    • 1
    • 2
    • 3
  • Serenella Salinari
    • 1
    • 2
    • 3
  • Geltrude Mingrone
    • 1
    • 2
    • 3
  • Emma Arcieri-Mastromattei
    • 1
    • 2
    • 3
  • Enrico Finotti
    • 1
    • 2
    • 3
  • Aldo V. Greco
    • 1
    • 2
    • 3
  1. 1.Istituto di Analisi dei Sistemi ed Informatica del CNRRomeItaly
  2. 2.Dipartimento di Informatica e SistemisticaUniversità di Roma ‘La Sapienza’RomeItaly
  3. 3.Istituto di Clinica MedicaUniversità Cattolica del Sacro CuoreRomeItaly

Personalised recommendations