Clinical Pharmacokinetics

, Volume 8, Issue 3, pp 187–201 | Cite as

Clinical Pharmacokinetics of Acyclovir

  • Oscar L. Laskin


Acyclovir is a selective anti-herpes virus agent. At present it is available in topical and intravenous formulations; an oral formulation is currently being developed.

Absorption of acyclovir after oral administration is slow, variable and incomplete. The bioavailability of oral acyclovir is low and decreases with increasing dosage. The average time to peak concentrations is approximately 2 hours and achievable peak concentrations following oral administration (600mg every 4 hours) are less than 6 μmol/L with current oral dosage forms.

Acyclovir tissue and fluid concentrations can be determined accurately and sensitively by high-performance liquid chromatography, radioimmunoassay, and by virus inhibition (bioassay). Acyclovir demonstrates biexponential elimination, with a terminal plasma half-life of 2 to 3 hours in patients with normal renal function. The volume of the central compartment (21 L/1.73m2) and the apparent volume of distribution at steady-state (48 L/1.73m2) are approximately that of extracellular fluid and total body water, respectively. The drug is distributed into all tissues, with concentrations in the kidney being the highest (10 times the simultaneous plasma concentration) and in central nervous tissue the lowest (25 to 70% of the corresponding plasma concentration). Acyclovir enters the cerebrospinal fluid, saliva and vaginal secretions at concentrations inhibitory to herpes simplex virus. The drug is poorly protein bound, in the range of 9 to 22%.

Acyclovir is eliminated mainly via the kidney by glomerular filtration and renal tubular secretion, with only a small percentage of the dose being oxidised to 9-carboxymethoxy-methylguanine (which is the only significant metabolite of acyclovir in man). Acyclovir has dose-independent kinetics. The renal clearance of acyclovir is about 75 to 80% of the total body clearance and approximately 3-fold greater than creatinine clearance. Probenecid reduces acyclovir renal clearance by 32%, presumably by inhibiting tubular secretion of the drug.

In anuric patients, acyclovir is slowly eliminated with a terminal plasma half-life of approximately 20 hours. The acyclovir total body clearance (29 ml/min/1.73m2) is only 10% of that seen in patients without renal impairment. Acyclovir is readily haemodialysable with an extraction coefficient of 0.45 and a dialysis clearance of 82 ml/min using a hollow fibre single-pass dialyser. A single haemodialysis (6h) reduces acyclovir concentrations by 60%.

The pharmacokinetics of acyclovir in children (greater than 1 year of age) are similar to those in adults. In neonates, the total body clearance is about one-third of that found in children and adults. The terminal plasma half-life is slightly longer in the neonate.

The toxicity of acyclovir appears to be minimal and consists of local irritation after extravasation, phlebitis, and occasionally reversible elevations in serum creatinine, especailly after intravenous bolus doses. Other adverse effects remain to be established. Acyclovir plasma concentrations of 50 to 100 μmol/L are easily achievable by slow intravenous administration without significant adverse effects. Dosage reduction is recommended in patients with impaired renal function, in order to achieve effective concentrations without concomitant drug accumulation.


Acyclovir Normal Renal Function Clinical Pharmacokinetic Probenecid Total Body Clearance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous: Topical acyclovir for herpes simplex. Medical Letter 24: 55–56 (1982).Google Scholar
  2. Biron, K.K. and Elion, G.B.: In vitro susceptibility of Varicella-Zoster virus to acyclovir. Antimicrobial Agents and Chemotherapy 18: 443–447 (1980).PubMedCrossRefGoogle Scholar
  3. Blum, M.R.; Liao, S.H.T. and de Miranda, P.: Overview of acyclovir pharmacokinetic disposition in adults and children. American Journal of Medicine 73 (Suppl.): 186–192 (July 1982).PubMedCrossRefGoogle Scholar
  4. Brigden, D.; Bye, A.; Fowle, A.S.E. and Rogers, H.: Human pharmacokinetics of acyclovir (an antiviral agent) following rapid intravenous injection. Journal of Antimicrobial Chemotherapy 7: 399–404 (1981).PubMedCrossRefGoogle Scholar
  5. Brigden, D.; Fowle, A. and Rosling, A.: Acyclovir, a new antiherpetic drug: Early experience in man with systemically administered drug; in Collier and Oxford (Eds) Developments in Antiviral Therapy, pp. 53–62 (Academic Press New York 1980).Google Scholar
  6. Brigden, D.; Rosling, A.E. and Woods, N.C.: Renal function after acyclovir intravenous injection. American Journal of Medicine 73 (Suppl.): 182–185 (Jul 1982).PubMedCrossRefGoogle Scholar
  7. Calabresi, P. and Parks, R.E.: Antiproliferative agents and drugs used for immunosuppression; in Goodman et al. (Eds) The Pharmacological Basis of Therapeutics, pp. 1274 (Macmillan Publishing Co New York 1980).Google Scholar
  8. Cemifanto, Y.M. and Kaufman, H.E.: 9-(2-Hydroxyethoxymethyl)guanine as an inhibitor of herpes simplex virus replication. Chemotherapy 25: 279–281 (1979).CrossRefGoogle Scholar
  9. Collins, P. and Bauer, D.J.: The activity in vitro against herpes virus of 9-(2-hydroxyethoxymethyl)guanine (acycloguanosine), a new antiviral agent. Journal of Antimicrobial Chemotherapy 5: 431–436 (1979).PubMedCrossRefGoogle Scholar
  10. Corey, L.; Benedetti, J.K.; Critchlow, C.W.; Remington, M.R.; Winter, C.A.; Fahnlander, A.L.; Smith, K.; Salter, D.L.; Keeney, R.E.; Davis, L.G.; Hintz, M.; Connor, J.D. and Holmes, K.K.: Double-blind controlled trial of topical acyclovir in genital herpes simplex virus infections. American Journal of Medicine 73 (Suppl.): 326–334 (Jul 1982).PubMedCrossRefGoogle Scholar
  11. Crumpacker, C.S.; Schnipper, L.E.; Zaia, J.A. and Levin, M.J.: Growth inhibition by acycloguanosine of herpesviruses isolated from human infection. Antimicrobial Agents and Chemotherapy 15: 642–645 (1979).PubMedCrossRefGoogle Scholar
  12. de Miranda, P.; Good, S.S.; Krasny, H.C.; Connors, J.D.; Laskin, O.L. and Lietman, P.S.: Metabolic rate of radioactive acyclovir in humans. American Journal of Medicine 73 (Suppl.): 215–220 (Jul 1982a).PubMedCrossRefGoogle Scholar
  13. de Miranda, P.; Good, S.S.; Laskin, O.L.; Krasny, H.C.; Connors, J.D.; and Lietman, P.S.: Disposition of intravenous radioactive acyclovir. Clinical Pharmacology and Therapeutics 30: 662–672 (1981a).PubMedCrossRefGoogle Scholar
  14. de Miranda, P.; Krasny, H.C. and Elion, G.B.: Metabolic disposition of 9-(2-hydroxyethoxymethyl)guanine, a new antiviral drug. Abstracts of the 7th International Congress of Pharmacology, p. 354 (1978).Google Scholar
  15. de Miranda, P.; Krasny, H.C.; Page, D.A. and Elion, G.B.: The disposition of acyclovir in different species. Journal of Pharmacology and Experimental Therapeutics 219: 309–315 (1981b).PubMedGoogle Scholar
  16. de Miranda, P.; Krasny, H.C.; Page, D.A. and Elion, G.B.: Species differences in the disposition of acyclovir. American Journal of Medicine 73 (Suppl.): 31–35 (Jul 1982b).PubMedCrossRefGoogle Scholar
  17. de Miranda, P.; Whitley, R.J.; Barton, N.; Page, D.; Creagh-Kirk, T.; Liao, S. and Blum, R.: Systemic absorption and pharmacokinetics of acyclovir (Zovirax) capsules in immunocompromised patients with herpesvirus infections. Twenty-second Interscience Conference on Antimicrobial Agents and Chemotherapy, Miami, Abstract 418 (1982c).Google Scholar
  18. de Miranda, P.; Whitley, R.J.; Blum, M.R.; Keeney, R.E.; Barton, N.; Cocchetto, D.M.; Good, S.; Hemstreet, G.P.; Kirk, L.E.; Page, B.S. and Elion, G.B.: Acyclovir kinetics after intravenous infusion. Clinical Pharmacokinetics and Therapeutics 26: 718–728 (1979).Google Scholar
  19. Dubb, J.W.; Stote, R.M.; Familar, R.G.; Lee, K. and Alexander, F.: Effect of cimetidine on renal function in normal man. Clinical Pharmacology and Therapeutics 24: 76–83 (1978).PubMedGoogle Scholar
  20. Elion, G.B.: Mechanism of action and selectivity of acyclovir. American Journal of Medicine 73 (Suppl.): 7–13 (Jul 1982).PubMedCrossRefGoogle Scholar
  21. Elion, G.B.; Furman, P.A.; Fyfe, J.A.; de Miranda, P.; Beauchamp, L. and Schaeffer, H.J.: Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl)guanine. Proceedings of the National Academy of Science (USA) 74: 5716–5720 (1977).CrossRefGoogle Scholar
  22. Field, H.J.; Bell, S.E.; Elion, G.B., Nash, A.A. and Wildy, P.: Effect of acycloguanosine treatment on acute and latent herpes simplex infections in mice. Antimicrobial Agents and Chemotherapy 15: 554–561 (1979).PubMedCrossRefGoogle Scholar
  23. Furman, P.A.; St. Clair, M.H.; Fyfe, J.A.; Rideout, J.L.; Keller, P.M. and Elion, G.B.: Inhibition of herpes simplex virus-induced DNA polymerase activity and viral DNA replication by 9-(2-hydroxyethoxymethyl)guanine and its triphosphate. Journal of Virology 32: 72–77 (1979).PubMedGoogle Scholar
  24. Fyfe, J.A.; Keller, P.M.; Furman, P.A.; Miller, R.L. and Elion, G.B.: Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound 9-(2-hydroxyethoxyme-thyl)guanine. Journal of Biological Chemistry 253: 8721–8727 (1978).PubMedGoogle Scholar
  25. Hintz, M.; Connor, J.D.; Spector, S.A.; Blum, M.R.; Keeney, R.E. and Yeager, A.S.: Neonatal acyclovir pharmacokinetics in patients with herpes virus infections. American Journal of Medicine 73 (Suppl.): 210–214 (Jul 1982).PubMedCrossRefGoogle Scholar
  26. Jamieson, A.T.; Gentry, G.A. and Subak-Sharpe, J.H.: Induction of both thymidine and deoxycytidine kinase activity by herpes virus. Journal of General Virology 24: 465–480 (1974).PubMedCrossRefGoogle Scholar
  27. Jones, B.R.; Coster, D.J.; Fison, P.N.; Thompson, G.M.; Cobo, L.M. and Falcon, M.G.: Efficacy of acycloguanosine (Well-come 248U) against herpes-simplex corneal ulcers. Lancet 1: 243–244 (1979).PubMedCrossRefGoogle Scholar
  28. Keeney, R.E.; Kirk, L.E. and Brigden, D.: Acyclovir tolerance in humans. American Journal of Medicine 73 (Suppl.): 176–181 (Jul 1982).PubMedCrossRefGoogle Scholar
  29. Klein, R.J.; Friedman-Kien, A.E. and DeStefano, E.: Latent herpes simplex virus infections in sensory ganglia of hairless mice prevented by acycloguanosine. Antimicrobial Agents and Chemotherapy 15: 723–729 (1979).PubMedCrossRefGoogle Scholar
  30. Krasny, H.C.; de Miranda, P.; Blum, M.R. and Elion, G.B.: Pharmacokinetics and bioavailability of acyclovir in the dog. Journal of Pharmacology and Experimental Therapeutics 216: 281–288 (1981).PubMedGoogle Scholar
  31. Krasny, H.C.; Liao, S.H.T.; de Miranda, P.; Laskin, O.L.; Whelton, A. and Lietman, P.S.: Influence of hemodialysis on acyclovir pharmacokinetics in patients with chronic renal failure. American Journal of Medicine 73 (Suppl.): 202–204 (Jul 1982).PubMedCrossRefGoogle Scholar
  32. Kumor, K.M.; Woo, J. and Conklin, R.: Renal function in immunocompromised patients receiving acyclovir for herpes virus infections (abstract). Clinical Research 30: 253A (1982).Google Scholar
  33. Land, G. and Bye, A.: Simple high-performance liquid Chromatographic method for the analysis of 9-(2-hydroxyethoxyme-thyl)guanine (acyclovir) in human plasma and urine. Journal of Chromatography 224: 51–58 (1981).PubMedCrossRefGoogle Scholar
  34. Laskin, O.L.; de Miranda, P.; King, D.H.; Page, D.A.; Longstreth, J.A.; Rocco, L. and Lietman, P.S.: Effects of probenecid on the pharmacokinetics and elimination of acyclovir in humans. Antimicrobial Agents Chemotherapy 21: 804–807 (1982a).CrossRefGoogle Scholar
  35. Laskin, O.L.; Longstreth, J.A.; Saral, R.; de Miranda, P.; Keeney, R. and Lietman, P.S.: Pharmacokinetics and tolerance of acyclovir, a new anti-herpes virus agent, in humans. Antimicrobial Agents and Chemotherapy 21: 393–398 (1982b).PubMedCrossRefGoogle Scholar
  36. Laskin, O.L.; Longstreth, J.A.; Whelton, A.; Krasny, H.C.; Keeney, R.E.; Rocco, L. and Lietman, P.S.: Effect of renal failure on the pharmacokinetics of acyclovir. American Journal of Medicine 73 (Suppl.): 197–201 (Jul 1982c).PubMedCrossRefGoogle Scholar
  37. Laskin, O.L.; Longstreth, J.A.; Whelton, A.; Rocco, L.; Lietman, P.S.; Krasny, H.C. and Keeney, R.E.: Acyclovir kinetics in end-stage renal disease. Clinical Pharmacology and Therapeutics 31: 594–601 (1982d).PubMedCrossRefGoogle Scholar
  38. Laskin, O.L.; Saral, R.; Burns, W.H.; Angulopulus, C.M. and Lietman, P.S.: Acyclovir concentrations and tolerance during repetitive administration for 18 days. American Journal of Medicine 73 (Suppl.): 221–224 (Jul 1982e).PubMedCrossRefGoogle Scholar
  39. Mar, E.-C. and Huang, E-S.: Comparative study of herpes group virus-induced DNA polymerases. Intervirology 12: 73–83 (1979).PubMedCrossRefGoogle Scholar
  40. McGuffin, R.W.; Shiota, F.M. and Meyers, J.D.: Lack of toxicity of acyclovir to granulocyte progenitor cells in vitro. Antimicrobial Agents and Chemotherapy 18: 471–473 (1980).PubMedCrossRefGoogle Scholar
  41. Meyers, J.D.; Wade, J.C.; Mitchell, C.D.; Saral, R.; Lietman, P.S.; Durack, D.T.; Levin, M.J.; Segreti, A.C. and Balfour, H.H.: Multicenter collaborative trial of intravenous acyclovir for treatment of mucocutaneous herpes simplex virus infection in the immunocompromised host. American Journal of Medicine 73 (Suppl.): 229–235 (Jul 1982).PubMedCrossRefGoogle Scholar
  42. Miller, W.H. and Miller, R.L.: Phosphorylation of acyclovir (acycloguanosine) monophosphate by GMP kinase. Journal of Biological Chemistry 255: 7204–7207 (1980).PubMedGoogle Scholar
  43. Mitchell, C.D.; Bean, B.; Gentry, S.R.; Groth, K.F.; Boen, J.R. and Balfour, H.H.: Acyclovir treatment for mucocutaneous herpes simplex infections in immunocompromised patients. Lancet 2: 1389–1392 (1981).CrossRefGoogle Scholar
  44. Moore, D.F.; Taylor, S.C. and Bryson, Y.J.: Virus inhibition assay for measurement of acyclovir levels in human plasma and urine. Antimicrobial Agents and Chemotherapy 20: 787–792 (1981).PubMedCrossRefGoogle Scholar
  45. Pagano, J.S. and Datta, A.K.: Perspectives on interactions of acyclovir with Ebstein-Barr and other herpes viruses. American Journal of Medicine 73 (Suppl.): 18–26 (Jul 1982).PubMedCrossRefGoogle Scholar
  46. Park, N.; Paven-Langston, D.; McLean, S.L. and Albert, D.: Therapy of experimental herpes simplex encephalitis with acyclovir in mice. Antimicrobial Agents and Chemotherapy 15: 775–779 (1979).PubMedCrossRefGoogle Scholar
  47. Perera, P.A.J. and Morrison, J.M.: Evidence for the induction of a new deoxycytidine kinase in cells infected with herpes virus. Biochemistry Journal 117: 21p–22p (1970).Google Scholar
  48. Quinn, R.P.; de Miranda, P.; Gerald, L. and Good, S.S.: A sensitive radioimmunoassay for the antiviral agent BW248U 9-(2-hydroxyethoxymethyl)guanine. Analytical Biochemistry 98: 319–328 (1979).PubMedCrossRefGoogle Scholar
  49. Saral, R.; Burns, W.H.; Laskin, O.L.; Santos, G.W. and Lietman, P.S.: Acyclovir prophylaxis of herpes simplex virus infections: A trial in bone marrow transplant recipients. New England Journal of Medicine 305: 63–67 (1981).PubMedCrossRefGoogle Scholar
  50. Schaeffer, H.J.: Acyclovir chemistry and spectrum of activity. American Journal of Medicine 73 (Suppl.): 4–6 (Jul 1982).PubMedCrossRefGoogle Scholar
  51. Schaeffer, H.J.; Beauchamp, L.; de Miranda, P.; Elion, G.B.; Bauer, D.J. and Collins, P.: 9-(2-hydroxyethoxymethyl)guanine activity against viruses of the herpes group. Nature 272: 583–585 (1978).PubMedCrossRefGoogle Scholar
  52. Skubitz, K.M.; Quinn, R.P. and Lietman, P.S.: Rapid acyclovir radioimmunoassay, using charcoal adsorption. Antimicrobial Agents and Chemotherapy 21: 352–354 (1982).PubMedCrossRefGoogle Scholar
  53. Soike, K.F. and Gerone, P.J.: Acyclovir in the treatment of Simian Varicella virus infection of the African green monkey. American Journal of Medicine 73 (Suppl.): 112–117 (Jul 1982).PubMedCrossRefGoogle Scholar
  54. Spector, S.A.; Connor, J.D.; Hintz, M.; Quinn, R.P.; Blum, M.R. and Keeney, R.E.: Single-dose pharmacokinetics of acyclovir. Antimicrobial Agents and Chemotherapy 19: 608–612 (1981).PubMedCrossRefGoogle Scholar
  55. Spector, S.A.; Hintz, M.; Wybomy, C.; Connor, J.D.; Keeney, R.E. and Liao, S.: Treatment of herpes virus infections in immunocompromised patients with acyclovir by continuous infusion. American Journal of Medicine 73 (Suppl.): 275–279 (Jul 1982).PubMedCrossRefGoogle Scholar
  56. St. Claire, M.H.; Furman, P.A.; Lubbers, C.M. and Elion, G.B.: Inhibition of cellular alpha and virally induced deoxyribo-nucleic acid polymerases by the triphosphate of acyclovir. Antimicrobial Agents and Chemotherapy 18: 741–745 (1980).CrossRefGoogle Scholar
  57. Straus, S.E.; Smith, H.A.; Brickman, C.; de Miranda, P.; McLaren, C. and Keeney, R.E.: Acyclovir for chronic mucocu-taneous herpes simplex virus infection in immunosuppressed patients. Annals of Internal Medicine 96: 270–277 (1982).PubMedGoogle Scholar
  58. Thouless, M.E. and Skinner, G.R.B.: Differences in the properties of thymidine kinase produced in cells infected with type 1 or type 2 herpes virus. Journal of General Virology 12: 195–197 (1971).PubMedCrossRefGoogle Scholar
  59. Van der Meer, J.W.M. and Versteeg, J.: Acyclovir in severe herpes virus infections. American Journal of Medicine 73 (Suppl.): 271–274 (Jul 1982).PubMedCrossRefGoogle Scholar
  60. Van Dyke, R.B.; Connor, J.D.; Wyborny, C.; Hintz, M. and Keeney, R.E.: Pharmacokinetics of orally administered acyclovir in patients with herpes progenitalis. American Journal of Medicine 73 (Suppl.): 172–175 (Jul 1982a).PubMedCrossRefGoogle Scholar
  61. Van Dyke, R.B.; Straube, R.; Large, K.; Hintz, M.; Spector, S. and Connor, J.D.: Pharmacokinetics of increased dose oral acyclovir. Twenty-second Interscience Conference on Antimicrobial Agents and Chemotherapy, Miama, Abstract 414 (1982b).Google Scholar
  62. Wade, J.C.; Hintz, M.; McGuffin, R.W.; Springmeyer, S.C.; Connor, J.D. and Meyers, J.D.: Treatment of cytomegalovirus pneumonia with high-dose acyclovir. American Journal of Medicine 73 (Suppl.): 249–256 (Jul 1982a).PubMedCrossRefGoogle Scholar
  63. Wade, J.C.; Newton, B.; Flournoy, N. and Meyers, J.D.: Oral acyclovir prophylaxis of herpes simplex infections after marrow transplant. Twenty-second Interscience Conference on Antimicrobial Agents and Chemotherapy, Miama, Abstract 184, (1982b).Google Scholar
  64. Whitley, R.J.; Barton, N.; Collins, E.; Whelchel, J. and Diethelm, A.G.: Mucocutaneous herpes simplex virus infections in immunocompromised patients: A model for evaluation of topical antiviral agents. American Journal of Medicine 73 (Suppl): 236–240 (Jul 1982a).PubMedCrossRefGoogle Scholar
  65. Whitley, R.J.; Blum, M.R.; Barton, N. and de Miranda, P.: Pharmacokinetics of acyclovir in humans following intravenous administration. A model for the development of parenteral antivirals. American Journal of Medicine 73 (Suppl.): 165–171 (Jul 1982b).PubMedCrossRefGoogle Scholar
  66. Yeager, A.S.: Use of acyclovir in premature and term neonates. American Journal of Medicine 73 (Suppl.): 205–209 (Jul 1982).PubMedCrossRefGoogle Scholar

Copyright information

© ADIS Press Australasia Pty Ltd. 1983

Authors and Affiliations

  • Oscar L. Laskin
    • 1
  1. 1.Division of Clinical Pharmacology, Department of Medicine and PharmacologyCornell University Medical CollegeNew YorkUSA

Personalised recommendations