Drugs & Aging

, Volume 22, Issue 1, pp 1–21 | Cite as

Management of Glaucoma: Focus on Pharmacological Therapy

Therapy In Practice

Abstract

Glaucoma represents a major cause of vision loss throughout the world. Primary open-angle glaucoma, the most common form of glaucoma, is a chronic, progressive disease often, though not always, accompanied by elevated intraocular pressure (IOP). In this disorder, retinal ganglion cell loss and excavation of the optic nerve head produce characteristic peripheral visual field deficits. Patients with normal-tension glaucoma present with typical visual field and optic nerve head changes, without a documented history of elevated IOP. A variety of secondary causes, such as pigment dispersion syndrome and ocular trauma, can result in glaucoma as well. Treatment of all forms of glaucoma consists of reducing IOP. With proper treatment, progression of this disease can often be delayed or prevented.

Treatment options for glaucoma include medications, laser therapy and incisional surgery. Laser techniques for the reduction of IOP include argon laser trabeculoplasty and selective laser trabeculoplasty. Both techniques work by increasing outflow of aqueous humour through the trabecular meshwork. Surgical options for glaucoma treatment include trabeculectomy, glaucoma drainage tube implantation and ciliary body cyclodestruction. While each of these types of procedures is effective at lowering IOP, therapy usually begins with medications. Medications lower IOP either by reducing the production or by increasing the rate of outflow of aqueous humour within the eye.

Currently, there are five major classes of drugs used for the treatment of glaucoma: (i) cholinergics (acetylcholine receptor agonists); (ii) adrenoceptor agonists; (iii) carbonic anhydrase inhibitors (CAIs); (iv) β-adrenoceptor antagonists; and (v) prostaglandin analogues (PGAs). Treatment typically begins with the selection of an agent for IOP reduction. Although β-adrenoceptor antagonists are still commonly used by many clinicians, the PGAs are playing an increasingly important role in the first-line therapy of glaucoma. Adjunctive agents, such as α-adrenoceptor agonists and CAIs are often effective at providing additional reduction in IOP for patients not controlled on monotherapy. As with any chronic disease, effective treatment depends on minimising the adverse effects of therapy and maximising patient compliance. The introduction of a variety of well tolerated and potent medications over the past few years now allows the clinician to choose a treatment regimen on an individual patient basis and thereby treat this disorder more effectively.

Keywords

Glaucoma Aqueous Humour Timolol Latanoprost Trabecular Meshwork 

Notes

Acknowledgements

Supported in part by an unrestricted research grant from Research to Prevent Blindness, Inc., New York, NY, USA.

The authors have no conflicts of interest that are directly relevant to the content of this review.

References

  1. 1.
    Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 1995 Apr; 36(5): 774–86PubMedGoogle Scholar
  2. 2.
    Thylefors B, Negrel AD, Pararajasegaram R, et al. Global data on blindness. Bull World Health Organ 1995; 73: 115–21PubMedGoogle Scholar
  3. 3.
    Sommer A, Tielsch JM, Katz J, et al. Racial differences in the cause-specific prevalence of blindness in East Baltimore. N Engl J Med 1991 Nov; 325(20): 1412–7PubMedCrossRefGoogle Scholar
  4. 4.
    Rodriguez J, Sanchez R, Munoz B, et al. Causes of blindness and visual impairment in a population-based sample of US Hispanics. Ophthalmology 2002 Apr; 109(4): 737–43PubMedCrossRefGoogle Scholar
  5. 5.
    Quigley HA, Vitale S. Models of glaucoma prevalence and incidence in the United States. Invest Ophthalmol Vis Sci 1997 Jan; 38(1): 83–91PubMedGoogle Scholar
  6. 6.
    American Academy of Ophthalmology preferred practice pattern for primary open-angle glaucoma. San Francisco (CA): American Academy of Ophthalmology, 2003: 3Google Scholar
  7. 7.
    Drance SM, Sweeney VP, Morgan RW, et al. Studies of factors involved in the production of low tension glaucoma. Arch Ophthalmol 1973 Jun; 89(6): 457–65PubMedCrossRefGoogle Scholar
  8. 8.
    Migdal C, Gregory W, Hitchings R. Long-term functional outcome after early surgery compared with laser and medicine in open-angle glaucoma. Ophthalmology 1994 Oct; 101(10): 1651–6PubMedGoogle Scholar
  9. 9.
    Shiose Y, Kitazawa Y, Tsukahara S, et al. Epidemiology of glaucoma in Japan: a nationwide glaucoma survey. Jpn J Ophthalmol 1991; 35(2): 133–55PubMedGoogle Scholar
  10. 10.
    Drance SM, Morgan RW, Sweeney VP. Shock-induced optic neuropathy: a cause of nonprogressive glaucoma. N Engl J Med 1973 Feb; 288(8): 392–8PubMedCrossRefGoogle Scholar
  11. 11.
    Lewis RA, Hayreh SS, Phelps CD. Optic disk and visual field correlations in primary open-angle and low-tension glaucoma. Am J Ophthalmol 1983 Aug; 96(2): 148–5PubMedGoogle Scholar
  12. 12.
    Chumbley LC, Brubaker RF. Low-tension glaucoma. Am J Ophthalmol 1976 Jun; 81(6): 761–8PubMedGoogle Scholar
  13. 13.
    Caprioli J, Spaeth GL. Comparison of visual field defects in the low-tension glaucomas with those in the high-tension glaucomas. Am J Ophthalmol 1984 Jun; 97(6): 730–7PubMedGoogle Scholar
  14. 14.
    Kahn HA, Milton RC. Alternative definitions of open-angle glaucoma: effect on prevalence and associations in the Framingham eye study. Arch Ophthalmol 1980 Dec; 98(6): 2172–7PubMedCrossRefGoogle Scholar
  15. 15.
    Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002 Jun; 120(6): 701–13PubMedCrossRefGoogle Scholar
  16. 16.
    Campbell DG. Pigmentary dispersion and glaucoma: a new theory. Arch Ophthalmol 1979 Sep; 97(9): 1667–72PubMedCrossRefGoogle Scholar
  17. 17.
    Hollows FC, Graham PA. Intra-ocular pressure, glaucoma, and glaucoma suspects in a defined population. Br J Ophthalmol 1966 Oct; 50(10): 570–86PubMedCrossRefGoogle Scholar
  18. 18.
    Arkell SM, Lightman DA, Sommer A, et al. The prevalence of glaucoma among Eskimos of northwest Alaska. Arch Ophthalmol 1987 Apr; 105(4): 482–5PubMedCrossRefGoogle Scholar
  19. 19.
    McLaren JW, Trocme SD, Relf S, et al. Rate of flow of aqueous humor determined from measurements of aqueous flare. Invest Ophthalmol Vis Sci 1990 Feb; 31(2): 339–46PubMedGoogle Scholar
  20. 20.
    Becker B. The decline in aqueous secretion and outflow facility with age. Am J Ophthalmol 1958 Nov; 46(5): 731–6PubMedGoogle Scholar
  21. 21.
    Hayashi M, Yablonski ME, Boxrud C, et al. Decreased formation of aqueous humour in insulin-dependent diabetic patients. Br J Ophthalmol 1989 Aug; 73(8): 621–3PubMedCrossRefGoogle Scholar
  22. 22.
    Pederson JE. Ocular hypotony. Trans Ophthalmol Soc U K 1986; 105 (Pt 2): 220–6PubMedGoogle Scholar
  23. 23.
    Diestelhorst M, Krieglstein GK. The effect of the water-drinking test on aqueous humor dynamics in healthy volunteers. Graefes Arch Clin Exp Ophthalmol 1994 Mar; 232(3): 145–7PubMedCrossRefGoogle Scholar
  24. 24.
    Reddy VN. Dynamics of transport systems in the eye. Invest Ophthalmol Vis Sci 1979 Oct; 18(10): 1000–18PubMedGoogle Scholar
  25. 25.
    Bill A. Blood circulation and fluid dynamics of the eye. Physiol Rev 1975 Jul; 55(3): 383–417PubMedGoogle Scholar
  26. 26.
    Toris CB, Pederson JE. Aqueous humor dynamics in experimental iridocyclitis. Invest Ophthalmol Vis Sci 1987 Mar; 28(3): 477–81PubMedGoogle Scholar
  27. 27.
    Soltau JB, Zimmerman TJ. Changing paradigms in the medical treatment of glaucoma. Surv Ophthalmol 2002; 47Suppl. 1: S2–5PubMedCrossRefGoogle Scholar
  28. 28.
    Realini T, Fechtner RD. 56,000 ways to treat glaucoma. Ophthalmology 2002 Nov; 109(11): 1955–6PubMedCrossRefGoogle Scholar
  29. 29.
    Diggory P, Franks W. Glaucoma: systemic side effects of topical medical therapy: a common and under recognized problem. J R Soc Med 1994 Oct; 87(10): 575–6PubMedGoogle Scholar
  30. 30.
    Whitson JT, Love R, Brown RH, et al. The effect of reduced eyedrop size and eyelid closure on the therapeutic index of phenylephrine. Am J Ophthalmol 1993 Mar; 115(3): 357–9PubMedGoogle Scholar
  31. 31.
    von Weber A. Die Ursache des Glaukoms. Albr Graefes Arch Ophthalmol 1877; 23: 91–4Google Scholar
  32. 32.
    Drance SM, Nash PA. The dose response of human intraocular pressure to pilocarpine. Can J Ophthalmol 1971 Jan; 6(1): 9–13PubMedGoogle Scholar
  33. 33.
    Crawford K, Kaufman PL. Pilocarpine antagonizes prostaglandin F2 alpha-induced ocular hypotension in monkeys: evidence for enhancement of uveoscleral outflow by prostaglandin F2 alpha. Arch Ophthalmol 1987 Aug; 105(8): 1112–6PubMedCrossRefGoogle Scholar
  34. 34.
    Barsam PC. Comparison of the effects of pilocarpine and echothiophate on intraocular pressure and outflow facility. Am J Ophthalmol 1972 May; 73(5): 742–9PubMedGoogle Scholar
  35. 35.
    Ellis PP, Esterdahl M. Echothiophate iodide therapy in children: effect upon blood Cholinesterase levels. Arch Ophthalmol 1967 May; 77(5): 598–601PubMedCrossRefGoogle Scholar
  36. 36.
    Thoft RA. Incidence of lens changes in patients treated with echothiophate iodide. Arch Ophthalmol 1968 Sep; 80(3): 317–20PubMedCrossRefGoogle Scholar
  37. 37.
    O’Brien CS, Swan KD. Carbaminoylcholinechloride in the treatment of glaucoma simplex. Arch Ophthalmol 1942 Feb; 27(2): 253–7CrossRefGoogle Scholar
  38. 38.
    Reichert RW, Shields MB, Stewart WC. Intraocular pressure response to replacing pilocarpine with carbachol. Am J Ophthalmol 1988 Dec; 106(6): 747–8PubMedGoogle Scholar
  39. 39.
    Townsend DJ, Brubaker RF. Immediate effect of epinephrine on aqueous formation in the normal human eye as measured by fluorophotometry. Invest Ophthalmol Vis Sci 1980 Mar; 19(3): 256PubMedGoogle Scholar
  40. 40.
    Nagataki S, Brubaker RF. Early effect of epinephrine on aqueous formation in the normal human eye. Ophthalmology 1981 Mar; 88(3): 278–82PubMedGoogle Scholar
  41. 41.
    Becker B, Pettit TH, Gay AJ. Topical epinephrine therapy of open angle glaucoma. Arch Ophthalmol 1961 Aug; 66(2): 219–25PubMedCrossRefGoogle Scholar
  42. 42.
    van Alphen GW. The adrenergic receptors of the intraocular muscles of the human eye. Invest Ophthalmol 1976 Jun; 15(6): 502–5PubMedGoogle Scholar
  43. 43.
    Kolker AE, Becker B. Epinephrine maculopathy. Arch Ophthalmol 1968 May; 79(5): 552–62PubMedCrossRefGoogle Scholar
  44. 44.
    Cashwell LF, Shields MB, Reed JW. Adrenochrome pigmentation. Arch Ophthalmol 1977 Mar; 95(3): 514–5PubMedCrossRefGoogle Scholar
  45. 45.
    McCarthy RW, LeBlanc R. A ‘black cornea’ secondary to topical epinephrine. Can J Ophthalmol 1976 Oct; 11(4): 336–40PubMedGoogle Scholar
  46. 46.
    Mandell AI, Stentz F, Kitabchi AE. Dipivalyl epinephrine: a new pro-drug in the treatment of glaucoma. Ophthalmology 1978 Mar; 85(3): 268–75PubMedGoogle Scholar
  47. 47.
    Kass MA, Mandell AI, Goldberg I, et al. Dipivefrin and epinephrine treatment of elevated intraocular pressure: a comparative study. Arch Ophthalmol 1979 Oct; 97(10): 1865–6PubMedCrossRefGoogle Scholar
  48. 48.
    Lee DA, Topper JE, Brubaker RF. Effect of Clonidine on aqueous humor flow in normal human eyes. Exp Eye Res 1984 Mar; 38(3): 239–46PubMedCrossRefGoogle Scholar
  49. 49.
    Toris CB, Tafoya ME, Camras CB, et al. Effects of apraclonidine on aqueous humor dynamics in human eyes. Ophthalmology 1995 Mar; 102(3): 456–61PubMedGoogle Scholar
  50. 50.
    Robin AL. Short-term effects of unilateral 1% apraclonidine therapy. Arch Ophthalmol 1988 Jul; 106(7): 912–5PubMedCrossRefGoogle Scholar
  51. 51.
    Butler P, Mannschreck M, Lin S, et al. Clinical experience with the long-term use of 1% apraclonidine: incidence of allergic reactions. Arch Ophthalmol 1995 Mar; 113(3): 293–6PubMedCrossRefGoogle Scholar
  52. 52.
    Toris CB, Gleason ML, Camras CB, et al. Effects of brimonidine on aqueous humor dynamics in human eyes. Arch Ophthalmol 1995 Dec; 113(12): 1514–7PubMedCrossRefGoogle Scholar
  53. 53.
    Schuman JS. Clinical experience with brimonidine 0.2% and timolol 0.5% in glaucoma and ocular hypertension. Surv Ophthalmol 1996 Nov; 41Suppl. 1: S27–37PubMedCrossRefGoogle Scholar
  54. 54.
    Schuman JS, Horwitz B, Choplin NT, et al. A 1-year study of brimonidine twice daily in glaucoma and ocular hypertension: a controlled, randomized, multicenter clinical trial. Chronic Brimonidine Study Group. Arch Ophthalmol 1997 Jul; 115(7): 847–52PubMedCrossRefGoogle Scholar
  55. 55.
    Serie JB. A comparison of the safety and efficacy of twice daily brimonidine 0.2% versus betaxolol 0.25% in subjects with elevated intraocular pressure: the Brimonidine Study Group III. Surv Ophthalmol 1996 Nov; 41Suppl. 1: S39–47Google Scholar
  56. 56.
    Wilkerson M, Lewis RA, Shields MB. Follicular conjunctivitis associated with apraclonidine. Am J Ophthalmol 1991 Jan; 111(1): 105–6PubMedGoogle Scholar
  57. 57.
    Stewart WC, Ritch R, Shin DH, et al. The efficacy of apraclonidine as an adjunct to timolol therapy. Apraclonidine Adjunctive Therapy Study Group. Arch Ophthalmol 1995 Mar; 113(3): 287–92PubMedCrossRefGoogle Scholar
  58. 58.
    Stewart WC, Laibovitz R, Horwitz B, et al. A 90-day study of the efficacy and side effects of 0.25% and 0.5% apraclonidine vs. 0.5% timolol (Apraclonidine Primary Therapy Study Group). Arch Ophthalmol 1996 Aug; 114(8): 938–42PubMedCrossRefGoogle Scholar
  59. 59.
    Katz LJ. Twelve-month evaluation of brimonidine-purite versus brimonidine in patients with glaucoma or ocular hypertension. J Glaucoma 2002 Apr; 11(2): 119–26PubMedCrossRefGoogle Scholar
  60. 60.
    Becker B. Decrease in intraocular pressure in man by a carbonic anhydrase inhibitor (Diamox). Am J Ophthalmol 1954 Jan; 37(1): 13–7PubMedGoogle Scholar
  61. 61.
    Dailey RA, Brubaker RF, Bourne WM. The effects of timolol maleate and acetazolamide on the rate of aqueous formation in normal human subjects. Am J Ophthalmol 1982 Feb; 93(2): 232–7PubMedGoogle Scholar
  62. 62.
    Fraunfelder FT, Meyer SM, Bagby Jr GC, et al. Hematologic reactions to carbonic anhydrase inhibitors. Am J Ophthalmol 1985 Jul; 100(1): 79–81PubMedGoogle Scholar
  63. 63.
    Strahlman E, Tipping R, Vogel R. A double-masked, randomized 1-year study comparing dorzolamide (Trusopt), timolol, and betaxolol. International Dorzolamide Study Group. Arch Ophthalmol 1995 Aug; 113(8): 1009–16PubMedCrossRefGoogle Scholar
  64. 64.
    Boyle JE, Ghosh K, Gieser DK, et al. A randomized trial comparing the dorzolamide-timolol combination given twice daily to monotherapy with timolol and dorzolamide. Ophthalmology 1998 Oct; 105(10): 1945–51PubMedCrossRefGoogle Scholar
  65. 65.
    Kimal AM, Topalkara A, Guier C. Additive effect of latanoprost and dorzolamide in patients with elevated intraocular pressure. Int Ophthalmol 1998 Jan; 22(1): 37–42CrossRefGoogle Scholar
  66. 66.
    Stewart WC, Sharpe ED, Harbin TS, et al. Brimonidine 0.2% versus dorzolamide 2% each given three times daily to reduce intraocular pressure. Am J Ophthalmol 2000 Jun; 129(6): 723–7PubMedCrossRefGoogle Scholar
  67. 67.
    Whitson JT, Henry C, Hughes B, et al. Comparison of the safety and efficacy of dorzolamide 2% and brimonidine 0.2% in patients with glaucoma or ocular hypertension. J Glaucoma 2004 Apr; 13(2): 168–73PubMedCrossRefGoogle Scholar
  68. 68.
    Silver LH. The efficacy and safety of brinzolamide 1% ophthalmic suspension (Azopt) as a primary therapy in patients with open-angle glaucoma or ocular hypertension. Brinzolamide Primary Therapy Study Group. Surv Ophthalmol 2000 Jan; 44Suppl. 2: S155–62Google Scholar
  69. 69.
    Barnebey H, Kwok SY. Patients’ acceptance of a switch from dorzolamide to brinzolamide for the treatment of glaucoma in a clinical practice setting. Clin Ther 2000 Oct; 22(10): 1204–12PubMedCrossRefGoogle Scholar
  70. 70.
    Sugrue MF, Mallorga P, Schwam H, et al. A comparison of L-671,152 and MK-927, two topically effective ocular hypotensive carbonic anhydrase inhibitors, in experimental animals. Curr Eye Res 1990 Jun; 9(6): 607–15PubMedCrossRefGoogle Scholar
  71. 71.
    Konowal A, Morrison JC, Brown SVL, et al. Irreversible corneal decompensation in patients treated with topical dorzolamide. Am J Ophthalmol 1999 Apr; 127(4): 403–6PubMedCrossRefGoogle Scholar
  72. 72.
    Silver LH. Clinical efficacy and safety of brinzolamide (Azopt), a new topical carbonic anhydrase inhibitor for primary open-angle glaucoma and ocular hypertension. Am J Ophthalmol 1998 Sep; 126(3): 400–8PubMedCrossRefGoogle Scholar
  73. 73.
    Coakes RL, Brubaker RF. The mechanism of timolol in lowering intraocular pressure in the normal eye. Arch Ophthalmol 1978 Nov; 96(11): 2045–8PubMedCrossRefGoogle Scholar
  74. 74.
    Steinen RF, Thomas JV, Boger III WP. Long-term drift and continued efficacy after multiyear timolol therapy. Arch Ophthalmol 1981 Jan; 99(1): 100–3CrossRefGoogle Scholar
  75. 75.
    Kobelt G, Jonsson L, Gerdtham U, et al. Direct costs of glaucoma management following initiation of medical therapy: a simulation model based on an observational study of glaucoma treatment in Germany. Graefes Arch Clin Exp Ophthalmol 1998 Nov; 236(11): 811–21PubMedCrossRefGoogle Scholar
  76. 76.
    Topper JE, Brubaker RF. Effects of timolol, epinephrine, and acetazolamide on aqueous flow during sleep. Invest Ophthalmol Vis Sci 1985 Oct; 26(10): 1315–9PubMedGoogle Scholar
  77. 77.
    Zimmerman TJ, Kaufman HE. Timolol: a beta-adrenergic blocking agent for the treatment of glaucoma. Arch Ophthalmol 1977 Apr; 95(4): 601–4PubMedCrossRefGoogle Scholar
  78. 78.
    Wilson RP, Kanal N, Spaeth GL. Timolol: its effectiveness in different types of glaucoma. Ophthalmology 1979 Jan; 86(1): 43–50PubMedGoogle Scholar
  79. 79.
    Katz IM, Berger ET. Effects of iris pigmentation on response of ocular pressure to timolol. Surv Ophthalmol 1979 May; 23(6): 395–8PubMedCrossRefGoogle Scholar
  80. 80.
    Shedden A, Laurence J, Tipping R, et al. Efficacy and tolerability of timolol maleate ophthalmic gel-forming solution in adults with primary open-angle glaucoma or ocular hypertension: a six-month, double-masked, multicenter study. Clin Ther 2001 Mar; 23(3): 440–50PubMedCrossRefGoogle Scholar
  81. 81.
    Stewart WC, Sharpe ED, Stuart JA, et al. The safety and efficacy of timolol 0.5% in xanthum gum versus timolol gel forming solution 0.5%. Curr Eye Res 2002 May 24(5): 387–391PubMedCrossRefGoogle Scholar
  82. 82.
    Derick RJ, Robin AL, Tielsch J, et al. Once-daily versus twice-daily levobunolol (0.5%) therapy: a cross-over study. Ophthalmology 1992 Dec; 99(3): 424–9PubMedGoogle Scholar
  83. 83.
    Boozman FW, Carriker R, Foerster R, et al. Long-term evaluation of 0.25% levobunolol and timolol for therapy for elevated intraocular pressure. Arch Ophthalmol 1988 May; 106(5): 614–8PubMedCrossRefGoogle Scholar
  84. 84.
    Geyer O, Lazar M, Novack GD, et al. Levobunolol compared with timolol: a four-year study. Br J Ophthalmol 1988 Dec; 72(12): 892–6PubMedCrossRefGoogle Scholar
  85. 85.
    Scoville B, Mueller B, White BG, et al. A double-masked comparison of Carteolol and timolol in ocular hypertension. Am J Ophthalmol 1988 Feb; 105(2): 150–4PubMedGoogle Scholar
  86. 86.
    Stewart WC, Shields MB, Allen RC, et al. A 3-month comparison of 1% and 2% Carteolol and 0.5% timolol in open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 1991 Mar; 229(3): 258–61PubMedCrossRefGoogle Scholar
  87. 87.
    Freedman SF, Freedman NJ, Shields MB, et al. Effects of ocular Carteolol and timolol on plasma high-density lipoprotein cholesterol level. Am J Ophthalmol 1993 Nov; 116(5): 600–11PubMedGoogle Scholar
  88. 88.
    Serie JB, Lustgarten JS, Podos SM. A clinical trial of metipranolol, a noncardioselective beta-adrenergic antagonist, in ocular hypertension. Am J Ophthalmol 1991 Sep; 112(3): 302–7Google Scholar
  89. 89.
    Muller O, Knobel HR. Effectiveness and tolerance of metipranolol: results of a multi-center long-term study in Switzerland. Klin Monatsbl Augenheilkd 1986 Jan; 188(1): 62–3PubMedCrossRefGoogle Scholar
  90. 90.
    Krieglstein GK, Novack GD, Voepel E, et al. Levobunolol and metipranolol: comparative ocular hypotensive efficacy, safety, and comfort. Br J Ophthalmol 1987 Apr; 71(4): 250–3PubMedCrossRefGoogle Scholar
  91. 91.
    Coakes RL, Mackie IA, Seal DV. Effects of long-term treatment with timolol on lacrimal gland function. Br J Ophthalmol 1981 Sep; 65(9): 603–5PubMedCrossRefGoogle Scholar
  92. 92.
    Akingbehin T, Villada JR. Metipranolol-associated granulomatous anterior uveitis. Br J Ophthalmol 1991 Sep; 75(9): 5519–23CrossRefGoogle Scholar
  93. 93.
    Melles RB, Wong IG. Metipranolol-associated granulomatous iritis. Am J Ophthalmol 1994 Dec; 118(6): 712–5PubMedGoogle Scholar
  94. 94.
    McMahon CD, Shaffer RN, Hoskins HDJ, et al. Adverse effects experienced by patients taking timolol. Am J Ophthalmol 1979 Oct; 88(4): 736–8PubMedGoogle Scholar
  95. 95.
    Van Buskirk EM. Adverse reactions from timolol administration. Ophthalmology 1980 May; 87(5): 447–50PubMedGoogle Scholar
  96. 96.
    Velde TM, Kaiser FE. Ophthalmic timolol treatment causing altered hypoglycemic response in a diabetic patient. Arch Intern Med 1983 Aug; 143(8): 1627PubMedCrossRefGoogle Scholar
  97. 97.
    Coppeto JR. Timolol-associated myasthenia gravis. Am J Ophthalmol 1984 Aug; 98(2): 244–5PubMedGoogle Scholar
  98. 98.
    Fraunfelder FT. Interim report: national registry of possible drug-induced ocular side effects. Ophthalmology 1980 Feb; 87(2): 87–90PubMedGoogle Scholar
  99. 99.
    Reiss GR, Brubaker RF. The mechanism of betaxolol, a new ocular hypotensive agent. Ophthalmology 1983 Nov; 90(11): 1369–72PubMedGoogle Scholar
  100. 100.
    Caldwell Dr, Salisbury CR, Guzek JP. Effects of topical betaxolol in ocular hypertensive patients. Arch Ophthalmol 1984 Apr; 102(4): 539–40PubMedCrossRefGoogle Scholar
  101. 101.
    Feghali JG, Kaufman PL. Decreased intraocular pressure in the hypertensive human eye with betaxolol, a beta 1-adrenergic antagonist. Am J Ophthalmol 1985 Dec; 100(6): 777–82PubMedGoogle Scholar
  102. 102.
    Collignon-Brach J. Long-term effect of ophthalmic beta-adrenoceptor antagonists on intraocular pressure and retinal sensitivity in primary open-angle glaucoma. Curr Eye Res 1992 Jan; 11(1): 1–3PubMedCrossRefGoogle Scholar
  103. 103.
    Messmer C, Flammer J, Stumpfig D. Influence of betaxolol and timolol on the visual fields of patients with glaucoma. Am J Ophthalmol 1991 Dec; 112(6): 678–1PubMedGoogle Scholar
  104. 104.
    Hoste AM, Sys SU. The relaxant action of betaxolol on isolated bovine retinal microarteries. Curr Eye Res 1994 Jul; 13(7): 483–7PubMedCrossRefGoogle Scholar
  105. 105.
    Hoste AM. Ca2+ channel blocking activity of propranolol and betaxolol in isolated bovine retinal microartery. J Cardiovasc Pharmacol 1998 Sep; 32(3): 390–6PubMedCrossRefGoogle Scholar
  106. 106.
    Schoene RB, Sharpe ED, Harbin TS, et al. Effects of topical betaxolol, timolol, and placebo on pulmonary function in asthmatic bronchitis. Am J Ophthalmol 1984 Jan; 97(1): 86–92PubMedGoogle Scholar
  107. 107.
    Harris LS, Greenstein SH, Bloom AF. Respiratory difficulties with betaxolol. Am J Ophthalmol 1986 Aug; 102(2): 274–5PubMedCrossRefGoogle Scholar
  108. 108.
    Roholt PC. Betaxolol and restrictive airway disease: case report. Arch Ophthalmol 1987 Sep; 105(9): 1172PubMedCrossRefGoogle Scholar
  109. 109.
    Nelson WL, Kuritsky JN. Early postmarketing surveillance of betaxolol hydrochloride, Sept 1985–Sept 1986 [letter]. Am J Ophthalmol 1987 Apr; 103(4): 592PubMedGoogle Scholar
  110. 110.
    Ball S. Congestive heart failure from betaxolol: case report. Arch Ophthalmol 1987 Mar; 105(3): 320PubMedCrossRefGoogle Scholar
  111. 111.
    Lynch MG, Whitson JT, Brown RH, et al. Topical beta-blocker therapy and central nervous system side effects: a preliminary study comparing betaxolol and timolol. Arch Ophthalmol 1988 Jul; 106(7): 908–11PubMedCrossRefGoogle Scholar
  112. 112.
    Asrani S, Zeimer R, Wilensky J, et al. Large diurnal fluctuations in IOP are an independent risk factor in patients with glaucoma. J Glaucoma 2000 Apr; 9(2): 134–42PubMedCrossRefGoogle Scholar
  113. 113.
    Bergea B, Bodin L, Svedbergh B. Impact of intraocular pressure regulation on visual fields in open-angle glaucoma. Ophthalmology 1999 May; 106(5): 997–1004PubMedCrossRefGoogle Scholar
  114. 114.
    Mishima HK, Kiuchi Y, Takamatsu M, et al. Circadian intraocular pressure management with latanoprost: diurnal and nocturnal intraocular pressure reduction and increased uveoscleral outflow. Surv Ophthalmol 1997 Feb; 41Suppl. 2: S139–44PubMedCrossRefGoogle Scholar
  115. 115.
    Hylton C, Robin AL. Update on prostaglandin analogues. Curr Opin Ophthalmol 2003 Apr; 14(2): 65–9PubMedCrossRefGoogle Scholar
  116. 116.
    Ziai N, Dolan JW, Kacere RD, et al. The effects on aqueous dynamics of PhXA41, a new prostaglandin F2α analogue, after topical application in normal and ocular hypertensive human eyes. Arch Ophthalmol 1993 Oct; 111(1): 1351–8PubMedCrossRefGoogle Scholar
  117. 117.
    Parrish RK, Palmberg P, Sheu WP. A comparison of latanoprost, bimatoprost, and travoprost in patients with elevated intraocular pressure: a 12-week, randomized, masked-evaluator multicenter study. Am J Ophthalmol 2003 May; 135(5): 688–703PubMedCrossRefGoogle Scholar
  118. 118.
    Camras CB. Comparison of latanoprost and timolol in patients with ocular hypertension and glaucoma: a six-month masked, multicenter trial in the United States. The United States Latanoprost Study Group. Ophthalmology 1996 Jan; 103(1): 138–47PubMedGoogle Scholar
  119. 119.
    Watson P, Stjernschantz J. A six-month, randomized, double-masked study comparing latanoprost with timolol in open-angle glaucoma and ocular hypertension. The Latanoprost Study Group. Ophthalmology 1996 Jan; 103(1): 126–37PubMedGoogle Scholar
  120. 120.
    Mishima HK, Masuda K, Kitazawa Y, et al. A comparison of latanoprost and timolol in primary open-angle glaucoma and ocular hypertension: a 12-week study. Arch Ophthalmol 1996 Aug; 114(8): 929–32PubMedCrossRefGoogle Scholar
  121. 121.
    Orzatesi N, Rossetti L, Invernizzi T, et al. Effect of timolol, latanoprost, and dorzolamide on circadian IOP in glaucoma or ocular hypertension. Invest Ophthalmol Vis Sci 2000 Aug; 41(9): 2566–73Google Scholar
  122. 122.
    O’Donoghue EP. A comparison of latanoprost and dorzolamide in patients with glaucoma and ocular hypertension: a 3-month randomized study. Ireland Latanoprost Study Group. Br J Ophthalmol 2000 Jun; 84(6): 579–82PubMedCrossRefGoogle Scholar
  123. 123.
    Dubiner HB, Mroz M, Shapiro AM, et al. A comparison of the efficacy and tolerability of brimonidine and latanoprost in adults with open-angle glaucoma or ocular hypertension: a three-month, multicenter, randomized, double-masked, parallel-group trial. Clin Ther 2001 Dec; 23(12): 1969–83PubMedCrossRefGoogle Scholar
  124. 124.
    Data on file, Pfizer Ophthalmics Inc., New York, 2003Google Scholar
  125. 125.
    Morgan PV, Proniuk S, Blanchard J, et al. Effect of temperature and light on the stability of latanoprost and its clinical relevance. J Glaucoma 2001 Oct; 10(5): 401–5PubMedCrossRefGoogle Scholar
  126. 126.
    Hellberg MR, Sallee VL, McLaughlin MA, et al. Preclinical efficacy of travoprost, a potent and selective FP prostaglandin receptor agonist. J Ocular Pharmacol Ther 2001 Oct; 17(5): 421–32CrossRefGoogle Scholar
  127. 127.
    Netland PA, Landry T, Sullivan EK, et al. Travoprost compared with latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am J Ophthalmol 2001 Oct; 132(4): 472–84PubMedCrossRefGoogle Scholar
  128. 128.
    Fellman RL, Sullivan EK, Ratliff M, et al. Comparison of travoprost 0.0015% and 0.004% with timolol 0.5% in patients with elevated IOP: a six-month, masked, multicenter trial. Ophthalmology 2002 May; 109(5): 998–1008PubMedCrossRefGoogle Scholar
  129. 129.
    Goldberg I, Cunha-Vaz J, Jakobsen JE, et al. Comparison of topical travoprost eye drops given once daily and timolol 0.5% given twice daily in patients with open-angle glaucoma or ocular hypertension. J Glaucoma 2002 Oct; 10(5): 414–22CrossRefGoogle Scholar
  130. 130.
    Orengo-Nania S, Landry T, Von Tress M, et al. Evaluation of travoprost as adjunctive therapy in patients with uncontrolled intraocular pressure while using timolol 0.5%. Am J Ophthalmol 2001 Dec; 132(6): 860–8PubMedCrossRefGoogle Scholar
  131. 131.
    Dubiner HB, Sircy MD, Landry T, et al. Comparison of the diurnal ocular hypotensive efficacy of travoprost and latanoprost over a 44-hour period in patients with elevated intraocular pressure. Clin Ther 2004 Jan; 26(1): 84–91PubMedCrossRefGoogle Scholar
  132. 132.
    Whitson JT. Travoprost-a new prostaglandin analogue for the treatment of glaucoma. Expert Opin Pharmacother 2002 Jul; 3(7): 965–77PubMedCrossRefGoogle Scholar
  133. 133.
    Woodward DF, Krauss AH, Chen J, et al. Pharmacological characterization of a novel antiglaucoma agent, Bimatoprost (AGN 192024). J Pharmacol Exp Ther 2003 May; 305(2): 772–85PubMedCrossRefGoogle Scholar
  134. 134.
    Hellberg MR, Ke TL, Haggard K, et al. The hydrolysis of the prostaglandin analogue prodrug bimatoprost to 17-phenyl-trinor PGF2alpha by human and rabbit ocular tissue. J Ocul Pharmacol Ther 2003 Apr; 19(2): 97–103PubMedCrossRefGoogle Scholar
  135. 135.
    Brubaker RF. Mechanism of action of bimatoprost (Lumigan). Surv Ophthalmol 2001 May; 45(4): S347–51PubMedCrossRefGoogle Scholar
  136. 136.
    Sherwood M, Brandt J. Six-month comparison of bimatoprost q.d. and b.i.d. with timolol b.i.d. in patients with elevated intraocular pressure. Surv Ophthalmol 2001 May; 45(4): S361–8PubMedCrossRefGoogle Scholar
  137. 137.
    Gandolfi S, Simmons ST, Sturm R, et al. Three-month comparison of bimatoprost and latanoprost in patients with glaucoma and ocular hypertension. Adv Ther 2001 May–Jun; 18(3): 110–21PubMedCrossRefGoogle Scholar
  138. 138.
    Noecker RS, Dirks MS, Choplin NT, et al. A six-month randomized clinical trial comparing the intraocular pressure-lowering efficacy of bimatoprost and latanoprost in patients with ocular hypertension or glaucoma. Am J Ophthalmol 2003 Jan; 135(1): 55–63PubMedCrossRefGoogle Scholar
  139. 139.
    Coleman AL, Lerner F, Bernstein P, et al. A 3-month randomized controlled trial of bimatoprost (LUMIGAN) versus combined timolol and dorzolamide (Cosopt) in patients with glaucoma or ocular hypertension. Ophthalmology 2003 Dec; 110(12): 2362–8PubMedCrossRefGoogle Scholar
  140. 140.
    Strohmaier K, Snyder E, DuBiner H, et al. The efficacy and safety of the dorzolamide-timolol combination versus the concomitant administration of its components. Ophthalmology 1998 Oct; 105(10): 1936–44PubMedCrossRefGoogle Scholar
  141. 141.
    Cantor LB. An update on bimatoprost in glaucoma therapy. Expert Opin Pharmacother 2002 Dec; 3(12): 1753–62PubMedCrossRefGoogle Scholar
  142. 142.
    Nordmann JP, Mertz B, Yannoulis NC, et al. A double-masked randomized comparison of the efficacy and safety of unoprostone with timolol and betaxolol in patients with primary open-angle glaucoma including Pseudoexfoliation glaucoma or ocular hypertension: 6-month data. Am J Ophthalmol 2002 Jan; 133(1): 1–10PubMedCrossRefGoogle Scholar
  143. 143.
    Jampel HD, Bacharach J, Sheu WP, et al. Randomized clinical trial of latanoprost and unoprostone in patients with elevated intraocular pressure. Am J Ophthalmol 2002 Dec; 134(6): 863–71PubMedCrossRefGoogle Scholar
  144. 144.
    Hommer A, Kapik B, Shams N. Unoprostone as adjunctive therapy to timolol: a double masked randomized study versus brimonidine and dorzolamide. Br J Ophthalmol 2003 May; 87(5): 592–8PubMedCrossRefGoogle Scholar
  145. 145.
    Hedner J, Svedmyr N, Lunde H, et al. The lack of respiratory effects of the ocular hypotensive drug latanoprost in patients with moderate-steroid treated asthma. Surv Ophthalmol 1997 Feb; 41Suppl. 2: S111–5PubMedCrossRefGoogle Scholar
  146. 146.
    Wistrand PJ, Stjernschantz J, Olsson K. The incidence and time-course of latanoprost-induced iridial pigmentation as a function of eye color. Surv Ophthalmol 1997 Feb; 41Suppl. 2: S129–38PubMedCrossRefGoogle Scholar
  147. 147.
    Fechtner RD, Khouri AS, Zimmerman TJ, et al. Anterior uveitis associated with latanoprost. Am J Ophthalmol 1998 Jul; 126(1): 37–41PubMedCrossRefGoogle Scholar
  148. 148.
    Dios Castro E, Maquet Dusart JA. Latanoprost-associated recurrent herpes simplex keratitis. Arch Soc Esp Oftalmol 2000 Nov; 75(11): 775–8PubMedGoogle Scholar
  149. 149.
    Ayyala RS, Cruz DA, Margo CE, et al. Cystoid macular edema associated with latanoprost in aphakic and Pseudophakic eyes. Am J Ophthalmol 1998 Oct; 126(4): 602–4PubMedCrossRefGoogle Scholar
  150. 150.
    Callanan D, Fellman RL, Savage JA. Latanoprost-associated cystoid macular edema. Am J Ophthalmol 1998 Jul; 126(1): 134–5PubMedCrossRefGoogle Scholar
  151. 151.
    Bucci MG. Intraocular pressure-lowering effects of latanoprost monotherapy versus latanoprost or pilocarpine in combination with timolol: a randomized, observer-masked multicenter study in patients with open-angle glaucoma. Italian Latanoprost Study Group. J Glaucoma 1999 Feb; 8(1): 24–30PubMedCrossRefGoogle Scholar
  152. 152.
    Higginbotham EJ, Feldman R, Stiles M, et al. Latanoprost and timolol combination therapy vs monotherapy. Arch Ophthalmol 2002 Jul; 120(7): 915–22PubMedGoogle Scholar
  153. 153.
    Netland PA, Michael M, Rosner SA, et al. Brimonidine purite and bimatoprost compared with timolol and latanoprost in patients with glaucoma and ocular hypertension. Adv Ther 2003 Jan–Feb; 20(1): 20–30PubMedCrossRefGoogle Scholar
  154. 154.
    Chiselita D, Apatachioae I, Poiata I. The ocular hypotensive effect of the combination of latanoprost and dorzolamide. Oftalmologia 1999 Jan; 46(1): 39–45PubMedGoogle Scholar
  155. 155.
    O’Connor DJ, Martone JF, Mead A. Additive intraocular pressure lowering effect of various medications with latanoprost. Am J Ophthalmol 2002 Jun; 133(6): 836–7PubMedCrossRefGoogle Scholar
  156. 156.
    Sall KN, Greff LJ, Johnson-Pratt LR, et al. Dorzolamide/timololcombination versus concomitant administration of brimonidine and timolol: six-month comparison of efficacy and tolerability. Ophthalmology 2003 Mar; 110(3): 615–24PubMedCrossRefGoogle Scholar
  157. 157.
    Orzatesi N, Rossetti L, Bottali A, et al. The effect of latanoprost, brimonidine and a fixed combination of timolol and dorzolamide on circadian intraocular pressure in patients with glaucoma or ocular hypertension. Arch Ophthalmol 2003 Apr; 121(4): 453–7CrossRefGoogle Scholar
  158. 158.
    Airaksinen PJ, Valkonen R, Stenborg T, et al. A double-masked study of timolol and pilocarpine combined. Am J Ophthalmol 1987 Dec; 104(6): 587–90PubMedGoogle Scholar
  159. 159.
    Scharrer A, Ober M. Metipranolol 0.1% and pilocarpine 2% as a fixed combination compared to each substance alone in the treatment of glaucoma: a controlled, randomized clinical study comparing the intraindividual effects and tolerance. Klin Monatsbl Augenheilkd 1986 Dec; 189(6): 450–5PubMedCrossRefGoogle Scholar
  160. 160.
    Wise JB, Witter SL. Argon laser therapy for open-angle glaucoma: a pilot study. Arch Ophthalmol 1979 Feb; 97(2): 319–22PubMedCrossRefGoogle Scholar
  161. 161.
    Babizhayev MA, Brodskaya MW, Mamedov NG, et al. Clinical, structural and molecular phototherapy effects of laser irradiation on the trabecular meshwork of human glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol 1990 Jan; 228(1): 90–100PubMedCrossRefGoogle Scholar
  162. 162.
    Wise JB. Long-term control of adult open angle glaucoma by argon laser treatment. Ophthalmology 1981 Mar; 88(3): 197–202PubMedGoogle Scholar
  163. 163.
    Wilensky JT, Jampol LM. Laser therapy for open angle glaucoma. Ophthalmology 1981 Mar; 88(3): 213–7PubMedGoogle Scholar
  164. 164.
    Tuulonen A, Niva AK, Alanko HI. A controlled five-year follow-up study of laser trabeculoplasty as primary therapy for open-angle glaucoma. Am J Ophthalmol 1987 Oct; 104(4): 334–8PubMedGoogle Scholar
  165. 165.
    Frucht J, Bishara S, Ticho U. Early intraocular pressure response following laser trabeculoplasty. Br J Ophthalmol 1985 Oct; 69(10): 771–3PubMedCrossRefGoogle Scholar
  166. 166.
    Thomas JV, Simmons RJ, Belcher III CD. Argon laser trabeculoplasty in the presurgical glaucoma patient. Ophthalmology 1982 Mar; 89(3): 187–97PubMedGoogle Scholar
  167. 167.
    Hoskins Jr HD, Hetherington Jr J, Minckler DS, et al. Complications of laser trabeculoplasty. Ophthalmology 1983 Jul; 90(7): 796–9PubMedGoogle Scholar
  168. 168.
    Latina MA, Sibayan SA, Shin DH, et al. Q-switched 532-nm Nd:YAG laser trabeculoplasty (selective laser trabeculoplasty): a multicenter, pilot, clinical study. Ophthalmology 1998 Nov; 105(11): 2082–8PubMedCrossRefGoogle Scholar
  169. 169.
    Kramer TR, Noecker RJ. Comparison of the morphologic changes after selective laser trabeculoplasty and argon laser trabeculoplasty in human eye bank eyes. Ophthalmology 2001 Apr; 108(4): 773–9PubMedCrossRefGoogle Scholar
  170. 170.
    Damji KF, Shah KC, Rock WJ, et al. Selective laser trabeculoplasty vs argon laser trabeculoplasty: a prospective randomized clinical trial. Br J Ophthalmol 1999 Jun; 83(6): 718–22PubMedCrossRefGoogle Scholar
  171. 171.
    Cairns JE. Trabeculectomy: preliminary report of a new method. Am J Ophthalmol 1968 Oct; 66(4): 673–9PubMedGoogle Scholar
  172. 172.
    Ruderman JM, Welch DB, Smith MF, et al. A randomized study of 5-fluorouracil and filtration surgery. Am J Ophthalmol 1987 Sep; 104(3): 218–24PubMedGoogle Scholar
  173. 173.
    Palmer SS. Mitomycin as an adjunct chemotherapy with trabeculectomy. Ophthalmology 1991 Mar; 98(3): 317–21PubMedGoogle Scholar
  174. 174.
    Zimmerman TJ, Kooner KS, Ford VJ, et al. Effectiveness of nonpenetrating trabeculectomy in aphakic patients with glaucoma. Ophthalmic Surg 1984 Jan; 15(1): 44–50PubMedGoogle Scholar
  175. 175.
    Chiselita D. Non-penetrating deep sclerectomy versus trabeculectomy in primary open angle glaucoma surgery. Eye 2001 Apr; 15 (Pt 2): 197–201PubMedCrossRefGoogle Scholar
  176. 176.
    Whitson JT. Recent developments in glaucoma drainage implant surgery. Int Ophthalmol Clin 1999 Summer; 39(3): 43–55PubMedCrossRefGoogle Scholar
  177. 177.
    deRoetth Jr A. Cryosurgery for the treatment of advanced chronic simple glaucoma. Am J Ophthalmol 1966 Mar; 61(3): 443–50Google Scholar
  178. 178.
    Albaugh CH, Dunphy EB. Cyclodiathermy. Arch Ophthalmol 1942 Mar; 27(3): 543–57CrossRefGoogle Scholar
  179. 179.
    Peyman GA, Naguib KS, Gaasterland D. Transscleral application of a semiconductor diode laser. Lasers Surg Med 1990; 10(6): 569–75PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2005

Authors and Affiliations

  1. 1.Department of OphthalmologyThe University of Texas Southwestern Medical Center at DallasDallasUSA

Personalised recommendations