Advertisement

Drugs & Aging

, Volume 19, Issue 4, pp 299–320 | Cite as

Clinically Significant Drug Interactions with Antidepressants in the Elderly

  • Edoardo Spina
  • Maria Gabriella Scordo
Review Article

Abstract

Pharmacological treatment of depression in old age is associated with an increased risk of adverse pharmacokinetic and pharmacodynamic drug interactions. Elderly patients may have multiple disease states and, therefore, may require a variety of other drugs. In addition to polypharmacy, other factors such as age-related physiological changes, diseases, genetic constitution and diet may alter drug response and, therefore, predispose elderly patients to adverse effects and drug interactions.

Antidepressant drugs currently available differ in their potential for drug interactions. In general, older compounds, such as tricyclic antidepressants (TCAs) and monoamine oxidase inhibitors (MAOIs), have a higher potential for interactions than newer compounds, such as selective serotonin reuptake inhibitors (SSRIs) and other relatively novel agents with a more specific mechanism of action. In particular, TCAs and MAOIs are associated with clinically significant pharmacodynamic interactions with many medications frequently prescribed to elderly patients. Moreover, TCAs may be susceptible to pharmacokinetic interactions when given in combination with inhibitors or inducers of the cytochrome P450 (CYP) isoenzymes involved in their metabolism.

Because of a more selective mechanism of action, newer antidepressants have a low potential for pharmacodynamic drug interactions. However, the possibility of the serotonin syndrome should be taken into account when drugs affecting serotonergic transmission, such as SSRIs, venlafaxine or nefazodone, are coadministered with other serotonergic agents. Newer agents have a differential potential for pharmacokinetic interactions because of their selective effects on CYP isoenzymes. Within the group of SSRIs, fluoxetine and paroxetine are potent inhibitors of CYP2D6, while fluvoxamine predominantly affects CYP1A2 and CYP2C19 activity. Therefore, these agents should be closely monitored or avoided in elderly patients treated with substrates of these isoforms, especially those with a narrow therapeutic index. On the other hand, citalopram and sertraline have a low inhibitory activity on different drug metabolising enzymes and appear particularly suitable in an elderly population.

Among other newer antidepressants, nefazodone is a potent inhibitor of CYP3A4 and its combination with substrates of this isoform should be avoided.

Keywords

Fluoxetine Paroxetine Sertraline Fluvoxamine Mirtazapine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Supported by a grant from the University of Messina (PRA 2000).

References

  1. 1.
    Blazer D. Depression in the elderly. N Engl J Med 1989; 320: 164–6PubMedCrossRefGoogle Scholar
  2. 2.
    NIH Consensus Development Panel. Diagnosis and treatment of depression in late life. JAMA 1992; 268: 1018–24CrossRefGoogle Scholar
  3. 3.
    Lepine JP, Bouchez S. Epidemiology of depression in the elderly. Int Clin Psychopharmacol 1998; 13Suppl. 5: 7–12CrossRefGoogle Scholar
  4. 4.
    Flint JA. Choosing appropriate antidepressant therapy in the elderly. A risk-benefit assessment of available agents. Drugs Aging 1998; 13: 269–80PubMedCrossRefGoogle Scholar
  5. 5.
    Menting JEA, Honig A, Verhey FRJ, et al. Selective serotonin reuptake inhibitors (SSRIs) in the treatment of elderly depressed patients: a qualitative analysis of the literature on their efficacy and side-effects. Int Clin Psychopharmacol 1996; 11: 165–75PubMedCrossRefGoogle Scholar
  6. 6.
    Mittmann N, Herrmann N, Einarson TR, et al. The efficacy, safety and tolerability of antidepressants in late life depression: a meta-analysis. J Affect Disord 1997; 46: 191–217PubMedCrossRefGoogle Scholar
  7. 7.
    Spina E, Perucca E. Newer and older antidepressants: a comparative review of drug interactions. CNS Drugs 1994; 2: 479–97CrossRefGoogle Scholar
  8. 8.
    Ciraulo DA, Creelman W, Shader RI, et al. Antidepressants. In: Ciraulo DA, Shader RI, Greenblatt DJ, et al., editors. Drug interactions in psychiatry. 2nd ed. Baltimore (MD): Williams &Wilkins, 1989: 29–128Google Scholar
  9. 9.
    Lane RM. Pharmacokinetic drug interaction potential of selective serotonin reuptake inhibitors. Int Clin Psychopharmacol 1996; 11Suppl. 5: 31–61PubMedCrossRefGoogle Scholar
  10. 10.
    Baumann P. Pharmacokinetic-pharmacodynamic relationship of the selective serotonin reuptake inhibitors. Clin Pharmacokinet 1996; 31: 444–69PubMedCrossRefGoogle Scholar
  11. 11.
    Cadieux RJ. Antidepressant drug interactions in the elderly. Understanding the P-450 system is half the battle in reducing risks. Postgrad Med 1999; 106: 231–49PubMedCrossRefGoogle Scholar
  12. 12.
    Gonzalez FJ. Human cytochrome P450: problem and prospects. Trends Pharmacol Sci 1992; 13: 346–52PubMedCrossRefGoogle Scholar
  13. 13.
    Guengerich FP. Role of cytochrome P450 enzymes in drug-drug interactions. Adv Pharmacol 1997; 43: 7–35PubMedCrossRefGoogle Scholar
  14. 14.
    Nelson DR, Kamataki T, Waxman DJ, et al. The P450 super-family: update on new sequences, gene mapping, accessum numbers, early trivial names of enzymes and nomenclature. DNA Cell Biol 1993; 12: 1–51PubMedCrossRefGoogle Scholar
  15. 15.
    Wrighton SA, Van der Branden M, Ring BJ. The human drug metabolizing cytochrome P450. J Pharmacokinet Biopharm 1996; 24: 461–73PubMedGoogle Scholar
  16. 16.
    Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 1997; 29: 413–580PubMedCrossRefGoogle Scholar
  17. 17.
    Sproule BA, Naranjo CA, Bremner KE, et al. Selective serotonin reuptake inhibitors and CNS drug interactions: a critical review of the evidence. Clin Pharmacokinet 1997; 33: 454–71PubMedCrossRefGoogle Scholar
  18. 18.
    Krishna DR, Klotz U. Extrahepatic metabolism of drugs in humans. Clin Pharmacokinet 1994; 26: 144–60PubMedCrossRefGoogle Scholar
  19. 19.
    Vestal RE, Cusack BJ. Interactions in the elderly. In: Levy RH, Thummel KE, Trager WF, et al., editors. Metabolic drug interactions. Philadelphia (PA): Lippincott Williams & Wilkins, 2000: 729–42Google Scholar
  20. 20.
    Dawling S, Crome P. Clinical pharmacokinetic considerations in the elderly: an update. Clin Pharmacokinet 1989; 17: 236–63PubMedCrossRefGoogle Scholar
  21. 21.
    Kinirons MT, Crome P. Clinical pharmacokinetic considerations in the elderly: an update. Clin Pharmacokinet 1997; 33: 302–12PubMedCrossRefGoogle Scholar
  22. 22.
    Hammerlein A, Derendorf H, Lowenthal DT. Pharmacokinetic and pharmacodynamic changes in the elderly: clinical implications. Clin Pharmacokinet 1998; 35: 49–64PubMedCrossRefGoogle Scholar
  23. 23.
    Von Moltke LL, Greenblatt DJ, Shader RI. Clinical pharmacokinetics of antidepressants in the elderly: therapeutic implications. Clin Pharmacokinet 1993; 24: 141–60CrossRefGoogle Scholar
  24. 24.
    DeVane CL, Pollock BG. Pharmacokinetic considerations of antidepressant use in the elderly. J Clin Psychiatry 1999; 60Suppl. 20: 38–44PubMedGoogle Scholar
  25. 25.
    Cadieux RJ. Drug interactions in the elderly. How multiple drug use increases risk exponentially. Postgrad Med 1989; 86: 179–86PubMedGoogle Scholar
  26. 26.
    Ernst E. Herb-drug interactions: potentially important but woefully under-researched. Eur J Clin Pharmacol J 2000; 56: 523–4CrossRefGoogle Scholar
  27. 27.
    Zevin S, Benowitz NL. Drug interactions with tobacco smoking: an update. Clin Pharmacokinet 1999; 36: 42–38CrossRefGoogle Scholar
  28. 28.
    Wood AJ, Vestal RE, Wilkinson GR, et al. Effect of aging and cigarette smoking on antipyrine and indocyanine green elimination. Clin Pharmacol Ther 1979; 26: 16–20PubMedGoogle Scholar
  29. 29.
    Crowley JJ, Cusack BJ, Jue SG, et al. Aging and drug interactions. II. Effect of phenytoin and smoking on the oxidation of theophylline and cortisol in healthy men. J Pharmacol Exp Ther 1988; 245: 513–23PubMedGoogle Scholar
  30. 30.
    George G, Whynne H, Woodhouse KW. The association of age with induction of drug metabolising enzymes in human monocytes. Age Ageing 1990; 19: 364–7PubMedCrossRefGoogle Scholar
  31. 31.
    Twum-Barima Y, Finnigan T, Habash AI, et al. Impaired enzyme induction by rifampicin in the elderly. Br J Clin Pharmacol 1984; 17: 595–7PubMedCrossRefGoogle Scholar
  32. 32.
    Lee BL, Benowitz NL, Jacob P. Cigarette abstinence, nicotine gum, and theophylline disposition. Ann Intern Med 1987; 106: 553–5PubMedGoogle Scholar
  33. 33.
    Judd F, Boyce P. Tricyclic antidepressants in the treatment of depression. Do they still have a place? Aust Fam Physician 1999; 28: 809–13PubMedGoogle Scholar
  34. 34.
    Chiba K, Kobayashi K. Antidepressants. In: Levy RH, Thummel KE, Trager WF, et al., editors. Metabolic drug interactions. Philadelphia (PA): Lippincott Williams & Wilkins, 2000: 233–43Google Scholar
  35. 35.
    Shad MU, Preskorn SH. Antidepressants. In: Levy RH, Thummel KE, Trager WF, et al., editors. Metabolic drug interactions. Philadelphia (PA): Lippincott Williams & Wilkins, 2000: 563–77Google Scholar
  36. 36.
    Otani K, Nordin C, Bertilsson L. No interaction of diazepam on amitriptyline disposition in depressed patients. Ther Drug Monit 1987; 9: 120–2PubMedCrossRefGoogle Scholar
  37. 37.
    Seppala T, Linnoila M, Elonen E, et al. Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving. Clin Pharmacol Ther 1975; 17: 515–22PubMedGoogle Scholar
  38. 38.
    Gram LF, Fredricsson-Overo K. Drug interaction: inhibitory effect of neuroleptics on metabolism of tricyclic antidepressants in man. BMJ 1972; 1: 463–5PubMedCrossRefGoogle Scholar
  39. 39.
    Nelson JC, Jatlow PI. Neuroleptic effect on desipramine steady-state plasma concentrations. Am J Psychiatry 1980; 137: 1232–4PubMedGoogle Scholar
  40. 40.
    Loga S, Curry S, Lader M. Interaction of chlorpromazine and nortriptyline in patients with schizophrenia. Clin Pharmacokinet 1981; 6: 454–62PubMedCrossRefGoogle Scholar
  41. 41.
    Linnoila M, George L, Guthrie S. Interaction between antidepressants and perphenazine in psychiatric patients. Am J Psychiatry 1982; 139: 1329–31PubMedGoogle Scholar
  42. 42.
    Heiman EM. Cardiac toxicity with thioridazine-tricyclic antidepressant combination [letter]. J Nerv Ment Dis 1977; 135: 139CrossRefGoogle Scholar
  43. 43.
    Warnes H, Lehman HE, Ban TA. Adynamic ileus during psychoactive medication: a report of three fatal and five severe cases. Can Med Assoc J 1967; 96: 1112–3PubMedGoogle Scholar
  44. 44.
    Burrows GD, Davis B. Antidepressants and barbiturates [letter]. BMJ 1971; 4: 113PubMedCrossRefGoogle Scholar
  45. 45.
    Braithwaite RA, Flanagan RA, Richens A. Steady-state plasma nortriptyline concentrations in epileptic patients. Br J Clin Pharmacol 1975; 2: 469–71PubMedCrossRefGoogle Scholar
  46. 46.
    Hewick DS, Sparks RG, Stevenson IH, et al. Induction of imipramine metabolism following barbiturate administration [letter]. Br J Clin Pharmacol 1977; 4: 339CrossRefGoogle Scholar
  47. 47.
    Leinonen E, Lillsunde P, Laukkanen V, et al. Effects of carbamazepine on serum antidepressant concentrations in psychiatric patients. J Clin Psychopharmacol 1991; 11: 313–8PubMedCrossRefGoogle Scholar
  48. 48.
    Spina E, Avenoso A, Campo GM, et al. Inducing effect of carbamazepine on CYP2D6-mediated 2-hydroxylation of desipramine. Psychopharmacology (Berl) 1995; 117: 413–6CrossRefGoogle Scholar
  49. 49.
    Spina E, Avenoso A, Campo GM, et al. Phenobarbital induces the 2-hydroxylation of desipramine. Ther Drug Monit 1996; 18: 60–4PubMedCrossRefGoogle Scholar
  50. 50.
    Brosen K, Kragh-Sorensen P. Concomitant intake of nortriptyline and carbamazepine. Ther Drug Monit 1993; 15: 258–60PubMedCrossRefGoogle Scholar
  51. 51.
    Ayesh R, Dawling S, Widdop B, et al. Influence of quinidine on the pharmacokinetics of nortriptyline and desipramine. Br J Clin Pharmacol 1988; 25: 140–1Google Scholar
  52. 52.
    Steiner E, Dumont E, Spina E, et al. Inhibition of desipramine 2-hydroxylation by quinidine and quinine in rapid and slow hydroxylators. Clin Pharmacol Ther 1988; 44: 431–5PubMedCrossRefGoogle Scholar
  53. 53.
    Brosen K, Gram LF. Quinidine inhibits the 2-hydroxylation of imipramine and desipramine but not the demethylation of imipramine. Eur J Clin Pharmacol 1989; 37: 155–60PubMedCrossRefGoogle Scholar
  54. 54.
    Katz MR. Raised serum levels of desipramine with the antiarrhythmic propafenone. J Clin Psychiatry 1991; 52: 432–3PubMedGoogle Scholar
  55. 55.
    Mitchell JR, Arias L, Oates JR. Antagonism of hypotensive action of guanethidine sulfate by desipramine hydrochloride. JAMA 1967; 202: 973–5PubMedCrossRefGoogle Scholar
  56. 56.
    Skinner C, Coule DC, Johnston AW. Antagonism of the hypotensive action of bethanidine and debrisoquine by tricyclic antidepressants. Lancet 1969; 2: 564–6PubMedCrossRefGoogle Scholar
  57. 57.
    Briant RH, George CF. The assessment of potential drug interactions with a new tricyclic antidepressant drug. Br J Clin Pharmacol 1974; 1: 113–8PubMedCrossRefGoogle Scholar
  58. 58.
    Van Spanning HW, Van Zwieten PA. The interference of tricyclic antidepressants with the central hypotensive effect of clonidine. Eur J Pharmacol 1973; 24: 402–4PubMedCrossRefGoogle Scholar
  59. 59.
    Van Spanning HW, Van Zwieten PA. The interaction between alpha methyldopa and tricyclic antidepressants. Int J Clin Pharmacol 1975; 11: 65–7Google Scholar
  60. 60.
    Hermann DJ, Krol TF, Dukes GE, et al. Comparison of verapamil, diltiazem, and labetalol on the bioavailability and metabolism of imipramine. J Clin Pharmacol 1992; 32: 176–83PubMedGoogle Scholar
  61. 61.
    Vesell ES, Passananti GT, Greene FE. Impairment of drug metabolism in man by allopurinol and nortriptyline. N Engl J Med 1970; 283: 1484–8PubMedCrossRefGoogle Scholar
  62. 62.
    Koch-Weser J. Hemorrhagic reactions and drug interactions in 500 warfarin-treated patients. Clin Pharmacol Ther 1973; 14: 139–45Google Scholar
  63. 63.
    Pond SM, Graham GG, Birkett DJ, et al. Effect of tricyclic antidepressants on drug metabolism. Clin Pharmacol Ther 1975; 18: 191–9PubMedGoogle Scholar
  64. 64.
    Miller DD, Macklin M. Cimetidine-imipramine interaction: a case report. Am J Psychiatry 1983; 140: 351–2PubMedGoogle Scholar
  65. 65.
    Amsterdam JD, Brunswick DJ, Potter L, et al. Cimetidine-induced alterations in desipramine plasma concentrations. Psychopharmacology (Berl) 1984; 83: 373–5CrossRefGoogle Scholar
  66. 66.
    Abernethy DR, Greenblatt DJ, Shader RI. Imipramine-cimetidine interaction: impairment of clearance and enhanced absolute bioavailability. J Pharmacol Exp Ther 1984; 229: 702–5PubMedGoogle Scholar
  67. 67.
    Spina E, Avenoso A, Campo GM, et al. Effect of ketoconazole on the pharmacokinetics of imipramine and desipramine in healthy subjects. Br J Clin Pharmacol 1997; 43: 315–8PubMedCrossRefGoogle Scholar
  68. 68.
    Gannon RH, Anderson ML. Fluconazole-nortriptyline drug interaction. Ann Pharmacother 1992; 26: 1456–7PubMedGoogle Scholar
  69. 69.
    van der Kuy PH, Hooymans PM. Nortriptyline intoxication induced by terbinafine [letter]. BMJ 1998; 316: 441PubMedCrossRefGoogle Scholar
  70. 70.
    Blackwell B. Monoamine oxidase inhibitor interactions with other drugs. J Clin Psychopharmacol 1991; 11: 55–9PubMedCrossRefGoogle Scholar
  71. 71.
    Berlin I, Lecrubier Y. Food and drug interactions with monoamine oxidase inhibitors: how safe are the newer agents? CNS Drugs 1996; 5: 403–13CrossRefGoogle Scholar
  72. 72.
    Blackwell B. Hypertensive crisis due to monoamine oxidase inhibitors. Lancet 1963; 2: 849–51PubMedCrossRefGoogle Scholar
  73. 73.
    Blackwell B, Marley E. Interactions of cheese and its constituents with monoamine oxidase inhibitors. Br J Pharmacol Chemother 1966; 26: 120–41PubMedCrossRefGoogle Scholar
  74. 74.
    Blackwell B, Marley E, Price J, et al. Hypertensive interactions between monoamine oxidase inhibitors and foodstuffs. Br J Psychiatry 1967; 113: 349–65PubMedCrossRefGoogle Scholar
  75. 75.
    Brown C, Taniguchi G, Yip K. The monoamine oxidase inhibitor-tyramine interaction. J Clin Pharmacol 1989; 29: 529–32PubMedGoogle Scholar
  76. 76.
    Berlin I, Zimmer R, Cournot A, et al. Determination and comparison of the pressor effect of tyramine during long-term moclobemide and tranylcypromine treatment in healthy volunteers. Clin Pharmacol Ther 1989; 46: 344–51PubMedCrossRefGoogle Scholar
  77. 77.
    Elis J, Lawrence DR, Mattie H, et al. Modification by monoamine oxidase inhibitors of the effect of some sympathomimetics on blood pressure. BMJ 1967; 2: 75–8PubMedCrossRefGoogle Scholar
  78. 78.
    Brownlee G, Williams GW. Potentiation of amphetamine and pethidine by monoamine oxidase inhibitors. Lancet 1963; 1: 669PubMedCrossRefGoogle Scholar
  79. 79.
    White KL, Simpson G. Combined MAOI-tricyclic antidepressant treatment: a re-evaluation. J Clin Psychopharmacol 1981; 1: 264–82PubMedCrossRefGoogle Scholar
  80. 80.
    Sternbach H. The serotonin syndrome. Am J Psychiatry 1991; 148: 705–13PubMedGoogle Scholar
  81. 81.
    Lejoyeux M, Ades J, Rouillon F. Serotonin syndrome: incidence, symptoms and treatment. CNS Drugs 1994; 2: 132–43CrossRefGoogle Scholar
  82. 82.
    Neuvonen PJ, Pohjola-Sintonen S, Tacke U, et al. Five fatal case of serotonin syndrome after moclobemide-citalopram or moclobemide-clomipramine overdoses [letter]. Lancet 1993; 342: 1419PubMedCrossRefGoogle Scholar
  83. 83.
    Spigset O, Miorndal T. Serotonin syndrome caused by a moclobemide-clomipramine interaction [letter]. BMJ 1993; 306: 248PubMedCrossRefGoogle Scholar
  84. 84.
    Feighner JP, Boyer WF. Selective serotonin re-uptake inhibitors: advances in basic research and clinical practice. 2nd ed. Chichester (UK): John Wiley & Sons Ltd, 1996Google Scholar
  85. 85.
    Preskhorn SH. Clinical pharmacology of selective serotonin reuptake inhibitors. Caddo (OK): Professional Communications Inc, 1996Google Scholar
  86. 86.
    Newhouse PA. Use of serotonin selective reuptake inhibitors in geriatric depression. J Clin Psychiatry 1996; 57Suppl. 5: 12–22PubMedGoogle Scholar
  87. 87.
    Caccia S. Metabolism of the newer antidepressants: an overview of the pharmacological and pharmacokinetic implications. Clin Pharmacokinet 1998; 34: 281–302PubMedCrossRefGoogle Scholar
  88. 88.
    Nemeroff CB, DeVane CL, Pollock BG. Newer antidepressant and the cytochrome P450 system. Am J Psychiatry 1996; 153: 311–20PubMedGoogle Scholar
  89. 89.
    Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Drug interactions with newer antidepressants: role of human cytochromes P450. J Clin Psychiatry 1998; 59Suppl. 15: 19–27PubMedGoogle Scholar
  90. 90.
    Cond Lopez VJ, Ballesteros Alcalde MC, Blanco Garrote JA, et al. Cerebral infarction in an adolescent girl following an overdose of paroxetine and caffedrine combined with theodrenaline [Spanish]. Acta Luso Esp Neurol Psiquiatr Cienc Afines 1998; 26: 333–8Google Scholar
  91. 91.
    Lemberger L, Rowe H, Bosomworth JC, et al. The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam. Clin Pharmacol Ther 1988; 43: 412–9PubMedCrossRefGoogle Scholar
  92. 92.
    Greenblatt DJ, Preskorn SH, Cotreau MM, et al. Fluoxetine impairs clearance of alprazolam but not of clonazepam. Clin Pharmacol Ther 1992; 52: 479–86PubMedCrossRefGoogle Scholar
  93. 93.
    Perucca E, Gatti G, Cipolla G, et al. Inhibition of diazepam metabolism by fluvoxamine: a pharmacokinetic study in normal volunteers. Clin Pharmacol Ther 1994; 56: 471–6PubMedCrossRefGoogle Scholar
  94. 94.
    Fleishakker JC, Hulst LK. A pharmacokinetic and pharmacodynamic evaluation of the combined administration of alprazolam and fluvoxamine. Eur J Clin Pharmacol 1994; 46: 35–9CrossRefGoogle Scholar
  95. 95.
    Evins AE, Goff DC. Adjunctive antidepressant drug therapies in the treatment of negative symptoms in schizophrenia. CNS Drugs 1996; 6: 130–47CrossRefGoogle Scholar
  96. 96.
    Goff DC, Midha KK, Brotman A, et al. Elevation of plasma concentrations of haloperidol after addition of fluoxetine. Am J Psychiatry 1991; 148: 790–2PubMedGoogle Scholar
  97. 97.
    Avenoso A, Spina E, Campo G, et al. Interaction between fluoxetine and haloperidol: pharmacokinetic and clinical implications. Pharmacol Res 1997; 35: 335–9PubMedGoogle Scholar
  98. 98.
    Ozdemir V, Naranjo CA, Herrmann N, et al. Paroxetine potentiates the central nervous system side effects of perphenazine: contribution of cytochrome P4502D6 inhibition in vivo. Clin Pharmacol Ther 1997; 62: 334–47PubMedCrossRefGoogle Scholar
  99. 99.
    Daniel DG, Randolph C, Jaskiw G, et al. Coadministration of fluvoxamine increases serum concentrations of haloperidol. J Clin Psychopharmacol 1994; 14: 340–3PubMedCrossRefGoogle Scholar
  100. 100.
    Lee M-S, Han C-S, You Y-W, et al. Co-administration of sertraline and haloperidol. Psychiatry Clin Neurosci 1998; 52: 193–8Google Scholar
  101. 101.
    Hiemke C, Weighmann H, Dahmen N, et al. Elevated serum levels of clozapine after addition of fluvoxamine. J Clin Psychopharmacol 1994; 14: 279–81PubMedCrossRefGoogle Scholar
  102. 102.
    Jerling M, Lindstrom L, Bondesson U, et al. Fluvoxamine inhibition and carbamazepine induction of the metabolism of clozapine: evidence from a therapeutic drug monitoring service. Ther Drug Monit 1994; 16: 368–74PubMedCrossRefGoogle Scholar
  103. 103.
    Centorrino F, Baldessarini RJ, Kando J, et al. Serum concentrations of clozapine and its major metabolites: effect of cotreatment with fluoxetine or valproate. Am J Psychiatry 1994; 151: 123–5PubMedGoogle Scholar
  104. 104.
    Centorrino F, Baldessarini RJ, Frankemburg F, et al. Serum levels of clozapine and norclozapine in patients treated with selective serotonin reuptake inhibitors. Am J Psychiatry 1996; 153: 820–2PubMedGoogle Scholar
  105. 105.
    Spina E, Avenoso A, Facciolà G, et al. Effect of fluoxetine on the plasma concentrations of clozapine and its major metabolites in patients with schizophrenia. Int Clin Psychopharmacol 1998; 13: 141–5PubMedCrossRefGoogle Scholar
  106. 106.
    Spina E, Avenoso A, Salemi M, et al. Plasma concentrations of clozapine and its major metabolites during combined treatment with paroxetine or sertraline. Pharmacopsychiatry 2000; 33: 213–7PubMedCrossRefGoogle Scholar
  107. 107.
    Wetzel H, Anghelescu I, Szegedi A, et al. Pharmacokinetic interaction of clozapine with selective serotonin reuptake inhibitors: differential effects of fluvoxamine and paroxetine in a prospective study. J Clin Psychopharmacol 1998; 18: 2–9PubMedCrossRefGoogle Scholar
  108. 108.
    Avenoso A, Facciolà G, Scordo MG, et al. No effect of citalopram on plasma levels of clozapine, risperidone and their active metabolites in patients with chronic schizophrenia. Clin Drug Invest 1998; 16: 393–8CrossRefGoogle Scholar
  109. 109.
    Spina E, Avenoso A, Facciolà G, et al. Plasma concentrations of risperidone and 9-hydroxyrisperidone during combined treatment with paroxetine. Ther Drug Monit 2001; 23: 223–7PubMedCrossRefGoogle Scholar
  110. 110.
    Vaughan DA. Interaction of fluoxetine with tricyclic antidepressants [letter]. Am J Psychiatry 1988; 145: 1478PubMedGoogle Scholar
  111. 111.
    Bell IR, Cole JO. Fluoxetine induced elevation of desipramine level and exacerbation of geriatric nonpsychotic depression. J Clin Psychopharmacol 1988; 8: 447–8PubMedCrossRefGoogle Scholar
  112. 112.
    Aranow RB, Hudson JI, Pope HG, et al. Elevated antidepressant plasma levels after addition of fluoxetine. Am J Psychiatry 1989; 146: 911–3PubMedGoogle Scholar
  113. 113.
    Westermeyer J. Fluoxetine-induced tricyclic toxicity: extent and duration. J Clin Pharmacol 1991; 31: 388–92PubMedGoogle Scholar
  114. 114.
    Brosen K, Hansen JG, Nielsen KK, et al. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 1993; 44: 349–55PubMedCrossRefGoogle Scholar
  115. 115.
    Bertschy G, Vandel S, Vandel B, et al. Fluvoxamine-tricyclic antidepressant interaction. An accidental finding. Eur J Clin Pharmacol 1991; 40: 119–20PubMedCrossRefGoogle Scholar
  116. 116.
    Spina E, Campo GM, Avenoso A, et al. Interaction between fluvoxamine and imipramine/desipramine in four patients. Ther Drug Monit 1992; 14: 194–6PubMedCrossRefGoogle Scholar
  117. 117.
    Spina E, Pollicino AM, Avenoso A, et al. Effect of fluvoxamine on the pharmacokinetics of imipramine and desipramine in healthy subjects. Ther Drug Monit 1993; 15: 243–6PubMedCrossRefGoogle Scholar
  118. 118.
    Hartter S, Wetzel H, Hammes E, et al. Inhibition of antidepressant demethylation and hydroxylation by fluvoxamine in depressed patients. Psychopharmacology 1993; 110: 303–8CrossRefGoogle Scholar
  119. 119.
    Preskorn SH, Alderman J, Chung M, et al. Pharmacokinetics of desipramine coadministered with sertraline or fluoxetine. J Clin Psychopharmacol 1994; 14: 90–8PubMedGoogle Scholar
  120. 120.
    Solai LK, Mulsant BH, Pollock BG, et al. Effect of sertraline on plasma nortriptyline levels in depressed elderly. J Clin Psychiatry 1997; 58: 440–3PubMedCrossRefGoogle Scholar
  121. 121.
    Baettig D, Bondolfi G, Montaldi S, et al. Tricyclic antidepressant plasma levels after augmentation with citalopram: a case study. Eur J Clin Pharmacol 1993; 44: 403–5PubMedCrossRefGoogle Scholar
  122. 122.
    Pearson HJ. Interaction of fluoxetine with carbamazepine [letter]. J Clin Psychiatry 1990; 51: 126PubMedGoogle Scholar
  123. 123.
    Fritze J, Unsorg B, Lanczik M. Interaction between carbamazepine and fluvoxamine. Acta Psychiatr Scand 1991; 84: 583–4PubMedCrossRefGoogle Scholar
  124. 124.
    Bonnet P, Vandel S, Nezelof S, et al. Carbamazepine, fluvoxamine. Is there a pharmacokinetic interaction? [letter]. Therapie 1992; 47: 165PubMedGoogle Scholar
  125. 125.
    Martinelli V, Bocchetta A, Palmas AM, et al. An interaction between carbamazepine and fluvoxamine. Br J Clin Pharmacol 1993; 36: 615–6PubMedCrossRefGoogle Scholar
  126. 126.
    Grimsley SR, Jann MW, Carter G, et al. Increased carbamazepine plasma concentrations after fluoxetine coadministration. Clin Pharmacol Ther 1991; 50: 10–5PubMedCrossRefGoogle Scholar
  127. 127.
    Spina E, Avenoso A, Pollicino AM, et al. Carbamazepine coadministration with fluoxetine or fluvoxamine. Ther Drug Monit 1993; 15: 247–50PubMedCrossRefGoogle Scholar
  128. 128.
    Jalil P. Toxic reaction following the combined administration of fluoxetine and phenytoin: two case reports. J Neurol Neurosurg Psychiatry 1992; 55: 412–3PubMedCrossRefGoogle Scholar
  129. 129.
    Darley J. Interaction between phenytoin and fluoxetine. Seizure 1994; 3: 151–2PubMedCrossRefGoogle Scholar
  130. 130.
    Woods DJ, Coulter DM, Pillans P. Interaction of phenytoin and fluoxetine [letter]. NZ Med J 1994; 107: 19Google Scholar
  131. 131.
    Shader RI, Greenblatt DJ, Von Moltke LL. Fluoxetine inhibition of phenytoin metabolism. J Clin Psychopharmacol 1994; 14: 375–6PubMedGoogle Scholar
  132. 132.
    Benfield P, Ward A. Fluvoxamine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 1986; 32: 313–34PubMedCrossRefGoogle Scholar
  133. 133.
    Yap KB, Low ST. Interaction of fluvoxamine with warfarin in an elderly woman. Singapore Med J 1999; 40: 480–2PubMedGoogle Scholar
  134. 134.
    Dent LA, Orrock MW. Warfarin-fluoxetine and diazepam-fluoxetine interaction. Pharmacotherapy 1997; 17: 170–2PubMedGoogle Scholar
  135. 135.
    Bannister SJ, Houser VP, Hulse JD, et al. Evaluation of the potential for interactions of paroxetine with diazepam, cimetidine, warfarin and digoxin. Acta Psychiatr Scand 1989; 80Suppl. 350: 102–6CrossRefGoogle Scholar
  136. 136.
    Sayal KS, Duncan-McConnell DA, MCConnell HW, et al. Psychotropic interactions with warfarin. Acta Psychiatr Scand 2000; 102: 250–5PubMedCrossRefGoogle Scholar
  137. 137.
    Apseloff G, Wilner KD, Gerber N, et al. Effect of sertraline on protein binding of warfarin. Clin Pharmacokinet 1997; 32Suppl. 1: 37–42PubMedCrossRefGoogle Scholar
  138. 138.
    Sternbach H. Fluoxetine-associated potentiation of calcium channel blockers [letter]. J Clin Psychopharmacol 1991; 11: 390–1PubMedCrossRefGoogle Scholar
  139. 139.
    Walley T, Pirmohamed M, Proudlove C, et al. Interaction of metoprolol and fluoxetine. Lancet 1993; 341: 967–8PubMedCrossRefGoogle Scholar
  140. 140.
    Drake WM, Gordon GD. Heart block in a patient on propranolol and fluoxetine. Lancet 1994; 343: 425–6PubMedCrossRefGoogle Scholar
  141. 141.
    Leibowitz A, Bilchinsky T, Gil I, et al. Elevated serum digoxin level associated with coadministered fluoxetine. Arch Intern Med 1998; 158: 1152–3CrossRefGoogle Scholar
  142. 142.
    Diot P, Jonville AP, Gerard F, et al. Possible interaction entre theophylline et fluvoxamine. Therapie 1991; 46: 169–71Google Scholar
  143. 143.
    Thomson AH, McGovern EM, Bennie P, et al. Interaction between fluvoxamine and theophylline [letter]. Pharm J 1992; 249: 137Google Scholar
  144. 144.
    Van den Brekel AM, Harringtol L. Toxic effects of theophylline caused by fluvoxamine. Can Med Assoc J 1994; 151: 1289–90Google Scholar
  145. 145.
    Becquemont L, Raguenau I, Le Bot MA, et al. Influence of the CYP1A2 inhibitor fluvoxamine on tacrine pharmacokinetics in humans. Clin Pharmacol Ther 1997; 61: 619–27PubMedCrossRefGoogle Scholar
  146. 146.
    Swims MP. Potential terfenadine-fluoxetine interaction. Ann Pharmacother 1993; 27: 1404–5PubMedGoogle Scholar
  147. 147.
    Bauer M. The combined use of lithium and SSRIs. J Serotonin Res 1995; 2: 69–76Google Scholar
  148. 148.
    Goeringer KE, Raymon L, Christian GD, et al. Postmortem forensic toxicology of selective serotonin reuptake inhibitors: a review of pharmacology and report of 168 cases. J Forensic Sci 2000; 45: 633–48PubMedGoogle Scholar
  149. 149.
    Rotzinger S, Bourin M, Akimoto Y, et al. Metabolism of some ‘second’ and ‘fourth’ generation antidepressants: iprindole, viloxazine, bupropion, mianserin, maprotiline, trazodone, nefazodone, and venlafaxine. Cell Mol Neurobiol 1999; 19: 427–42PubMedCrossRefGoogle Scholar
  150. 150.
    Owen JR, Nemeroff CB. New antidepressants and the cytochrome P450 system: focus on venlafaxine, nefazodone, and mirtazapine. Depress Anxiety 1998; 7Suppl. 1: 24–32PubMedCrossRefGoogle Scholar
  151. 151.
    Barbhaiya RH, Shukla U, Kroboth P, et al. Coadministration of nefazodone and benzodiazepines. III: a pharmacokinetic interaction study with triazolam. J Clin Psychopharmacol 1995; 15: 320–6PubMedCrossRefGoogle Scholar
  152. 152.
    Greene DS, Salazar DE, Dockens RC, et al. Coadministration of nefazodone and benzodiazepines. III: a pharmacokinetic interaction study with alprazolam. J Clin Psychopharmacol 1995; 15: 399–408PubMedCrossRefGoogle Scholar
  153. 153.
    Pollock BG, Sweet RA, Kirshner M, et al. Bupropion plasma levels and CYP2D6 phenotype. Ther Drug Monit 1996; 18: 581–5PubMedCrossRefGoogle Scholar
  154. 154.
    Shad MU, Preskorn S. A possible bupropion and imipramine interaction [letter]. J Clin Psychopharmacol 1997; 17: 118–9PubMedCrossRefGoogle Scholar
  155. 155.
    Goetz CG, Tanner CM, Klawans HL. Bupropion in Parkinson’s disease. Neurology 1984; 34: 1092–4PubMedCrossRefGoogle Scholar
  156. 156.
    Wienkers LC, Allievi C, Hauer MJ, et al. Cytochrome P-450-mediated metabolism of the individual enantiomers of the antidepressant agent reboxetine in human liver microsomes. Drug Metab Dispos 1999; 27: 1334–40PubMedGoogle Scholar
  157. 157.
    Avenoso A, Facciolà G, Scordo GM, et al. No effect of the new antidepressant reboxetine on CYP2D6 activity in healthy volunteers. Ther Drug Monit 1999; 21: 577–9PubMedCrossRefGoogle Scholar
  158. 158.
    Lam F, Toney G, Ereshefsky L, et al. Pharmacokinetic and pharmacodynamic consequences of reboxetine and nefazodone interactions with alprazolam [abstract]. VII World Conference on Clinical Pharmacology and Therapeutics; 2000 Jul 15–20; Florence, 252Google Scholar
  159. 159.
    Dostert P, Benedetti Strolin M, Poggesi I. Review of the pharmacokinetics and metabolism of reboxetine, a selective noradrenaline reuptake inhibitor. Eur Neuropsychopharmacol 1997; 7Suppl. 1: S23–35PubMedCrossRefGoogle Scholar
  160. 160.
    Wheatley D. Hypericum perforatum: potential in the treatment of depression. CNS Drugs 1998; 9: 431–40CrossRefGoogle Scholar
  161. 161.
    Roby CA, Anderson GD, Kantor E, et al. St. John’s wort: effect on CYP3A4 activity. Clin Pharmacol Ther 2000; 67: 451–7PubMedCrossRefGoogle Scholar
  162. 162.
    Mai I, Kruger H, Budde K, et al. Hazardous pharmacokinetic interaction of Saint John’s worth (Hypericum perforatum) with the immunosuppressant cyclosporin. Clin Pharmacol Ther 2000; 38: 500–2Google Scholar
  163. 163.
    Nebel A, Schneider BJ, Baker RK, et al. Potential metabolic interaction between St. John’s wort and theophylline [letter]. Ann Pharmacother 1999; 33: 502PubMedCrossRefGoogle Scholar
  164. 164.
    Johne A, Brockmoller J, Bauer S, et al. Pharmacokinetic interaction of digoxin with an herbal extract from St. John’s wort (Hypericum perforatum). Clin Pharmacol Ther 1999; 66: 338–45PubMedCrossRefGoogle Scholar
  165. 165.
    Obach RS. Inhibition of human cytochrome P450 enzymes by constituents of St. John’s wort, an herbal preparation used in the treatment of depression. J Pharmacol Exp Ther 2000; 294: 88–95PubMedGoogle Scholar
  166. 166.
    Lantz MS, Buchalter E, Gianbanco V. St. John’s wort and antidepressant drug interactions in the elderly. J Geriatr Psychiatry Neurol 1999; 12: 7–10PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2002

Authors and Affiliations

  1. 1.Department of Clinical and Experimental Medicine and Pharmacology, Section of PharmacologyUniversity of Messina, Policlinico UniversitarioMessinaItaly

Personalised recommendations