Skip to main content
Log in

Surgical Site Infections in Older Adults

Epidemiology and Management Strategies

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Surgical site infections (SSIs) represent a major source of morbidity and mortality among older adults. In this review we discuss the epidemiology and risk factors for SSIs among older adults. We also offer an overview of current treatment and management strategies for several common SSIs. Our comments focus on the following areas in order to illustrate issues of clinical importance in the older patient: (i) cardiac surgery; (ii) vascular grafts; (iii) total joint arthroplasty; (iv) breast surgery; and (v) spinal surgeries. Besides being common and relatively specific to older adults, several of these surgical procedures require the use of prosthetic materials or devices, which present unique treatment challenges in the context of infection. When an older adult does develop an SSI, it is critical for clinicians to establish an overall treatment goal for each patient. In the majority of patients, this will be either complete cure or remission followed by suppressive therapy. However, clinicians caring for older adults must consider not only the possibility of microbiological cure, but also balance the need to preserve functional status and overall quality of life. Infections associated with devices and prosthetic material can present unique treatment challenges. Treatment of significant infections often requires prolonged courses of parenteral and/or oral antimicrobial therapy, which can raise issues related to the safety and tolerability of antimicrobial agents, including higher rates of nephrotoxicity. Issues concerning overall functional status, nutritional reserve and medical co-morbidities must be taken into consideration when approaching SSIs in an older adult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Bacchetta MD, Ko W, Girardi LN, et al. Outcomes of cardiac surgery in nonagenarians: a 10-year experience. Ann Thorac Surg 2003; 75(4): 1215–20

    Article  PubMed  Google Scholar 

  2. Chukwuemeka A, Borger MA, Ivanov J, et al. Valve surgery in octogenarians: a safe option with good medium-term results. J Heart Valve Dis 2006; 15(2): 191–6; discussion 196

    PubMed  Google Scholar 

  3. Collart F, Feier H, Kerbaul F, et al. Primary valvular surgery in octogenarians: perioperative outcome. J Heart Valve Dis 2005; 14(2): 238–42; discussion 242

    PubMed  Google Scholar 

  4. Fowler Jr VG, O’Brien SM, Muhlbaier LH, et al. Clinical predictors of major infections after cardiac surgery. Circulation 2005; 112(9 Suppl.): 1358–65

    Google Scholar 

  5. National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 2004; 32(8): 470–85

    Google Scholar 

  6. Paletta CE, Huang DB, Fiore AC, et al. Major leg wound complications after saphenous vein harvest for coronary revascularization. Ann Thorac Surg 2000; 70(2): 492–7

    Article  PubMed  CAS  Google Scholar 

  7. Rupp M. Mediastinitis. In: Mandell G, Douglass R, Dolin R, editors. Principles and practice of infectious diseases. 6th ed. Philadelphia (PA): Churchill-Livingstone, 2005: 1070–8

    Google Scholar 

  8. Mayhall C. Hospital epidemiology and infection control. In: Lew P, Pittet D, Walvogel F, editors. Infections that complicate the insertion of prosthetic devices. 3rd ed. Philadelphia (PA): Lippincott Williams and Wilkins, 2004: 287–310

    Google Scholar 

  9. Trouillet JL, Vuagnat A, Combes A, et al. Acute poststernotomy mediastinitis managed with debridement and closed-drainage aspiration: factors associated with death in the intensive care unit. J Thorac Cardiovasc Surg 2005; 129(3): 518–24

    Article  PubMed  Google Scholar 

  10. Marggraf G, Splittgerber FH, Knox M, et al. Mediastinitis after cardiac surgery: epidemiology and current treatment. Eur J Surg Suppl 1999; (584): 12–6

    Google Scholar 

  11. Tang AT, Ohri SK, Haw MP. Novel application of vacuum assisted closure technique to the treatment of sternotomy wound infection. Eur J Cardiothorac Surg 2000; 17(4): 482–4

    Article  PubMed  CAS  Google Scholar 

  12. Culver DH, Horan TC, Gaynes RP, et al. Surgical wound infection rates by wound class, operative procedure, and patient risk index: National Nosocomial Infections Surveillance system. Am J Med 1991; 91(3B): 152S–7S

    Article  PubMed  CAS  Google Scholar 

  13. Borger MA, Rao V, Weisel RD, et al. Deep sternal wound infection: risk factors and outcomes. Ann Thorac Surg 1998; 65(4): 1050–6

    Article  PubMed  CAS  Google Scholar 

  14. Harrington G, Russo P, Spelman D, et al. Surgical-site infection rates and risk factor analysis in coronary artery bypass graft surgery. Infect Control Hosp Epidemiol 2004; 25(6): 472–6

    Article  PubMed  Google Scholar 

  15. Bitkover CY, Gardlund B. Mediastinitis after cardiovascular operations: a case-control study of risk factors. Ann Thorac Surg 1998; 65(1): 36–40

    Article  PubMed  CAS  Google Scholar 

  16. Lepelletier D, Perron S, Bizouarn P, et al. Surgical-site infection after cardiac surgery: incidence, microbiology, and risk factors. Infect Control Hosp Epidemiol 2005; 26(5): 466–72

    Article  PubMed  Google Scholar 

  17. Garey KW, Kumar N, Dao T, et al. Risk factors for postoperative chest wound infections due to gram-negative bacteria in cardiac surgery patients. J Chemother 2006; 18(4): 402–8

    PubMed  CAS  Google Scholar 

  18. Wong E. Surgical site infections. In: Mayhall C, editor. Hospital epidemiology and infection control. Philadelphia (PA): Lippincott Williams and Wilkins, 2004: 287–310

    Google Scholar 

  19. Banbury MK, Brizzio ME, Rajeswaran J, et al. Transfusion increases the risk of postoperative infection after cardiovascular surgery. J Am Coll Surg 2006; 202(1): 131–8

    Article  PubMed  Google Scholar 

  20. Torres S, Kuo YH, Morris K, et al. Intravenous iron following cardiac surgery does not increase the infection rate. Surg Infect (Larchmt) 2006; 7(4): 361–6

    Article  Google Scholar 

  21. Basaran M, Selimoglu O, Ozcan H, et al. Being an elderly woman: is it a risk factor for morbidity after coronary artery bypass surgery? Eur J Cardiothorac Surg 2007; 32(1): 58–64

    Article  PubMed  Google Scholar 

  22. Paul M, Raz A, Leibovici L, et al. Sternal wound infection after coronary artery bypass graft surgery: validation of existing risk scores. J Thorac Cardiovasc Surg 2007; 133(2): 397–403

    Article  PubMed  Google Scholar 

  23. Kaye KS, Schmader KE, Sawyer R. Surgical site infection in the elderly population. Clin Infect Dis 2004; 39(12): 1835–41

    Article  PubMed  Google Scholar 

  24. Olsen MA, Lock-Buckley P, Hopkins D, et al. The risk factors for deep and superficial chest surgical-site infections after coronary artery bypass graft surgery are different. J Thorac Cardiovasc Surg 2002; 124(1): 136–45

    Article  PubMed  Google Scholar 

  25. Mishriki SF, Law DJ, Jeffery PJ. Factors affecting the incidence of postoperative wound infection. J Hosp Infect 1990; 16(3): 223–30

    Article  PubMed  CAS  Google Scholar 

  26. Edwards FH, Engelman RM, Houck P, et al. The Society of Thoracic Surgeons practice guideline series: antibiotic prophylaxis in cardiac surgery. Part I: duration. Ann Thorac Surg 2006; 81: 397–404

    Article  Google Scholar 

  27. Bratzler DW, Houck PM. Antimicrobial prophylaxis for surgery: an advisory statement from the National Surgical Infection Prevention Project. Clin Infect Dis 2004; 38(12): 1706–15

    Article  PubMed  Google Scholar 

  28. Latham R, Lancaster AD, Covington JF, et al. The association of diabetes and glucose control with surgical-site infections among cardiothoracic surgery patients. Infect Control Hosp Epidemiol 2001; 22(10): 607–12

    Article  PubMed  CAS  Google Scholar 

  29. Furnary AP, Zerr KJ, Grunkemeier GL, et al. Continuous intravenous insulin infusion reduces the incidence of deep sternal wound infection in diabetic patients after cardiac surgical procedures. Ann Thorac Surg 1999; 67(2): 352–60; discussion 360–2

    Article  PubMed  CAS  Google Scholar 

  30. Segers P, Speekenbrink RG, Ubbink DT, et al. Prevention of nosocomial infection in cardiac surgery by decontamination of the nasopharynx and oropharynx with chlorhexidine gluconate: a randomized controlled trial. JAMA 2006; 296(20): 2460–6

    Article  PubMed  CAS  Google Scholar 

  31. Kluytmans JA, Mouton JW, VandenBergh MF, et al. Reduction of surgical-site infections in cardiothoracic surgery by elimination of nasal carriage of Staphylococcus aureus. Infect Control Hosp Epidemiol 1996; 17(12): 780–5

    Article  PubMed  CAS  Google Scholar 

  32. Trautmann MJ, Stecher W, Hemmer K, et al. Intranasal mupirocin prophylaxis in elective surgery: a review of published studies. Chemotherapy 2008; 54: 9–16

    Article  PubMed  CAS  Google Scholar 

  33. Cimochowski GE, Harostock MD, Brown R, et al. Intranasal mupirocin reduces sternal wound infection after open heart surgery in diabetics and nondiabetics. Ann Thorac Surg 2001; 71: 1572–8

    Article  PubMed  CAS  Google Scholar 

  34. Usry GH, Johnson L, Weems JJ, et al. Process improvement plan for the reduction of sternal surgical site infections among patients undergoing artery bypass graft surgery. Am J Infect Control 2002; 30: 434–6

    Article  PubMed  Google Scholar 

  35. Nicholson MR, Huesman LA. Controlling usage of intranasal mupirocin does impact the rate of Staphylococcus aureus deep sternal wound infections in cardiac surgery patients. Am J Infect Control 2006; 34: 44–8

    Article  PubMed  Google Scholar 

  36. Konvalinka A, Errett L, Fong IW. Impact of treating Staphylococcus aureus nasal carriers on wound infections in cardiac surgery. J Hosp Infect 2006; 64(2): 162–8

    Article  PubMed  CAS  Google Scholar 

  37. Perl TM, Cullen JJ, Wenzel RP, et al. Intranasal mupirocin to prevent postoperative Staphylococcus aureus infections. N Engl J Med 2002; 346(24): 1871–7

    Article  PubMed  CAS  Google Scholar 

  38. Baddour LM, Wilson WR. Chapter 75: infections of prosthetic valves and other cardiovascular devices. In: Mandell G, Douglass R, Dolin R, editors. Principles and practice of infectious diseases. 6th ed. Philadelphia (PA): Churchill-Livingstone, 2005: 1038–9

    Google Scholar 

  39. Chang JK, Calligaro KD, Ryan S, et al. Risk factors associated with infection of lower extremity revascularization: analysis of 365 procedures performed at a teaching hospital. Ann Vasc Surg 2003; 17(1): 91–6

    Article  PubMed  Google Scholar 

  40. Ryan SV, Calligaro KD, Scharff J, et al. Management of infected prosthetic dialysis arteriovenous grafts. J Vasc Surg 2004; 39(1): 73–8

    Article  PubMed  Google Scholar 

  41. Calligaro KD, Veith FJ, Schwartz ML, et al. Selective preservation of infected prosthetic arterial grafts: analysis of a 20-year experience with 120 extracavitary-infected grafts. Ann Surg 1994; 220(4): 461–9; discussion 469–71

    Article  PubMed  CAS  Google Scholar 

  42. Edwards Jr WH, Martin 3rd RS, Jenkins JM, et al. Primary graft infections. J Vasc Surg 1987; 6(3): 235–9

    PubMed  Google Scholar 

  43. Jensen LJ, Kimose HH. Prosthetic graft infections: a review of 720 arterial prosthetic reconstructions. Thorac Cardiovasc Surg 1985; 33(6): 389–91

    Article  PubMed  CAS  Google Scholar 

  44. Mertens RA, O’Hara PJ, Hertzer NR, et al. Surgical management of infrainguinal arterial prosthetic graft infections: review of a thirty-five-year experience. J Vasc Surg 1995; 21(5): 782–90; discussion 790–1

    Article  PubMed  CAS  Google Scholar 

  45. Taylor MD, Napolitano LM. Methicillin-resistant Staphylococcus aureus infections in vascular surgery: increasing prevalence. Surg Infect (Larchmt) 2004; 5(2): 180–7

    Google Scholar 

  46. Calligaro KD, Syrek JR, Dougherty MJ, et al. Use of arm and lesser saphenous vein compared with prosthetic grafts for infrapopliteal arterial bypass: are they worth the effort? J Vasc Surg 1997; 26(6): 919–24; discussion 925–7

    Article  PubMed  CAS  Google Scholar 

  47. Lee ES, Santilli SM, Olson MM, et al. Wound infection after infrainguinal bypass operations: multivariate analysis of putative risk factors. Surg Infect (Larchmt) 2000; 1(4): 257–63

    Article  CAS  Google Scholar 

  48. Pedersen G, Laxdal E, Hagala M, et al. Local infections after above-knee prosthetic femoropopliteal bypass for intermittent claudication. Surg Infect (Larchmt) 2004; 5(2): 174–9

    Article  Google Scholar 

  49. Antonios VS, Noel AA, Steckelberg JM, et al. Prosthetic vascular graft infection: a risk factor analysis using a case-control study. J Infect 2006; 53(1): 49–55

    Article  PubMed  Google Scholar 

  50. Fiorani P, Speziale F, Calisti A, et al. Endovascular graft infection: preliminary results of an international enquiry. J Endovasc Ther 2003; 10(5): 919–27

    Article  PubMed  Google Scholar 

  51. Vriesendorp TM, Morelis QJ, Devries JH, et al. Early postoperative glucose levels are an independent risk factor for infection after peripheral vascular surgery: a retrospective study. Eur J Vasc Endovasc Surg 2004; 28(5): 520–5

    Article  PubMed  CAS  Google Scholar 

  52. Calligaro KD, Veith FJ, Schwartz ML, et al. Recommendations for initial antibiotic treatment of extracavitary arterial graft infections. Am J Surg 1995; 170(2): 123–5

    Article  PubMed  CAS  Google Scholar 

  53. Collazos J, Mayo J, Martinez E, et al. Prosthetic vascular graft infection due to Aspergillus species: case report and literature review. Eur J Clin Microbiol Infect Dis 2001; 20(6): 414–7

    PubMed  CAS  Google Scholar 

  54. Lephart P, Ferrieri P, van Burik JA. Reservoir of Candida albicans infection in a vascular bypass graft demonstrates a stable karyotype over six months. Med Mycol 2004; 42(3): 255–60

    Article  PubMed  Google Scholar 

  55. Matthay RA, Levin DC, Wicks AB, et al. Disseminated histoplasmosis involving an aortofemoral prosthetic graft. JAMA 1976; 235(14): 1478–9

    Article  PubMed  CAS  Google Scholar 

  56. Raffetto JD, Bernardo J, Menzoian JO. Aortobifemoral graft infection with Mycobacterium tuberculosis: treatment with abscess drainage, debridement, and long-term administration of antibiotic agents. J Vasc Surg 2004; 40(4): 826–9

    Article  PubMed  Google Scholar 

  57. Nasim A, Thompson MM, Naylor AR, et al. The impact of MRSA on vascular surgery. Eur J Vasc Endovasc Surg 2001; 22(3): 211–4

    Article  PubMed  CAS  Google Scholar 

  58. FitzGerald SF, Kelly C, Humphreys H. Diagnosis and treatment of prosthetic aortic graft infections: confusion and inconsistency in the absence of evidence or consensus. J Antimicrob Chemother 2005; 56(6): 996–9

    Article  PubMed  CAS  Google Scholar 

  59. Rossi P, Arata FM, Salvatori FM, et al. Prosthetic graft infection: diagnostic and therapeutic role of interventional radiology. J Vasc Interv Radiol 1997; 8(2): 271–7

    Article  PubMed  CAS  Google Scholar 

  60. Thomas P, Forstrom L. In-111 labeled purified granulocytes in the diagnosis of synthetic vascular graft infections. Clin Nucl Med 1994; 19(12): 1075–8

    Article  PubMed  CAS  Google Scholar 

  61. Seify H, Moyer HR, Jones GE, et al. The role of muscle flaps in wound salvage after vascular graft infections: the Emory experience. Plast Reconstr Surg 2006; 117(4): 1325–33

    Article  PubMed  CAS  Google Scholar 

  62. Calligaro KD, Veith FJ, Schwartz ML, et al. Differences in early versus late extracavitary arterial graft infections. J Vasc Surg 1995; 22(6): 680–5; discussion 685–8

    Article  PubMed  CAS  Google Scholar 

  63. O’Connor S, Andrew P, Batt M, et al. A systematic review and meta-analysis of treatments for aortic graft infection. J Vasc Surg 2006; 44(1): 38–45

    Article  PubMed  Google Scholar 

  64. Young RM, Cherry Jr KJ, Davis PM, et al. The results of in situ prosthetic replacement for infected aortic grafts. Am J Surg 1999; 178(2): 136–40

    Article  PubMed  CAS  Google Scholar 

  65. Kurtz S, Mowat F, Ong K, et al. Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am 2005; 87(7): 1487–97

    Article  PubMed  Google Scholar 

  66. Lentino JR. Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis 2003; 36(9): 1157–61

    Article  PubMed  Google Scholar 

  67. Sia IG, Berbari EF, Karchmer AW. Prosthetic joint infections. Infect Dis Clin North Am 2005; 19(4): 885–914

    Article  PubMed  Google Scholar 

  68. Tsukayama DT, Estrada R, Gustilo RB. Infection after total hip arthroplasty: a study of the treatment of one hundred and six infections. J Bone Joint Surg Am 1996; 78(4): 512–23

    PubMed  CAS  Google Scholar 

  69. Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med 2004; 351(16): 1645–54

    Article  PubMed  CAS  Google Scholar 

  70. Murdoch DR, Roberts SA, Fowler Jr VG, et al. Infection of orthopedic prostheses after Staphylococcus aureus bacteremia. Clin Infect Dis 2001; 32(4): 647–9

    Article  PubMed  CAS  Google Scholar 

  71. Marculescu CE, Berbari EF, Cockerill 3rd FR, et al. Fungi, mycobacteria, zoonotic and other organisms in prosthetic joint infection. Clin Orthop Relat Res 2006; 451: 64–72

    Article  PubMed  Google Scholar 

  72. Marculescu CE, Berbari EF, Cockerill 3rd FR, et al. Unusual aerobic and anaerobic bacteria associated with prosthetic joint infections. Clin Orthop Relat Res 2006; 451: 55–63

    Article  PubMed  Google Scholar 

  73. Atkins BL, Athanasou N, Deeks JJ, et al. Prospective evaluation of criteria for microbiological diagnosis of prosthetic-joint infection at revision arthroplasty: the OSIRIS Collaborative Study Group. J Clin Microbiol 1998; 36(10): 2932–9

    PubMed  CAS  Google Scholar 

  74. Powers KA, Terpenning MS, Voice RA, et al. Prosthetic joint infections in the elderly. Am J Med 1990; 88(5N): 9N–13N

    PubMed  CAS  Google Scholar 

  75. Bare J, MacDonald SJ, Bourne RB. Preoperative evaluations in revision total knee arthroplasty. Clin Orthop Relat Res 2006; 446: 40–4

    Article  PubMed  Google Scholar 

  76. Teller RE, Christie MJ, Martin W, et al. Sequential indium-labeled leukocyte and bone scans to diagnose prosthetic joint infection. Clin Orthop Relat Res 2000; 373: 241–7

    Article  PubMed  Google Scholar 

  77. Trampuz A, Hanssen AD, Osmon DR, et al. Synovial fluid leukocyte count and differential for the diagnosis of prosthetic knee infection. Am J Med 2004; 117(8): 556–62

    Article  PubMed  Google Scholar 

  78. Cyteval C, Hamm V, Sarrabere MP, et al. Painful infection at the site of hip prosthesis: CT imaging. Radiology 2002; 224(2): 477–83

    Article  PubMed  Google Scholar 

  79. Palestro CJ, Swyer AJ, Kim CK, et al. Infected knee prosthesis: diagnosis with In-111 leukocyte, Tc-99m sulfur colloid, and Tc-99m MDP imaging. Radiology 1991; 179(3): 645–8

    PubMed  CAS  Google Scholar 

  80. Delank KS, Schmidt M, Michael JW, et al. The implications of 18F-FDG PET for the diagnosis of endoprosthetic loosening and infection in hip and knee arthroplasty: results from a prospective, blinded study. BMC Musculoskelet Disord 2006; 7: 20

    Article  PubMed  Google Scholar 

  81. Love C, Marwin SE, Tomas MB, et al. Diagnosing infection in the failed joint replacement: a comparison of coincidence detection 18F-FDG and 111 In-labeled leukocyte/99mTc-sul-fur colloid marrow imaging. J Nucl Med 2004; 45(11): 1864–71

    PubMed  Google Scholar 

  82. Mumme T, Reinartz P, Alfer J, et al. Diagnostic values of positron emission tomography versus triple-phase bone scan in hip arthroplasty loosening. Arch Orthop Trauma Surg 2005; 125(5): 322–9

    Article  PubMed  CAS  Google Scholar 

  83. Stumpe KD, Notzli HP, Zanetti M, et al. FDG PET for differentiation of infection and aseptic loosening in total hip replacements: comparison with conventional radiography and three-phase bone scintigraphy. Radiology 2004; 231(2): 333–41

    Article  PubMed  Google Scholar 

  84. Stumpe KD, Romero J, Ziegler O, et al. The value of FDG-PET in patients with painful total knee arthroplasty. Eur J Nucl Med Mol Imaging 2006; 33(10): 1218–25

    Article  PubMed  Google Scholar 

  85. Athanasou NA, Pandey R, de Steiger R, et al. Diagnosis of infection by frozen section during revision arthroplasty. J Bone Joint Surg Br 1995; 77(1): 28–33

    PubMed  CAS  Google Scholar 

  86. Chimento GF, Finger S, Barrack RL. Gram stain detection of infection during revision arthroplasty. J Bone Joint Surg Br 1996; 78(5): 838–9

    PubMed  CAS  Google Scholar 

  87. Chuard C, Lucet JC, Rohner P, et al. Resistance of Staphylococcus aureus recovered from infected foreign body in vivo to killing by antimicrobials. J Infect Dis 1991; 163(6): 1369–73

    Article  PubMed  CAS  Google Scholar 

  88. Everts RJ, Chambers ST, Murdoch DR, et al. Successful antimicrobial therapy and implant retention for streptococcal infection of prosthetic joints. ANZ J Surg 2004; 74(4): 210–4

    Article  PubMed  Google Scholar 

  89. Marculescu CE, Berbari EF, Hanssen AD, et al. Outcome of prosthetic joint infections treated with debridement and retention of components. Clin Infect Dis 2006; 42(4): 471–8

    Article  PubMed  CAS  Google Scholar 

  90. Meehan AM, Osmon DR, Duffy MC, et al. Outcome of penicillin-susceptible streptococcal prosthetic joint infection treated with debridement and retention of the prosthesis. Clin Infect Dis 2003; 36(7): 845–9

    Article  PubMed  CAS  Google Scholar 

  91. Pavoni GL, Giannella M, Falcone M, et al. Conservative medical therapy of prosthetic joint infections: retrospective analysis of an 8-year experience. Clin Microbiol Infect 2004; 10(9): 831–7

    Article  PubMed  CAS  Google Scholar 

  92. Burger RR, Basch T, Hopson CN. Implant salvage in infected total knee arthroplasty. Clin Orthop Relat Res 1991; 273: 105–12

    PubMed  Google Scholar 

  93. Langlais F. Can we improve the results of revision arthroplasty for infected total hip replacement? J Bone Joint Surg Br 2003; 85(5): 637–40

    PubMed  Google Scholar 

  94. Brandt CM, Sistrunk WW, Duffy MC, et al. Staphylococcus aureus prosthetic joint infection treated with debridement and prosthesis retention. Clin Infect Dis 1997; 24(5): 914–9

    Article  PubMed  CAS  Google Scholar 

  95. Lieberman JR, Callaway GH, Salvati EA, et al. Treatment of the infected total hip arthroplasty with a two-stage reimplantation protocol. Clin Orthop Relat Res 1994; 301: 205–12

    PubMed  Google Scholar 

  96. Segreti J, Nelson JA, Trenholme GM. Prolonged suppressive antibiotic therapy for infected orthopedic prostheses. Clin Infect Dis 1998; 27(4): 711–3

    Article  PubMed  CAS  Google Scholar 

  97. Trampuz A, Zimmerli W. Prosthetic joint infections: update in diagnosis and treatment. Swiss Med Wkly 2005; 135(17–18): 243–51

    PubMed  Google Scholar 

  98. Monzon M, Oteiza C, Leiva J, et al. Biofilm testing of Staphylococcus epidermidis clinical isolates: low performance of vancomycin in relation to other antibiotics. Diagn Microbiol Infect Dis 2002; 44(4): 319–24

    Article  PubMed  CAS  Google Scholar 

  99. Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 2002; 292(2): 107–13

    Article  PubMed  CAS  Google Scholar 

  100. Widmer AF, Frei R, Rajacic Z, et al. Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J Infect Dis 1990; 162(1): 96–102

    Article  PubMed  CAS  Google Scholar 

  101. Widmer AF, Wiestner A, Frei R, et al. Killing of nongrowing and adherent Escherichia coli determines drug efficacy in device-related infections. Antimicrob Agents Chemother 1991; 35(4): 741–6

    Article  PubMed  CAS  Google Scholar 

  102. Drancourt M, Stein A, Argenson JN, et al. Oral rifampin plus ofloxacin for treatment of Staphylococcus-infected orthopedic implants. Antimicrob Agents Chemother 1993; 37(6): 1214–8

    Article  PubMed  CAS  Google Scholar 

  103. Konig DP, Schierholz JM, Munnich U, et al. Treatment of staphylococcal implant infection with rifampicin-ciprofloxacin in stable implants. Arch Orthop Trauma Surg 2001; 121(5): 297–9

    Article  PubMed  CAS  Google Scholar 

  104. Zimmerli W, Widmer AF, Blatter M, et al. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA 1998; 279(19): 1537–41

    Article  PubMed  CAS  Google Scholar 

  105. Chuard C, Herrmann M, Vaudaux P, et al. Successful therapy of experimental chronic foreign-body infection due to methicillin-resistant Staphylococcus aureus by antimicrobial combinations. Antimicrob Agents Chemother 1991; 35(12): 2611–6

    Article  PubMed  CAS  Google Scholar 

  106. Lucet JC, Herrmann M, Rohner P, et al. Treatment of experimental foreign body infection caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 1990; 34(12): 2312–7

    Article  PubMed  CAS  Google Scholar 

  107. Brause BD. Infected total knee replacement: diagnostic, therapeutic, and prophylactic considerations. Orthop Clin North Am 1982; 13(1): 245–9

    PubMed  CAS  Google Scholar 

  108. American Cancer Society [online]. Available from URL: http://www.cancer.org/docroot/STT/content/STT_lx_Cancer_Facts_Figures_2006.asp [Accessed 2008 Apr 14]

  109. Iglehart D, Kaelin C. Diseases of the breast. In: Townsend C, editor. Sabiston textbook of surgery. Philadelphia (PA): Saunders, 2004

    Google Scholar 

  110. Alderman AK, Wilkins EG, Kim HM, et al. Complications in postmastectomy breast reconstruction: two-year results of the Michigan Breast Reconstruction Outcome Study. Plast Reconstr Surg 2002; 109(7): 2265–74

    Article  PubMed  Google Scholar 

  111. Armstrong RW, Berkowitz RL, Bolding F. Infection following breast reconstruction. Ann Plast Surg 1989; 23(4): 284–8

    Article  PubMed  CAS  Google Scholar 

  112. Nahabedian MY, Tsangaris T, Momen B, et al. Infectious complications following breast reconstruction with expanders and implants. Plast Reconstr Surg 2003; 112(2): 467–76

    Article  PubMed  Google Scholar 

  113. Lew D, Pittet D, Waldvogel F. Infections that complicate the insertion of prosthetic devices. In: Mayhall C, editor. Hospital epidemiology and infection control. Philadelphia (PA): Lippincott Williams and Wilkins, 2004: 1181–205

    Google Scholar 

  114. Vilar-Compte D, Roldan-Marin R, Robles-Vidal C, et al. Surgical site infection (SSI) rates among patients who underwent mastectomy after the introduction of SSI prevention policies. Infect Control Hosp Epidemiol 2006; 27(8): 829–34

    Article  PubMed  Google Scholar 

  115. Beatty JD, Robinson GV, Zaia JA, et al. A prospective analysis of nosocomial wound infection after mastectomy. Arch Surg 1983; 118(12): 1421–4

    Article  PubMed  CAS  Google Scholar 

  116. Cordeiro PG, McCarthy CM. A single surgeon’s 12-year experience with tissue expander/implant breast reconstruction: part I. A prospective analysis of early complications. Plast Reconstr Surg 2006; 118(4): 825–31

    Article  PubMed  CAS  Google Scholar 

  117. Spear SL, Majidian A. Immediate breast reconstruction in two stages using textured, integrated-valve tissue expanders and breast implants: a retrospective review of 171 consecutive breast reconstructions from 1989 to 1996. Plast Reconstr Surg 1998; 101(1): 53–63

    Article  PubMed  CAS  Google Scholar 

  118. Holm C, Muhlbauer W. Toxic shock syndrome in plastic surgery patients: case report and review of the literature. Aesthetic Plast Surg 1998; 22(3): 180–4

    Article  PubMed  CAS  Google Scholar 

  119. Tejirian T, DiFronzo LA, Haigh PI. Antibiotic prophylaxis for preventing wound infection after breast surgery: a systematic review and metaanalysis. J Am Coll Surg 2006; 203(5): 729–34

    Article  PubMed  Google Scholar 

  120. Cunningham M, Bunn F, Handscomb K. Prophylactic antibiotics to prevent surgical site infection after breast cancer surgery. Cochrane Database Syst Rev 2006; (2): CD005360

    Google Scholar 

  121. Fang A, Hu SS, Endres N, et al. Risk factors for infection after spinal surgery. Spine 2005; 30(12): 1460–5

    Article  PubMed  Google Scholar 

  122. Pappou IP, Papadopoulos EC, Sama AA, et al. Postoperative infections in interbody fusion for degenerative spinal disease. Clin Orthop Relat Res 2006; 444: 120–8

    Article  PubMed  Google Scholar 

  123. McHenry MC, Easley KA, Locker GA. Vertebral osteomyelitis: long-term outcome for 253 patients from 7 Cleveland-area hospitals. Clin Infect Dis 2002; 34(10): 1342–50

    Article  PubMed  Google Scholar 

  124. Labler L, Keel M, Trentz O, et al. Wound conditioning by vacuum assisted closure (VAC) in postoperative infections after dorsal spine surgery. Eur Spine J 2006; 15(9): 1388–96

    Article  PubMed  Google Scholar 

  125. Kowalski TJ, Berbari EF, Huddleston PM, et al. The management and outcome of spinal implant infections: contemporary retrospective cohort study. Clin Infect Dis 2007; 44(7): 913–20

    Article  PubMed  Google Scholar 

  126. An HS, Seldomridge JA. Spinal infections: diagnostic tests and imaging studies. Clin Orthop Relat Res 2006; 444: 27–33

    Article  PubMed  Google Scholar 

  127. Dumanian GA, Ondra SL, Liu J, et al. Muscle flap salvage of spine wounds with soft tissue defects or infection. Spine 2003; 28(11): 1203–11

    PubMed  Google Scholar 

  128. Kowalski TJ, Berbari EF, Huddleston PM, et al. Do follow-up imaging examinations provide useful prognostic information in patients with spine infection? Clin Infect Dis 2006; 43(2): 172–9

    Article  PubMed  Google Scholar 

  129. Cox AM, Malani PN, Wiseman SW, et al. Home intravenous antimicrobial infusion therapy: a viable option in older adults. J Am Geriatr Soc 2007; 55: 645–50

    Article  PubMed  Google Scholar 

  130. High KP. Outpatient parenteral antimicrobial therapy: a long overdue option for older adults. J Am Geriatr Soc 2007; 55: 792–3

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by VA Ann Arbor Healthcare System, Geriatric Research Education and Clinical Center (GRECC) and the John A. Hartford Foundation’s Center of Excellence. No other sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti N. Malani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, M.H., Washer, L. & Malani, P.N. Surgical Site Infections in Older Adults. Drugs Aging 25, 399–414 (2008). https://doi.org/10.2165/00002512-200825050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-200825050-00004

Keywords

Navigation