Clinical Pharmacokinetics

, Volume 2, Issue 1, pp 61–70 | Cite as

Pharmacokinetic Interactions with Rifampicin

  • W. Zilly
  • D. D. Breimer
  • E. Richter


Rifampicin, a potent antituberculosis agent, is frequently combined with other antituberculosis drugs, or with drugs belonging to entirely different classes which may be required during a long period of antituberculous treatment, and therefore has a potential for drug interactions of practical clinical importance.

The absorption of rifampicin is markedly decreased when it is simultaneously administered with para-aminosalicylic acid granules, due to adsorption by an excipient, bentonite. Several clinical observations and investigations have indicated that rifampicin itself accelerates the metabolism of various other compounds, including oral anticoagulants, the contraceptive pill, oral hypoglycaemic agents and digitoxin.

Rifampicin seems to be a potent inducer of drug metabolism in humans and it causes a proliferation of the smooth endoplasmatic reticulum and an increase of cytochrome P450 content in the liver. It also increases its own rate of desacetylation. However, of the lest compounds hexobarbitone and tolbutamide, the metabolic clearance increased 2- to 3-fold following rifampicin treatment, whereas antipyrine clearance was unaltered. This indicates that there is a certain selectivity in the enzyme induction effect of rifampicin, although it remains unclear which compound will and which will not be affected.

Rifampicin may also possibly interfere with hepatic uptake of other compounds, but the clinical significance of this type of interaction has not been clearly demonstrated. On the other hand, oral probenecid significantly increases the serum level of rifampicin, probably due to a similar depression of hepatic uptake.


Rifampicin Tolbutamide Half Life Pharmacokinetic Interaction Phenobarbitone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acocella, G. and Billing, B.H.: The effect of rifamycin SV on bile pigment excretion in rats. Gastroenterology 49: 526–530 (1965).PubMedGoogle Scholar
  2. Acocella, G.; Bonollo, L.; Garimoldi, M.; Mainardi, M.; Tenconi, L.T. and Nicolis, F.B.: Kinetics of rifampicin and isoniacid administered alone and in combination to normal subjects and patients with liver disease. Gut 13: 47–53 (1972a).PubMedCrossRefGoogle Scholar
  3. Acocella, G., Bonollo, L.; Mainardi, M.; Margarolli, P. and Nicolis, F.B.: Kinetic studies on rifampicin. III. Effect of phenobarbital on the half-life of the antibiotic. Tijdschrift voor Gastro-Enterologie 17: 151–158 (1974).PubMedGoogle Scholar
  4. Acocella, G.; Nicolis, F.B. and Tenconi, L.T.: The effect of an intravenous infusion of rifamycin SV on the excretion of bilirubin, bromsulphalein and indocynine green in man. Gastroenterology 49: 521–525 (1965).PubMedGoogle Scholar
  5. Alien, B.W.; Ellard, G.A.; Mitchison, D.A.; Hatfield, A.R.W.; Kenwright, S. and Levi, A.J.: Probenecid and serum rifampicin. Lancet 2: 1309 (1975).CrossRefGoogle Scholar
  6. Beran, G.: Der Einfluss der Rifampicintherapie auf die orale Antikoagulation mit Acenocumarol. Praxis der Pneumologie 26: 350–353 (1972).Google Scholar
  7. Boekhout-Mussert, M.J.; Bieger, R.; Van Brummelen, P. and Lemkes, H.H.P.J.: Inhibition by rifampicin of the anticoagulant effect of phenprocoumon. Journal of the American Medical Association 229: 1903–1904 (1974).PubMedCrossRefGoogle Scholar
  8. Bolt, H.M.; Kappus, H. and Bolt, M.: Effect of rifampicin treatment on the metabolism of oestradiol and 17α-ethinyloestradiol by human liver microsomes. European Journal of Clinical Pharmacology 8: 301–307 (1975).PubMedCrossRefGoogle Scholar
  9. Boman, G.: Serum concentration and half-life of rifampicin after simultaneous oral administration on aminosalicylic acid or isoniacid. European Journal of Clinical Pharmacology 7: 217–225 (1974).PubMedCrossRefGoogle Scholar
  10. Boman, G.; Hanngren, A.; Malborg, A.S.; Borga, O. and Sjöqvist, F.: Drug interaction: decreased serum concentrations of rifampicin when given with PAS. Lancet 1: 800 (1971).PubMedCrossRefGoogle Scholar
  11. Boman, G.; Lundgren, P. and Stjernström, G.: Mechanism of the inhibitory effect of PAS granules on the absorption of rifampicin: adsorption of rifampicin by an excipient, bentonite. European Journal of Clinical Pharmacology 8: 293–299 (1975).PubMedCrossRefGoogle Scholar
  12. Breimer, D.D.; Zilly, W. and Richter, E.: The influence of rifampicin on drug metabolism in humans: discrepancy between hexobarbital and antipyrine. Clinical Pharmacology and Therapeutics. In Press (1976).Google Scholar
  13. Bush, M.T. and Weller, W.L.: Metabolic fate of hexobarbital (HB). Drug Metabolism Reviews 1: 249–290 (1972).CrossRefGoogle Scholar
  14. Conney, A.H.: Pharmacological implications of microsomal enzyme induction. Pharmacological Reviews 19: 317–366 (1967).PubMedGoogle Scholar
  15. Curci, G.; Ninni, A. and Jodice, F.: Quelques considerations sur la pharmacocinetique de la rifampicine. Acta Tuberculosea et Pneumologica Belgia 60: 276–287 (1969).Google Scholar
  16. Curci, G.; Ninni, A. and Fabbrocini, V.: Ricerche sul legame farmacoproteico e sul metabolismo della Rifampicina. Riforma Medica 8: 1–18 (1970).Google Scholar
  17. De Rautlin de la Roy, Y.; Beauchant, G.; Brenil, K. and Patte, F.: Diminution du taux serique de rifampiane per le phenobarbital. Presse Medicale 79: 350 (1971).Google Scholar
  18. Edwards, O.M.; Courtenoy-Evans, R.J.; Galley, J.M.; Hunter, J. and Tait, A.D.: Changes in Cortisol metabolism following rifampicin therapy. Lancet 2: 549–551 (1974).CrossRefGoogle Scholar
  19. Fallon, R.J.; Lees, A.W.; Allan, G.W.; Smith, J. and Tyrrell, W.F.: Probenecid and rifampicin serum levels. Lancet 2: 792–794 (1975).PubMedCrossRefGoogle Scholar
  20. Furesz, S.; Scotti, R.; Pallanza, R. and Mapelli, E.: Rifampicin: a new Rifamycin. III: Absorption, distribution and elimination in man. Arzneimittelforschung 17: 534–537 (1967).PubMedGoogle Scholar
  21. Gelber, R.H.; Gooi, H.C. and Rees, R.J.W.: The effect of rifampicin on dapsone metabolism. Proceedings of Western Pharmacological Society 18: 330–334 (1975).Google Scholar
  22. Grassi, G.G. and Grassi, C.: Ethanol- antibiotic interactions at hepatic level. International Journal of Clinical Pharmacology 11: 216–225 (1975).Google Scholar
  23. Grassi, G.G.; de Santis, G. and Giura, R.: Attivita dei microsomi polmonari sulla metabolizzazione di farmaci antitubercolari. Giornale Italiano Di Chemotherapia 19: 72–78 (1972).Google Scholar
  24. Greenberger, N.J. and Thomas, F.B.: Biliary excretion of 3H-digitoxin: modification by bile salts and phenobarbital. Journal of Laboratory and Clinical Medicine 81: 241–251 (1973).PubMedGoogle Scholar
  25. Hakim, J.; Fledmann, G.; Boivin, P.; Troube, H.; Boucherot, J.; Penaud, J., Guibout, P. and Kreis, B.: Comparative study of hepatic bilirubin and paranitrophenol glucuronyl transferase activities. III. Effect of rifampicin alone or associated with streptomycin and isoniazid in man. Pathologie-Biologie 21: 255–263 (1973).PubMedGoogle Scholar
  26. Held, H.; Eisert, R. and von Oldershausen, H.F.: Pharmakokinetik von Glymidine (Glycodiazin) und Tolbutamid bei akuten und chronischen Leberschäden. Arnzeimttelforchung 23: 1801–1807 (1973).Google Scholar
  27. Held, H.; Schoene, B.; Laar, H.J. and Fleischmann, R.: Die Aktivität der Benzepyrenhydroxylase im Leberpunktat des Menschen in vitro und ihre Beziehung zur Eliminationsgeschwindigkeit von Glycodiazin in vivo. Verhandlungen der Deutschen Gesellschaft für Innere Medizin 80: 501–503 (1974).PubMedGoogle Scholar
  28. Hempel, E. and Klinger, W.; Drug stimulated biotransformation of hormonal steroid contraceptives: Clinical implications. Drugs 12: 442–448 (1976).PubMedCrossRefGoogle Scholar
  29. Hirsch, A.; Tillement, J.P. and Chretien, J.: Unfavourable effect of rifampicin on oral contraceptives. Report of three undesired pregnancies observed in two patients. Revues Francaise des Maladies Respiratoires 3: 174 (1975).Google Scholar
  30. Hunter, J.; Maxwell, J.D.; Steward, D.A.; Carella, M. and Williams, R.: Urinary D-glucaric acid excretion and total liver content of cytochrome P-450 in guinea pigs: relationship during enzyme induction and following inhibition of protein synthesis. Biochemical Pharmacology 22: 743–747 (1973).PubMedCrossRefGoogle Scholar
  31. Ikeda, M.; Conney, A.H. and Burns, J.J.: Stimulatory effect of phenobarbital and insecticides on warfarin metabolism in the rat. Journal of Pharmacology and Experimental Therapeutics 162: 338–343 (1968).PubMedGoogle Scholar
  32. Jezequel, A.M.; Orlandi, F. and Tenconi, L.T.: Changes of the smooth endoplasmic reticulum induced by rifampicin in human and guinea-pig hepatocytes. Gut 12: 984–987 (1971).PubMedCrossRefGoogle Scholar
  33. Keberle, H.; Schmid, K. and Meyer-Brunot, H.G.: The metabolic fate of Rimactane in the animal and in man; in A Symposium on Rimactane p.20–27 (Ciba, Basel 1968).Google Scholar
  34. Kenwright, S. and Levi, A.J.: Impairment of hepatic uptake of rifampicin antibiotics by probenecid and its therapeutic implications. Lancet 2: 1401–1405 (1973).PubMedCrossRefGoogle Scholar
  35. Kenwright, S. and Levi, A.J.: Sites of competition in the selective hepatic uptake of rifamycin-SV, flavaspidic acid, bilirubin and bromsulphthalein. Gut 15: 220–226 (1974).PubMedCrossRefGoogle Scholar
  36. Kreek, M.J.; Garfield, J.W.; Gutjahr, C.L. and Giusti, L.M.: Rifampin-induced methadone withdrawal. New England Journal of Medicine 294: 1104–1106 (1976).PubMedCrossRefGoogle Scholar
  37. Kropp, R.: Rifampicin and Ovulationshemmer. Praxis der Pneumologie 28: 270 (1974).Google Scholar
  38. Lu, A.Y.H.; Levin, W.; Ryan, D.; West, S.B.; Thomas, P.; Kowalek, J.; Kuntzmann, R. and Conney, A.H.: Induction of different types of cytochrome P-450 in liver microsomes by drugs and carcinogens; in Anticonvulsant Drugs and Enzyme Induction, pp. 169–183 (Associated Scientific Publishers, Amsterdam 1976).Google Scholar
  39. Maggi, N.; Furesz, S.; Pallanza, R. and Pelizza, G.: Rifampicin desacetylation in the human organism. Arzneimittel-Forschung 19: 651–654 (1969).PubMedGoogle Scholar
  40. Michot, F.; Burgi, M. and Buttner, J.: Rimactan (Rifamipizin) und Antikoagulantientherapie. Schweizer Medizinische Wochenschrift 100: 583–584 (1970).Google Scholar
  41. Mitchell, J.R. and Jollows, D.J.: Metabolic activation of drugs to toxic substances. Gastroenterology 68: 392–410 (1975).PubMedGoogle Scholar
  42. Nitti, V.; Ninni, A.; Meola, G.; Julians, A. and Curci, G.: Comparative investigations of the enzyme-inducing activity of rifampicin and barbiturates in man. Chemotherapy 19: 206–210 (1973).PubMedCrossRefGoogle Scholar
  43. Nitti, V.; Veneri, F.D.; Ninni, A. and Meola, G.: Rifampicin blood serum levels and half-life during prolonged administration in tuberculous patients. Chemotherapy 17: 121–129 (1972).PubMedCrossRefGoogle Scholar
  44. Nocke-Finck, L.; Breuer, H. and Reimers, D.; Wirkung von Rifampicin auf den Menstruationszyklus und die Ostrogenausscheidung bei Einnahme oraler Kontrazeptiva. Deutsche Medizinische Wochenschrift 98: 1521–1523 (1973).PubMedCrossRefGoogle Scholar
  45. Otani, G. and Remmer, H.: Participation of microsomal NADPH-cytochrome c reductase in the metabolism of rifampicin. Naunyn-Schmiederberg’s Archivs for Pharmacology 287 (Suppl.): R76 (1975).Google Scholar
  46. Pessayre, D. and Mazel, P.: Induction and inhibition of hepatic drug metabolizing enzymes by rifampicin. Biochemical Pharmacology 25: 943–949 (1976).PubMedCrossRefGoogle Scholar
  47. Peters, U.; Hausamen, T.U. and Grosse-Brockhoff, F.: Enfluss von Tuberkulostatika auf die Pharmakokinetik des Digitoxins. Deutsche Medizinische Wochenschrift 99: 2381–2386 (1974).PubMedCrossRefGoogle Scholar
  48. O’Reilly, R.A.: Interactions of sodium warfarin and rifampicin. Studies in man. Annals of Internal Medicine 81: 337–340 (1974a).PubMedGoogle Scholar
  49. O’Reilly, R.A.: Pharmacodynamics of the oral anticoagulant drugs; in Spaet (Ed) Progress in Hemostasis and Thrombosis, vol 2, p. 175–213 Grune and Stratum, New York, 1974b).Google Scholar
  50. Reimers, D. and Jezek, A.: Rifampicin and andere Anti-tuberkulotika bei gleichzeitiger oraler Kontrazeption. Praxis der Pneumologie 25: 255–262 (1971).Google Scholar
  51. Reiss, W.; Schmid, K.; Keberle, H.; Dettli, L. and Spring, P.: Pharmacokinetic studies in the field of rifamycins; in proceedings of the 6th International Congress on Chemotherapy, p.80–88 (Tokyo 1969).Google Scholar
  52. Schoene, B.; Fleischmann, R.A. and Remmer, H.: The cytochrome P-450 content and the activities of various microsomal enzymes in human liver. Proceedings of the European Society for the Study of Drug Toxicity 13: 249–253 (1973).Google Scholar
  53. Skolnick, J.L.; Szg, B.S.; Katz, D.B. and Anderson, W.H.: Rifampin, oral contraceptives, and pregnancy. Journal of the American Medical Association 236: 1382 (1976).PubMedCrossRefGoogle Scholar
  54. Syvälahti, E.K.G.; Pihlajamäki, K.K. and Iisalo, E.J.: Rifampicin and drug metabolism. Lancet 2: 232–233 (1974).PubMedCrossRefGoogle Scholar
  55. Thomas, R.C. and Ikeda, G.J.: The metabolic fate of tolbutamide in man and in the rat. Journal of Medicinal Chemistry 9: 507–518 (1966).PubMedCrossRefGoogle Scholar
  56. Vessel, E.S. and Page, J.G.: Genetic control of the phenobarbital-induced shortening of plasma antipyrine half-lives in man. Journal of Clinical Investigations 48: 2202–2209 (1969).CrossRefGoogle Scholar
  57. Vöhringer, H.F. and Rietbrock, N.: Metabolism and excretion of digitoxin in man. Clinical Pharmacology and Therapeutics 5: 796–806 (1974).Google Scholar
  58. Zilly, W.; Breimer, D.D. and Richter, E.: Induction of drug metabolism in man after rifampicin treatment measured by increased hexobarbital and tolbutamide clearance. European Journal of Clinical Pharmacology 9: 219–227 (1975a).PubMedCrossRefGoogle Scholar
  59. Zilly, W.; Wernze, H.; Buchenau, D.; Breimer, D.D. and Richter, E.: Enfluss von Rifampicin auf die metabolische Clearance von Galaktose und Antipyrin im Vergleich zu Hexobarbital. Verhandlungen der Deutschen Gesellschaft fur Innere Medizin 81: 1677–1680 (1975b).PubMedGoogle Scholar
  60. Zilly, W.; Breimer, D.D. and Richter, E.: Stimulation of drug metabolism in patients with liver cirrhosis and cholestasis after rifampicin treatment measured by increased hexobarbital and tolbutamide clearance. European Journal of Clinical Pharmacology. In Press (1976a).Google Scholar
  61. Zilly, W.; Frank, W.; Richter, E. and Rietbrock, N.: unpublished results (1976b).Google Scholar

Copyright information

© ADIS Press 1977

Authors and Affiliations

  • W. Zilly
    • 1
    • 2
  • D. D. Breimer
    • 1
    • 2
  • E. Richter
    • 1
    • 2
  1. 1.Department of Internal MedicineUniversity of WürzburgLeidenThe Netherlands
  2. 2.Department of Pharmacology, Subfaculty of PharmacyUniversity of LeidenLeidenThe Netherlands

Personalised recommendations