Clinical Pharmacokinetics

, Volume 18, Issue 4, pp 255–269 | Cite as

Ocular Drug Delivery

Pharmacokinetic Considerations
  • Ronald D. Schoenwald
Leading Article

Keywords

Phenylephrine Timolol Acetazolamide Pilocarpine Ella 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agata M, Tanaka M, Nakajima A, Fujii A. Kuboyama N. et al. Ocular penetration of topical diclofenac sodium, a non-steroidal anti-inflammatory drug, in rabbit eye. Nippon Ganka Gakkai Zasshi 88: 991–996. 1984PubMedGoogle Scholar
  2. Ahmed I, Gokhale RD, Shah MV, Patton TF. Physicochemical determinants of drug diffusion across the conjunctiva, sciera, and cornea. Journal of Pharmaceutical Sciences 76: 583–586, 1987PubMedCrossRefGoogle Scholar
  3. Ahmed I, Patton TF. Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Investigative Ophthalmology and Visual Science 26: 584–587. 1985PubMedGoogle Scholar
  4. Anderson JA, Chen CC, Vita JB, Shackleton M. Disposition of topical flurbiprofen in normal and aphakic rabbit eyes. Archives of Ophthalmology 100:642–645. 1982PubMedCrossRefGoogle Scholar
  5. Athanasios T, Gartaganis SP, Chrysanthopoulos CJ, Beerman D, Papachristou C. et al. Aqueous humor penetration of ciprofloxacin in the human eye. Archives of Ophthalmology 106: 404–405. 1988CrossRefGoogle Scholar
  6. Barza M, Kane A, Baum JL. Intraocular levels of cefamandole compared with cefazolin after subconjunctival injection in rabbits. Investigative Ophthalmology and Visual Science 18: 250–255, 1979PubMedGoogle Scholar
  7. Barza M. McCue. M. Pharmacokinetics of aztreonam in rabbit eyes. Antimicrobial Agents and Chemotherapy 24: 468–473, 1983PubMedCrossRefGoogle Scholar
  8. Becker B. Decrease in the intraocular pressure in man by a carbonic anhydrase inhibitor. Diamoz. American Journal of Ophthalmology 37: 13–15, 1954PubMedGoogle Scholar
  9. Bito LZ, Baroody RA. The ocular pharmacokinetics of eicosanoids and their derivatives. I. Comparison of ocular Eicosanoid penetration and distribution following the topical application of PGF2alpha. PGF2alpha-l-methyl ester, and PGF2alpha-l-isopropyl ester. Experimental Eye Research 44: 217–226, 1987PubMedCrossRefGoogle Scholar
  10. Bodor N. Soft drugs: principles and methods for the design of safe drugs. Medicinal Research Reviews 4: 449–469, 1984PubMedCrossRefGoogle Scholar
  11. Bourne WM, Nagataki S, Brubaker RF. The permeability of the corneal endothelium to fluorescein in the normal human eye. Current Eye Research 3: 509–513, 1984PubMedCrossRefGoogle Scholar
  12. Brown C, Hanna C. Use of dilute drug solutions for routine cycloplegia and mydriasis. American Journal of Ophthalmology 86: 820–824, 1978PubMedGoogle Scholar
  13. Brown RH, Wood TS, Lynch MG. Schoenwald RD, Chien DS, et al. Improving the therapeutic index of topical phenylephrine by reducing drop volume. Ophthalmology 94: 847–850, 1987PubMedGoogle Scholar
  14. Bundgaard H. Flach E, Larsen C, Mosher GL, Mikkelson TJ. Pilocarpine acid esters as novel sequentially labile pilocarpine prodrugs for improved ocular delivery. Journal of Medicinal Chemistry 28: 979–981, 1985PubMedCrossRefGoogle Scholar
  15. Burstein NL, Anderson JA. Corneal penetration and ocular bio-availability of drugs. Journal of Ocular Pharmacology 1: 309–326, 1985PubMedCrossRefGoogle Scholar
  16. Cable MK. Hendrickson RO, Hanna C. Evaluation of drugs in ointment for mydriasis and cycloplegia. Archives of Ophthalmology 96: 84–86, 1978PubMedCrossRefGoogle Scholar
  17. Camber O, Edman P, Olsson LI. Permeability of prostaglandin F2alpha and prostaglandin F2alpha esters across cornea in vitro. International Journal of Pharmaceuticals 29: 259–266, 1986CrossRefGoogle Scholar
  18. Chang SC, Bundgaard H, Buur A, Lee VHL. Improved corneal penetration of timolol by prodrugs as a means to reduce systemic drug load. Investigative Ophthalmology and Visual Science 28: 487–491, 1987PubMedGoogle Scholar
  19. Chiang CH, Huang HS, Schoenwald RD. Corneal permeability of adrenergic agents potentially useful in glaucoma. Journal of the Taiwan Pharmaceutical Association 38: 67–84, 1986.Google Scholar
  20. Chiang CH, Schoenwald RD. Ocular pharmacokinetic models of clonidine-3H hydrochloride. Journal of Pharmacokinetics and Biopharmaceutics 14: 175–211. 1986PubMedCrossRefGoogle Scholar
  21. Chien DS, Schoenwald RD. Improving the ocular absorption of phenylephrine. Biopharmaceutics and Drug Disposition 7: 453–462, 1986CrossRefGoogle Scholar
  22. Chrai SS, Makoid MC, Eriksen SP, Robinson JR. Drop size and initial dosing frequency problems of topically applied ophthalmic drugs. Journal of Pharmaceutical Sciences 63: 333–338, 1974PubMedCrossRefGoogle Scholar
  23. Chrai SS, Patton TF, Mehta A, Robinson JR. Lacrimal and instilled fluid dynamics in rabbit eyes. Journal of Pharmaceutical Sciences 62: 1112–1121, 1973PubMedCrossRefGoogle Scholar
  24. Cole DF. Ocular fluids. In Davson (Ed.) The eye, 3rd ed.. pp. 269–390, Academic Press, Inc., Orlando, 1984CrossRefGoogle Scholar
  25. Conrad JM. Robinson JR. Aqueous chamber drug distribution volume measurement in rabbits. Journal of Pharmaceutical Sciences 66: 219–224. 1977PubMedCrossRefGoogle Scholar
  26. Conroy CW. Schwam H. Maren TH. The nonenzymatic displacement of the sulfamoyl group from different classes of aromatic compounds by glutathione and cysteine. Drug Metabolism and Disposition 12: 614–618. 1984PubMedGoogle Scholar
  27. Cotlier E, Sharma YR, Niven T, Brescia M. Distribution of salicylate in lens and intraocular fluids and its effect on cataract formation. American Journal of Medicine 74: 83–90. 1983PubMedCrossRefGoogle Scholar
  28. De Santis L, Sallee V, Barnes G, Schoenwald R, Barfknecht C, et al. The effect of topically applied analogs of carbonic anhy-drase inhibitor, ethoxzolamide, on intraocular pressure in alert laser-induced ocular hypertensive cynomologous monkeys. Investigative Ophthalmology and Visual Science (Suppl. 27): 179. 1986Google Scholar
  29. Doane MG, Jensen AD, Dohlman CH, Penetration routes of topically applied eye medications. American Journal of Ophthalmology 85: 383–386. 1978PubMedGoogle Scholar
  30. Duffell MW. Ing IS, Segarra TM, Dixson JA, Barfknecht CF. et al. N-substituted sulfonamide carbonic anhydrase inhibitors with topical effects on intraocular pressure. Journal of Medicinal Chemistry 29: 1488–1494. 1986CrossRefGoogle Scholar
  31. Duzman E, Anderson J, Vita JB, Lue JC, Chen CC. et al. Topically applied oxymetazoline: ocular vasoconstrictive activity, pharmacokinetics, and metabolism. Archives of Ophthalmology 101: 1122–1127, 1983PubMedCrossRefGoogle Scholar
  32. Edelhauser HF, Maren TH. Permeability of human cornea and sciera to sulfonamide carbonic anhydrase inhibitors. Archives of Ophthalmology 106: 1110–1114, 1988PubMedCrossRefGoogle Scholar
  33. Eller MG, Schoenwald RD, Dixson JA, Segarra T, Barfknecht CF. Topical carbonic anhydrase inhibitors III: optimization model for corneal penetration of ethoxzolamide analogues. Journal of Pharmaceutical Sciences 74: 155–160, 1985aPubMedCrossRefGoogle Scholar
  34. Eller MG, Schoenwald RD, Dixson JA, Segarra T, Bartknecht CF. Topical carbonic anhydrase inhibitors IV: relationships between excised corneal permeability and pharmacokinetic factors. Journal of Pharmaceutical Sciences 74: 525–529, 1985bPubMedCrossRefGoogle Scholar
  35. Fantes FE, Heuer DK, Parrish II RK, Sossi N, Gressel MG. Topical fluorouracil: pharmacokinetics in normal rabbit eyes. Archives of Ophthalmology 103: 953–955, 1985PubMedCrossRefGoogle Scholar
  36. Francoeur ML, Sitek SJ, Costello B. Patton TF. Kinetic disposition and distribution of timolol in the rabbit: a physiologically based ocular model. International Journal of Pharmaceutics 25: 275–292, 1985CrossRefGoogle Scholar
  37. Fraunfelder FT. Meyer SM. Systemic side effects from ophthalmic timolol and their prevention. Journal of Ocular Pharmacology 3: 177–184. 1987PubMedCrossRefGoogle Scholar
  38. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed.. pp. 34–35. Marcel Dekker Inc., New York. 1982Google Scholar
  39. Grass GM, Robinson JR, Mechanisms of corneal drug penetration I: in vivo and in vitro kinetics. Journal of Pharmaceutical Sciences 77: 3–14. 1988PubMedCrossRefGoogle Scholar
  40. Grove J, Gautheron P, Plazonnet B, Sugrue M. Ocular disposition studies of the topical carbonic anhydrase inhibitors L-643,799 and L-650.719 and related alkyl prodrugs. Journal of Ocular Pharmacology 4: 279–290. 1988PubMedCrossRefGoogle Scholar
  41. Gudauskas G, Kumi C, Dedhar C, Bussanich N, Rootman J. Ocular pharmacokinetics of subconjunctivally versus intravenously administered 6-mercaplopurine. Canadian Journal of Ophthalmology 20: 110–113. 1985PubMedGoogle Scholar
  42. Havener WH. Ocular Pharmacology. 5th ed.. pp. 379–390. C.V. Mosby Co., St Louis, 1983Google Scholar
  43. Himmelstein KJ, Guvenir I, Patton TF. Preliminary pharmacokinetic model of pilocarpine uptake and distribution in the eye. Journal of Pharmaceutical Sciences 67: 603–606. 1978PubMedCrossRefGoogle Scholar
  44. Hitoshi S, Bundgaard H, Lee VHL. Design of prodrugs to selectively reduce timolol absorption on the basis of the differential lipophilic characteristics of the cornea and the conjunctiva. In vestigative Ophthalmology and Visual Science (Suppl. 30): 25. 1989Google Scholar
  45. Huang HS, Schoenwald RD, Lach JL. Corneal penetration behavior of beta-blocking agents II: assessment of barrier contributions. Journal of Pharmaceutical Sciences 72: 1272–1279, 1983PubMedCrossRefGoogle Scholar
  46. Hui HW, Zeleznick L, Robinson JR. Ocular disposition of topically applied histamine, cimetidine and pyrilamine in the albino rabbit. Current Eye Research 3: 321–330. 1984PubMedCrossRefGoogle Scholar
  47. Huupponen R, Kaila T, Salminen L, Urtti A. The pharmacokinetics of ocularly applied timolol in rabbits. Acta Ophthal-mologica 65: 63–66, 1987CrossRefGoogle Scholar
  48. Igarashi H, Sato Y, Hamada S, Kawasaki T. Studies on rabbit corneal permeability of local anaesthetics. Japanese Journal of Pharmacology 34: 429–434, 1984PubMedCrossRefGoogle Scholar
  49. Jones RF, Maurice DM, New methods of measuring the rate of aqueous flow in man with fluorescein. Experiemental Eye Research 5: 208–220. 1966CrossRefGoogle Scholar
  50. Kass MA. Topical carbonic anhydrase inhibitors. American Journal of Ophthalmology 107: 280–282. 1989PubMedGoogle Scholar
  51. Kleinberg J, Dea FJ, Anderson JA, Leopold IH. Intraocular penetration of topically applied lincomycin hydrochloride in rabbits. Archives of Ophthalmology 97: 933–936. 1979PubMedCrossRefGoogle Scholar
  52. Korolkovas A. Essentials of medicinal chemistry. 2nd ed., pp. 92–97, J. Wiley and Sons, New York, 1988Google Scholar
  53. Kumar V, Schoenwald RD, Barcellos WA, Chien DS, Folk JC. et al. Aqueous versus viscous phenylephrine I: systemic absorption and cardiovascular effects. Archives of Ophthalmology 104: 1189–1191. 1986PubMedCrossRefGoogle Scholar
  54. Lee DA, Brubaker RF. Effect of phenylephrine on aqueous humor flow. Current Eye Research 2: 89–92, 1982PubMedCrossRefGoogle Scholar
  55. Lee VHL, Chang SC, Oshiro CM, Smith RE. Ocular esterase composition in albino and pigmented rabbits: possible implications on ocular prodrug design and evaluation. Current Eye Research 4: 1117–1125, 1985PubMedCrossRefGoogle Scholar
  56. Lee VHL, Robinson JR. Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits. Journal of Pharmaceutical Sciences 68: 673–684, 1979PubMedCrossRefGoogle Scholar
  57. Lee VHL, Robinson JR. Disposition of pilocarpine in the pigmented rabbit eye. International Journal of Pharmaceutics 11: 155–165, 1982CrossRefGoogle Scholar
  58. Lee VHL, Robinson JR. Topical ocular drug delivery: recent developments and future challenges. Journal of Ocular Pharmacology 2: 67–108. 1986PubMedCrossRefGoogle Scholar
  59. Leibowitz HM, Berrospi AR, Kupferman A, Restropo GV, Galvis V. et al. Penetration of topically administered prednisolone acetate into the human aqueous humor American. Journal of Ophthalmology 83: 402–406. 1977Google Scholar
  60. Leibowitz HM, Ryan WJ, Kupferman A, DeSantis L. Bioavailability and corneal anti-inflammatory effect of topical suprofen. Investigative Ophthalmology and Visual Science 27: 628–631, 1986PubMedGoogle Scholar
  61. Lewis RA, Schoenwald RD, Eller MG, Barfknecht CF. Phelps CD. Ethoxzolamide analogue gel. Archives of Ophthalmology 102: 1821–1823. 1984PubMedCrossRefGoogle Scholar
  62. Lynch MG, Brown RH, Goode SM, Schoenwald RD, Chien DS. Reduction of phenylephrine drop size in infants achieves equal dilation with decreased systemic absorption. Archives of Ophthalmology 105: 1364–1365. 1987PubMedCrossRefGoogle Scholar
  63. Makoid MC, Robinson JR. Pharmacokinetics of topically applied pilocarpine in albino rabbit eye. Journal of Pharmaceutical Sciences 68: 435–443. 1979PubMedCrossRefGoogle Scholar
  64. Makoid MC, Sieg JW, Robinson JR. Corneal drug absorption: an illustration of parallel first-order absorption and rapid loss of drug from absorption depot. Journal of Pharmaceutical Sciences 65: 150–152. 1976PubMedCrossRefGoogle Scholar
  65. Mandell AI, Stentz F, Kitabchi AE. Dipivalyl epinephrine: a new prodrug in the treatment of glaucoma. Ophthalmology 85: 268–275, 1978PubMedGoogle Scholar
  66. Maren TH. Carbonic anhydrase: chemistry, physiology and inhibition. Physiological Review 47: 595–781, 1967Google Scholar
  67. Maren TH, Jankowska L. Ocular pharmacology of sulfonamides: the cornea as barrier and depot. Current Eye Research 4: 399–408, 1985PubMedCrossRefGoogle Scholar
  68. Maren TH, Jankowska L, Sanyal G, Edelhauser H. The transcorneal permeability of sulfonamide carbonic anhydrase inhibitors and their effect on aqueous humor secretion. Experimental Eye Research 36: 457–480, 1983PubMedCrossRefGoogle Scholar
  69. Maren TH, Bar-Ilan A, Caster KC, Katritzky AR. Ocular pharmacology of methazolamide analogs: distribution in the eye and effects on pressure after topical application. Journal of Pharmacology and Experimental Therapeutics 241: 56–63, 1987PubMedGoogle Scholar
  70. Maudgal PC, DeClerq E, Descamps J, Missotten L. Topical treatment of experimental herpes simplex keratouveitis with 2′-0-glycylacyclovir, a water soluble ester of acyclovir. Archives of Ophthalmology 102: 140–142. 1984PubMedCrossRefGoogle Scholar
  71. Maurice DM. Structures and fluids involved in the penetration of topically applied drugs. In Holly (Ed.) Clinical pharmacology of the anterior segment, pp. 7–20, Little. Brown and Co., Boston, 1980Google Scholar
  72. Maurice DM. Kinetics of topically applied ophthalmic drugs. In Saettone et al. (Eds) Ophthalmic drug delivery: biopharmaceutical, technological and clinical aspects. Vol 11, pp. 19–26. Liviana Press, Springer-Verlag, Berlin, 1987Google Scholar
  73. Maurice DM, Mishima S. Ocular Pharmacokinetics. In Sears (Ed.) Pharmacology of the eye, pp. 19–116, Springer-Verlag, Berlin, 1984CrossRefGoogle Scholar
  74. McDonald TO, Shadduck JA. Eye irritation. In Mailbach & Marzulli (Eds) Dermatotoxicology and Pharmacology, Vol. 4, pp. 139–191, J Wiley & Sons, New York, 1977Google Scholar
  75. Mester U, Krasemann C, Werner H, Cefsulodin concentrations in rabbit eyes after intravenous and subconjunctival administration. Ophthalmic Research 14: 129–134, 1982PubMedCrossRefGoogle Scholar
  76. Michelson SR, Schwam H, Baldwin JJ, Mallorga GS, Ponticello RL, et al. Topically instilled MK-927: lack of correlation between corneal penetration rate constant and ocular hypotensive activity in rabbits. Investigative Ophthalmology and Visual Science (Suppl. 30): 37, 1989Google Scholar
  77. Miller SC, Himmelstein KJ, Patton TF. A physiologically based pharmacokinetic model for the intraocular distribution of pilocarpine in rabbits. Journal of Pharmacokinetics and Biophar-maceutics 9: 653–677, 1981CrossRefGoogle Scholar
  78. Nagataki S, Mishima S. Pharmacokinetics of instilled drugs in the human eye. In Holly (Ed.) Clinical pharmacology of the anterior segment, pp. 33–49, Little, Brown and Co., Boston, 1980Google Scholar
  79. Narurkar MM, Mitra AK. Physical chemical properties and corneal transport of a series of 5′-ester prodrugs of idoxuridine. Pharmaceutical Research (Suppl. 3): S-3, 48s, 1986Google Scholar
  80. Notari RE, DeYoung JL, Reuning RH. Effect of parallel first-order drug loss from site of administration on calculated values for absorption rate constants. Journal of Pharmaceutical Sciences 61: 135–138, 1972PubMedCrossRefGoogle Scholar
  81. Occhipinti JR, Mosier MA, LaMotte J, Monji GT, Fluorophotometric measurement of human tear turnover rate. Current Eye Research 7: 995–1000, 1988PubMedCrossRefGoogle Scholar
  82. Palestine AG, Brubaker RF. Pharmacokinetics of fluorescein in the vitreous. Investigative Ophthalmology and Visual Science 21: 542–549, 1981PubMedGoogle Scholar
  83. Patton TF, Robinson JR. Quantitative precorneal disposition of topically applied pilocarpine nitrate in rabbit eyes. Journal of Pharmaceutical Sciences 65: 1295–1301, 1976PubMedCrossRefGoogle Scholar
  84. Patton TF. Ocular drug disposition. In Robinson (Ed.) Ophthalmic drugs delivery systems, pp. 28–54. American Pharmaceutical Association, Washington, 1980Google Scholar
  85. Petursson G, Cole R, Hanna C. Treatment of glaucoma using minidropsofclonidine. Archives of Ophthalmology 102: 1180–1181. 1984PubMedCrossRefGoogle Scholar
  86. Plazonnet B, Grove J, Durr M, Mazuel C, Quint M, Rozier A. Pharmacokinetics and biopharmaceutical aspects of some antiglaucoma drugs. In Saettone el al. (Eds) Ophthalmic drug delivery: biopharmaceutical, technological and clinical aspects. Vol 11, pp. 118–139, Liviana Press, Springer-Verlag, Berlin 1987Google Scholar
  87. Ponticello GS, Freedman MB, Habecker CN, Lyle PA. Schwam H, et al. Thienothiopyran-2-sulfonamides: a novel class of water-soluble carbonic anhydrase inhibitors. Journal of Medicinal Chemistry 30: 591–597, 1987PubMedCrossRefGoogle Scholar
  88. Putnam ML, Schoenwald RD, Duffel MW, Barfknecht CF, Segarra TM, et al. Ocular disposition of aminozolamide in the rabbit eye. Investigative Ophthalmology and Visual Science 28: 1373–1382, 1987PubMedGoogle Scholar
  89. Rootman DS, Jantzen JA, Gonzalez JR, Fischer MJ, Beuerman R, et al. Pharmacokinetics and safety of transcorneal iontophoresis of tobramycin in the rabbit. Investigative Ophthalmology and Visual Science 29: 1397–1401. 1988PubMedGoogle Scholar
  90. Rootman J, Ostry A, Gudauskas G. Pharmacokinetics and metabolism of 5-fluorouracil following subconjunctival verus intravenous administration. Canadian Journal of Ophthalmology 19: 187–191, 1984PubMedGoogle Scholar
  91. Ryan SJ. Vision research: a national plan. 1987 evaluation and update, NIH Publication No. 87-2755, pp. 1–10, US Department of Health and Human Services, Bethesda, 1987Google Scholar
  92. Schoenwald RD, Ward RL. Relationship between steroid permeability across excised rabbit cornea and octanol-water partition coefficients. Journal of Pharmaceutical Sciences 67: 786–788, 1978PubMedCrossRefGoogle Scholar
  93. Schoenwald RD. The control of drug bioavailability from ophthalmic dosage forms. In Smolen & Ball (Eds) Controlled drug bioavailability, Vol. 3, pp. 257–306, J Wiley & Sons, New York, 1985Google Scholar
  94. Schoenwald RD. The importance of optimizing corneal penetration. In Saettone et al (Eds) Ophthalmic drug delivery: biopharmaceutical, technological and clinical aspects, Vol 11, pp. 151–160, Liviana Press, Springer-Verlag, Berlin 1987Google Scholar
  95. Schoenwald RD, Campbell D, Barfknecht C, Duffel M. Acetyl-ation of arylamines in ocular tissue homogenates of fast and slow acetylating rabbits. Investigative Ophthalmology and Visual Science 29: 438, 1988Google Scholar
  96. Schoenwald RD, Chien DS. Ocular absorption and disposition of phenylephrine and phenylephnne oxazolidine. Biopharmaceu-tics and Drug Disposition 9: 527–538. 1988CrossRefGoogle Scholar
  97. Schoenwald RD, Folk JC, Kumar V, Piper JG. In vivo comparison of phenylephrine and phenylephrine oxazolidine instilled in the monkey eye. Journal of Ocular Pharmacology 3: 333–340, 1987aPubMedCrossRefGoogle Scholar
  98. Schoenwald RD, Harris RG, Turner D, Knowles W, Chien DS. Ophthalmic bioequivalence of steroid/antibiotic combination formulations. Biopharmaceutics and Drug Disposition 8: 527–548, 1987bCrossRefGoogle Scholar
  99. Schoenwald RD, Houseman JA. Disposition of cyclophos-phamide in the rabbit and human cornea. Biopharmaceutics and Drug Disposition 3: 231–241, 1982CrossRefGoogle Scholar
  100. Schoenwald RD, Huang HS. Corneal penetration behavior of beta-blocking agents I: physicochemical factors. Journal of Pharmaceutical Sciences 72: 1266–1272, 1983PubMedCrossRefGoogle Scholar
  101. Shell JW. Ophthalmic drug delivery systems. Drug Development Research 6: 245–261, 1985CrossRefGoogle Scholar
  102. Shell JW. Pharmacokinetics of topically applied ophthalmic drugs. Survey of Ophthalmology 26: 207–218, 1982PubMedCrossRefGoogle Scholar
  103. Sieg JW, Robinson JR. Vehicle effects on ocular drug bioavailability. I. Evaluation of fluorometholone. Journal of Pharmaceutical Sciences 64: 931–936, 1975PubMedCrossRefGoogle Scholar
  104. Sieg JW, Robinson JR. Mechanistic studies on transcorneal permeation of fluorometholone. Journal of Pharmaceutical Sciences 70 1026–1029, 1981PubMedCrossRefGoogle Scholar
  105. Sugrue MF. Gauthcron P. Schmitt C. Viader MP. Conquet P. et al. On the pharmacology of L-645.151: a topically effectue ocular hypotensive carbonic anhydrase inhibitor. Journal of Pharmacology and Experimental Therapeutics 232: 534–540. 1985PubMedGoogle Scholar
  106. Tang-Liu DDS. Liu SS. Weinkam RJ. Ocular and systemic bio-availability of ophthalmic flurbiprofen. Journal of Pharmacokinetics and Biopharmaceutics 12: 611–626. 1984PubMedCrossRefGoogle Scholar
  107. Tang-Liu DDS. Burke PJ. The effect of azone on ocular levo-bunolol absorption: calculating the area under the curve and its standard error using tissue sampling compartments. Pharmaceutical Research 5: 238–241. 1988PubMedCrossRefGoogle Scholar
  108. Taylor PB. Burd EM. Tabbara KF. Corneal and intraocular penetration of topical and subconjunctival fusidic acid. British Journal of Ophthalmology 71: 598–601. 1987PubMedCrossRefGoogle Scholar
  109. Wei CP. Anderson JA. Leopold I. Ocular absorption and metabolism of topically applied epinephrine and a dipivalyl ester of epinephnne. Investigative Ophthalmology and Visual Sciences 17: 315–321. 1978Google Scholar
  110. Ueno N. Refojo MF. Liu LHS. Pharmacokinetics of the antineoplastie agent 1.3-bis(2-chloroelhyl)-1-nitrosourea (BCNU) in the aqueous and vitreous of rabbit. Investigative Ophthalmology and Visual Science 23: 199–208. 1982PubMedGoogle Scholar
  111. Valeri P. Palmen M. Severini G. Piccinelli D. Catanese B. Ocular pharmacokinenes of dapiprazole. Pharmacological Research Communications 18: 1093–1105. 1986PubMedCrossRefGoogle Scholar
  112. Walstad RA. Helium KB. Blika S. Dale LG. Fredrikson T. et al. Pharmacokinetics and tissue penetration of ceftazidime: studies on lymph, aqueous humor, skin blister, cerebrospinal and pleural fluid. Journal of Antimicrobial Chemotherapy (Suppl. A. 12): 275-282. 1983Google Scholar
  113. Wu WM. Hammer RH, Bodo N. Short-acting soft mydriatic agents. Pharmaceutical Research (Suppl. 5): S-99. 1988Google Scholar
  114. Zigman S. Thotobiology of the lens. In Maisel (Ed.) Ocular lens, pp. 301–347. MarcelDekker. Inc., New York. 1985Google Scholar

Copyright information

© ADIS Press Limited 1990

Authors and Affiliations

  • Ronald D. Schoenwald
    • 1
  1. 1.University of Iowa. College of PharmacyIowa CityUSA

Personalised recommendations