Advertisement

Clinical Pharmacokinetics

, Volume 6, Issue 4, pp 259–274 | Cite as

Drug Metabolism by the Gastrointestinal Mucosa

  • Charles F. George
Article

Abstract

Circumstantial evidence for first-pass metabolism across the gastrointestinal mucosa includes reduced bioavailability after oral administration, despite complete or good absorption. There may also be route-dependent variation in the pattern of metabolism with the latter occurring to a greater extent after oral administration than after parenteral injection. However, direct proof that first-pass metabolism takes place across the gastrointestinal mucosa relies upon cannulation of either the portal or mesenteric venous tree. Such studies are not possible in most patients because of the potential hazards involved and the attendant ethical considerations. Additional information has come from the study of enzyme activity in biopsies of intestinal mucosa and experiments performed on isolated loops of intestine in various animal species. Although the former have identified the fact that enzyme activity may vary along the length of the intestine and the latter have provided quantitative information on what can occur in vivo, these data cannot be extrapolated to intact man.

Both phase I (preconjugation) and phase II (conjugation) reactions have been described. However, except for oxidative deamination, e.g. tyramine and hydrolysis of esters such as pivampicillin and aspirin, phase I reactions appear to be quantitatively unimportant. In contrast, synthetic reactions are much more active. Sulphate conjugation, in particular, is important for the β-adrenoceptor stimulants isoprenaline (isoproterenol), isoetharine and rimiterol, as well as for steroid hormones. Glucuronidation has also been demonstrated to occur in man for a small number of drugs. N-Acetylation is an important pathway and, as in the liver, there is evidence of polymorphism. Metabolism of hydralazine, isoniazid, p-aminosalicylic acid as well as certain sulphonamides by intestinal N-acetyl transferase has been demonstrated, but in all probability affects other drugs as well.

Little is known concerning the physiological factors which alter the activity of the gastrointestinal drug-metabolising enzymes. However, significant drug-drug interactions have been demonstrated to occur at this site — particularly for drugs which undergo sulphate conjugation.

Keywords

Isoprenaline Methyldopa Phenacetin Gastrointestinal Mucosa Sulphate Conjugate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J.G.; Atherton, F.R.; Hall, M.J.; Hassall, Ch.; Holmes, S.W.; Lambert, R.W.; Nisbet, L.J. and Ringrose, P.S.: Phosphonopeptides, a new class of synthetic antibacterial agents. Nature 272: 56–58 (1978).PubMedCrossRefGoogle Scholar
  2. Back, D.J.; Bates, M.; Breckenridge, A.M.; Crawford, F.E.; Ellis, A.; Hall, J.M.; MacIver, M.; Orme, M. L’E. and Rowe, P.H.: The in vitro metabolism of ethinyloestradiol, levonorgestrel and mestranol by human jejunal mucosa. British Journal of Clinical Pharmacology 9: 281–282P (1980).CrossRefGoogle Scholar
  3. Back, D.J.; Breckenridge, A.M.; Crawford, F.E.; MacIver, M.; Orme, M. L’E.; Rowe, P.H. and Watts, M.J.: An investigation of the pharmacokinetics of ethinyloestradiol in women using radioimmunoassay. Contraception 20: 263–273 (1979).PubMedCrossRefGoogle Scholar
  4. Back, D.J.; Bates, M.; Breckenridge, A.M.; Crawford, F.; Ellis, A.; Hall, J.M.; MacIver, M.; Orme, M.L’E.; Taylor, I. and Rovve, P.H.: Drug metabolism by gastrointestinal mucosa: Clinical aspects; in Prescott and Nimmo (Eds) Drug Absorption, pp.80–87 (ADIS, Sydney 1981).Google Scholar
  5. Barr, W.H. and Riegelman, S.: Intestinal drug absorption and metabolism. 1: Comparison of methods and models to study physiological factors of in vitro and in vivo intestinal absorption. Journal of Pharmaceutical Sciences 59: 154–163 (1970a).PubMedCrossRefGoogle Scholar
  6. Barr, W.H. and Riegelman, S.: Intestinal drug absorption and metabolism. II: Kinetic aspects of intestinal glucuronide conjugation. Journal of Pharmaceutical Sciences 59: 164–168 (1970b).PubMedCrossRefGoogle Scholar
  7. Bateman, D.N.; Kahn, C. and Davies, D.S.: The pharmacokinetics of metoclopramide in man with observations in the dog. British Journal of Clinical Pharmacology 9: 371–378 (1980).PubMedCrossRefGoogle Scholar
  8. Bennett, P.N.; Blackwell, E.W. and Davies, D.S.: Competition for sulphate during detoxification in the gut. Nature 258: 247–248 (1975).PubMedCrossRefGoogle Scholar
  9. Blondheim, S.H. and Kunkel, H.G.: Portal blood in collateral veins of patients with cirrhosis. Acetylation by the intestine. Proceedings of the Society for Experimental Biology and Medicine 73: 38–41 (1950).PubMedGoogle Scholar
  10. Boström, H.; Brömster, D.; Nordenstam, H. and Wengle, B.: On the occurrence of phenol and steroid sulphokinases in the human gastrointestinal tract. Scandinavian Journal of Gastroenterology 3: 369–375 (1968).PubMedCrossRefGoogle Scholar
  11. Brittain, R.T.: A comparison of the pharmacology of salbutamol with that of isoprenaline, orciprenaline and trimetoquinol. Postgraduate Medical Journal 47 (Suppl.): 11–16 (1971).PubMedGoogle Scholar
  12. Brunk, S.F. and Delle, M.: Morphine metabolism in man. Clinical Pharmacology and Therapeutics 16: 51–57 (1974).PubMedGoogle Scholar
  13. Buhs, R.P.; Beck, J.L.; Speth, O.C.; Smith, J.L.; Trenner, N.R.; Cannon, P.J. and Laragh, J.H.: The metabolism of methyldopa in hypertensive human subjects. Journal of Pharmacology and Experimental Therapeutics 143: 205–214 (1964).PubMedGoogle Scholar
  14. Caldwell, J.: The metabolism of drugs by the gastrointestinal tract; in George et al. (Eds) Presystemic Drug Elimination (Butterworths, London, in press 1981).Google Scholar
  15. Christophersen, E.B. and Jackson, F.C.: A technique of trans-umbilical portal vein catheterisation in adults. Archives of Surgery 95: 960–963 (1967).PubMedCrossRefGoogle Scholar
  16. Conney, A.H.; Pantuck, E.J.; Hsiao, K-C.; Garland, W.A.; Anderson, K.E.; Alvarez, A.P. and Kappas, A.: Enhanced phenacetin metabolism in human subjects fed charcoal-broiled beef. Clinical Pharmacology and Therapeutics 20: 633–642 (1976).PubMedGoogle Scholar
  17. Conolly, M.E.; Davies, D.S.; Dollery, C.T.; Morgan, C.D.; Paterson, J.W. and Sandler, M.: Metabolism of isoprenaline in dog and man. British Journal of Pharmacology 46: 458–472 (1972).PubMedCrossRefGoogle Scholar
  18. Cotler, S.; Holazo, A.; Boxenbaum, H.G. and Kaplan, S.A.: Influence of route of administration on physiological availability of levodopa in dogs. Journal of Pharmaceutical Sciences 65: 822–827 (1976).PubMedCrossRefGoogle Scholar
  19. Coutinho, C.B.; Spiegel, H.E.; Kaplan, S.A.; Yu, M.; Christian, R.P.; Carbone, J.J.; Symington, J.; Cheripko, J.A.; Lewis, M.; Tonchen, A. and Crews, T.: Kinetics of absorption and excretion of levodopa in dogs. Journal of Pharmaceutical Sciences 60: 1014–1019 (1971).PubMedCrossRefGoogle Scholar
  20. Curry, S.H.; D’Mello, A. and Mould, G.P.: Destruction of chlorpromazine during absorption in the rat in vivo and in vitro. British Journal of Pharmacology 42: 403–411 (1971).PubMedCrossRefGoogle Scholar
  21. Dahl, S.G. and Strandjord, R.E.: Pharmacokinetics of chlorpromazine after single and chronic dosage. Clinical Pharmacology and Therapeutics 21: 437–448 (1977).PubMedGoogle Scholar
  22. Das, K.M. and Dubin, R.: Clinical pharmacokinetics of sulphasalazine. Clinical Pharmacokinetics 1: 406–425 (1976).PubMedCrossRefGoogle Scholar
  23. Davies, D.S.; George, C.F.; Blackwell, E.W.; Conolly, M.E. and Dollery, C.T.: Metabolism of terbutaline in man and dog. British Journal of Clinical Pharmacology 1: 129–136 (1974).PubMedCrossRefGoogle Scholar
  24. Davies, D.S.; Ilett, K.F. and George, C.F.: Drug metabolism by intestinal mucosa. Clinical Pharmacokinetics. In press (1980).Google Scholar
  25. Dencker, H.; Dencker, S.J.; Green, A. and Nagy, A.: Intestinal absorption, demethylation and enterohepatic circulation of imipramine. Clinical Pharmacology and Therapeutics 19: 584–586 (1976).PubMedGoogle Scholar
  26. Diamond, M.A.; Murray, R.H. and Schmid, P.G.: Idiopathic postural hypotension: Physiologic observations and report of a new mode of therapy. Journal of Clinical Investigation 49: 1341–1348 (1970).PubMedCrossRefGoogle Scholar
  27. Diczfalusy, E.; Franksson, C.; Lisboa, B.P. and Martinsen, B.: Formation of estrone glucosiduronate by the human intestinal tract. Acta Endocrinologica 40: 537–551 (1962).PubMedGoogle Scholar
  28. Diczfalusy, E.; Franksson, C. and Martinsen, B.: Oestrogen conjugation by the human intestinal tract. Acta Endocrinologica 38: 59–72 (1961).PubMedGoogle Scholar
  29. Dollery, C.T.; George, C.F. and Orme, M.L’E.: Drug interactions affecting cardiovascular therapy; in Cluff and Petrie (Eds) Clinical Effects of Interaction between Drugs, pp.117–151 (Excerpta Medica, Amsterdam 1974).Google Scholar
  30. Evans, M.E.; Shenfield, G.M.; Thomas, N.; Walker, S.R. and Paterson, J.W.: The pharmacokinetics of rimiterol in man. Xenobiotica 4: 681–692 (1974).CrossRefGoogle Scholar
  31. Evans, M.E.; Walker, S.R.; Brittain, R.T. and Paterson, J.W: The metabolism of salbutamol in man. Xenobiotica 3: 113–120 (1973).PubMedCrossRefGoogle Scholar
  32. George, C.F.: Drug kinetics and hepatic blood flow. Clinical Pharmacokinetics 4: 433–448 (1979).PubMedCrossRefGoogle Scholar
  33. George, C.F.; Blackwell, E.W. and Davies, D.S.: Metabolism of isoprenaline in the intestine. Journal of Pharmacy and Pharmacology 26: 265–267 (1974).PubMedCrossRefGoogle Scholar
  34. George, C.F.; Higgins, V.; Power, K.J.; Renwick, A.G. and Smith, C.L.: Pharmacokinetics of methyldopa in gastrointestinal disease. British Journal of Clinical Pharmacology 9: 109–110P (1980).CrossRefGoogle Scholar
  35. George, C.F.; Orme, M.L’E.; Buranapong, P.; Macerlean, D.; Breckenridge, A.M. and Dollery, C.T.: Contribution of the liver to overall elimination of propranolol. Journal of Pharmacokinetics and Biopharmaceutics 4: 17–27 (1976).PubMedGoogle Scholar
  36. Goldin, B.R. and Goldman, P.: The metabolism of dopa: The role of the intestinal microflora. Federation Proceedings 32: 798 (1973).Google Scholar
  37. Harris, P.A. and Riegelman, S.: Influence of the route of administration on the area under the plasma concentration-time curve. Journal of Pharmaceutical Sciences 58: 71–75 (1969).PubMedCrossRefGoogle Scholar
  38. Hartiala, K.: Metabolism of hormones, drugs and other substances by the gut. Physiological Reviews 53: 496–534 (1973).PubMedGoogle Scholar
  39. Hayes, A. and Cooper, R.G.: Studies on the absorption, distribution and excretion of propranolol in rat, dog and monkey. Journal of Pharmacology and Experimental Therapeutics 176: 302–311 (1971).PubMedGoogle Scholar
  40. Hinderung, P.H.; Garrett, E.R. and Webster, R.C.: Pharmacokinetics of β-methyl digoxin in healthy humans. I. Intravenous studies. Journal of Pharmaceutical Sciences 66: 242–253 (1977a).CrossRefGoogle Scholar
  41. Hinderung, P.H.; Garrett, E.R. and Webster, R.C.: Pharmacokinetics of β-methyl digoxin in healthy humans II. Oral studies and bioavailability. Journal of Pharmaceutical Sciences 66: 314–325 (1977b).CrossRefGoogle Scholar
  42. Hollister, L.E. and Curry, S.H.: Urinary excretion of chlorpromazine metabolites following single doses and in steady state conditions. Research Communications in Chemical Pathology and Pharmacology 2: 330–338 (1971).PubMedGoogle Scholar
  43. Hollister, L.E.; Curry, S.H.; Derr, J.E. and Kanter, S.L.: Studies of delayed-action medications. V. Plasma levels and urinary excretion of four different dosage forms of chlorpromazine. Clinical Pharmacology and Therapeutics 11: 49–59 (1970).PubMedGoogle Scholar
  44. Holzbauer, M. and Youdim, M.B.H.: The oestrous cycle and monoamine oxidase activity. British Journal of Pharmacology 48: 600–608 (1973).PubMedCrossRefGoogle Scholar
  45. Humpel, M.; Wendt, H.; Pommerenke, G., Weib, Chr. and Speck, U.: Investigations of pharmacokinetics of levonorgestrel to specific consideration of a possible first-pass effect in women. Contraception 17: 207–220 (1978).PubMedCrossRefGoogle Scholar
  46. Ilett, K.F.; Dollery, C.T. and Davies, D.S.: Isoprenaline conjugation — a ‘true first-pass effect’ in the dog intestine. Journal of Pharmacy and Pharmacology 32: 362 (1980).PubMedCrossRefGoogle Scholar
  47. Ilett, K.F.; George, C.F. and Davies, D.S.: The effect of monoamine oxidase inhibitors on ‘first-pass’ metabolism of tyramine in dog intestine. Biochemical Pharmacology 29: 2551–2556 (1980).PubMedCrossRefGoogle Scholar
  48. Iwamoto, K. and Klassen, C.D.: First-pass effect of morphine in rats. Journal of Pharmacology and Experimental Therapeutics 200: 236–244 (1977a).PubMedGoogle Scholar
  49. Iwamoto, K. and Klassen, C.D.: First-pass effect of nalorphine in rats. Journal of Pharmacology and Experimental Therapeutics 203: 365–376 (1977b).PubMedGoogle Scholar
  50. Jenne, J.W.: Isoniazid acetylation by human liver and intestinal mucosa. Federation Proceedings 22: 540 (1963).Google Scholar
  51. Jenne, J.W.: Partial purification and properties of the isoniazid transacetylase in human liver. Its relationship to the acetylation of p-aminosalicylic acid. Journal of Clinical Investigation 44: 1992–2002 (1965).CrossRefGoogle Scholar
  52. Karim, A.: Spironolactone: Disposition, metabolism, pharmacodynamics and bioavailability. Drug Metabolism Reviews 8: 151–188 (1978).PubMedCrossRefGoogle Scholar
  53. Kwan, K.C.; Foltz, E.L.; Breault, C.O.; Baer, J.E. and Totaro, J.A.: Pharmacokinetics of methyldopa in man. Journal of Pharmacology and Experimental Therapeutics 198: 264–277 (1976).PubMedGoogle Scholar
  54. Leigh, D.A.; Reeves, D.S.; Simmons, K.; Thomas, A.L. and Wilkinson, P.J.: Talampicillin: A new derivative of ampicillin. British Medical Journal 1: 1378–1380 (1976).PubMedCrossRefGoogle Scholar
  55. Levine, R.J. and Sjoerdsma, A.: Estimation of monoamine oxidase activity in man: Techniques and applications. Annals of the New York Academy of Sciences 107: 966–974 (1963).PubMedCrossRefGoogle Scholar
  56. Levy, G. and Matsuzawa, T.: Pharmacokinetics of salicylamide elimination in man. Journal of Pharmacology and Experimental Therapeutics 156: 285–293 (1967).PubMedGoogle Scholar
  57. Lund, B.; Kampmann, J.P.; Lindahl, F. and Hansen, J.M.: Pivampicillin and ampicillin in bile, portal and peripheral blood. Clinical Pharmacology and Therapeutics 19: 587–591 (1976).PubMedGoogle Scholar
  58. Mahon, W.A.; Inaba, T. and Stone, R.M.: Metabolism of flurazepam by the small intestine. Clinical Pharmacology and Therapeutics 22: 228–233 (1977).PubMedGoogle Scholar
  59. Mandelli, M.; Tognoni, G. and Garattini, S.: Clinical pharmacokinetics of diazepam. Clinical Pharmacokinetics 3: 72–91 (1978).PubMedCrossRefGoogle Scholar
  60. Mearrick, P.T.; Wade, D.N.; Birkett, D.J. and Morris, J.: Metoclopramide, gastric emptying and 1-dopa absorption. Australian and New Zealand Journal of Medicine 4: 144 (1974).PubMedCrossRefGoogle Scholar
  61. Melander, A.: Influence of food on the bioavailability of drugs. Clinical Pharmacokinetics 3: 337–351 (1978).PubMedCrossRefGoogle Scholar
  62. Pantuck, E.J.; Hsiao, K.-C.; Kaplan, S.A.; Kuntzman, R. and Conney, A.H.: Effects of enzyme induction on intestinal phenacetin metabolism in the rat. Journal of Pharmacology and Experimental Therapeutics 191: 45–52 (1974).PubMedGoogle Scholar
  63. Pantuck, E.J.; Hsiao, K.C.; Kuntzman, R. and Conney, A.H.: Intestinal metabolism of phenacetin in the rat: effect of charcoal-broiled beef and rat chow. Science 187: 744–746 (1975).PubMedCrossRefGoogle Scholar
  64. Prescott, L.F.; Buhs, R.P.; Beattie, J.O.; Speth, O.C.; Trenner, N.R. and Lasagna, L.: Combined clinical and metabolic study of the effects of alphamethyldopa on hypertensive patients. Circulation 34: 308–321 (1966).PubMedCrossRefGoogle Scholar
  65. Rance, M.J. and Shillingford, S.S.: The metabolism of phenolic opiates by rat intestine. Xenobiotica 7: 529–536 (1977).PubMedCrossRefGoogle Scholar
  66. Redwood, D.: Conservative treatment of chronic heart block. British Medical Journal 1: 26–29 (1969).PubMedCrossRefGoogle Scholar
  67. Reid, J.L.; Calne, D.B.; George, C.F. and Vakil, S.D.: The action of L(−)dopa on baroreflexes in Parkinsonism. Clinical Science 43: 851–859 (1972).PubMedGoogle Scholar
  68. Rivera Calimlim, L.; Dujovne, C.A.; Morgan. J.P.; Lasagna, L. and Bianchine, J.R.: Absorption and metabolism of L-Dopa by the human stomach. European Journal of Clinical Investigation 1: 313–320 (1971).PubMedCrossRefGoogle Scholar
  69. Rivera-Calimlim, L.; Morgan, J.P.; Dujovne, C.A.; Bianchine, J.R. and Lasagna, L.: L-3,4-dihydroxyphenyalanine metabolism by the gut in vitro. Biochemical Pharmacology 20: 3051–3057 (1971).PubMedCrossRefGoogle Scholar
  70. Routledge, P.A. and Shand, D.G.: Presystemic drug elimination. Annual Review of Pharmacology and Toxicology 19: 447–468 (1979).PubMedCrossRefGoogle Scholar
  71. Rowland, M.; Riegelman, S.; Harris, P.A.; Sholkoff, S.D. and Eyring, E.J.: Kinetics of acetylsalicylic acid disposition in man. Nature 215: 413–414 (1967).PubMedCrossRefGoogle Scholar
  72. Sandler, M.; Goodwin, B.C.; Ruthven, C.R.J. and Calne, D.B.: Therapeutic implications in Parkinsonism of m-Tyramine formation from L-dopa in man. Nature 229: 414–416 (1971).PubMedCrossRefGoogle Scholar
  73. Sandler, M.; Karoum, F.; Ruthven, C.R.J. and Calne, D.B.: m-Hydroxy phenylacetic acid formation from L-dopa in man: Suppression by neomycin. Science 166: 1417–1418 (1969).PubMedCrossRefGoogle Scholar
  74. Sandler, M.; Ruthven, C.R.J.; Goodwin, B.L.; Hunter, K.R. and Stern, G.M.: Variation of levodopa metabolism with gastrointestinal absorption site. Lancet 1: 238–239 (1974).PubMedCrossRefGoogle Scholar
  75. Sjoerdsma, A.; Vendsalu, A. and Engelman, K.: Studies on the metabolism and mechanism of action of methyldopa. Circulation 28: 492–502 (1963).PubMedCrossRefGoogle Scholar
  76. Southgate, J.; Grant, E.C.G.; Pollard, W.; Pryse-Davies, J. and Sandler, M.: Cyclical variations in endometrial monoamine oxidase: Correlation of histochemical and quantitative biochemical assays. Biochemical Pharmacology 17: 721–726 (1968).PubMedCrossRefGoogle Scholar
  77. Spencer, R.P.; Brody, K.R. and Lutters, B.M.: Some effects of ethanol on the gastrointestinal tract. American Journal of Digestive Diseases 9: 599–604 (1964).PubMedCrossRefGoogle Scholar
  78. Talseth, T.: Studies on hydralazine. III. Bioavailability of hydralazine in man. European Journal of Clinical Pharmacology 10: 395–401 (1976).PubMedCrossRefGoogle Scholar
  79. Talseth, T.: Clinical pharmacokinetics of hydrallazine. Clinical Pharmacokinetics 2: 317–329 (1977).PubMedCrossRefGoogle Scholar
  80. Wattenberg, L.W.; Leong, J.L. and Strand, P.J.: Benzpyrene hydroxylase activity in the gastrointestinal tract. Cancer Research 22: 1120–1125 (1962).PubMedGoogle Scholar
  81. Weber, W.W. and Hein, D.W.: Clinical pharmacokinetics of isoniazid. Clinical Pharmacokinetics 4: 401–422 (1979).PubMedCrossRefGoogle Scholar
  82. Williams, F.M.; Briant, R.H.; Dollery, C.T. and Davies, D.S.: The influence of the route of administration on urinary metabolites of isoetharine. Xenobiotica 4: 345–353 (1974).PubMedCrossRefGoogle Scholar
  83. Youdim, M.B.H.; Woods, H.F.; Mitchell, B.; Grahame-Smith, D.G. and Calender, S.: Human platelet monoamine oxidase activity in iron-deficiency anaemia. Clinical Science and Molecular Medicine 48: 289–295 (1975).PubMedGoogle Scholar

Copyright information

© ADIS Press Australasia Pty Ltd. 1981

Authors and Affiliations

  • Charles F. George
    • 1
  1. 1.Clinical Pharmacology GroupUniversity of SouthamptonSouthamptonEngland

Personalised recommendations