Drugs & Aging

, Volume 9, Issue 3, pp 202–212 | Cite as

Amylin, Amyloid and Age-Related Disease

  • Garth J. S. Cooper
  • Cynthia A. Tse
Review Article Physiological Aspects of Aging

Summary

Amylin, a 37-amino acid peptide, is cosecreted with insulin from the β-cells of the pancreatic islets in normal response to physiological stimuli. It is the major protein of islet amyloid, which is usually present in the pancreases of people with non-insulin-dependent (type II) diabetes mellitus. Amylin elicits potent effects on carbohydrate metabolism in rodent tissues, causing insulin resistance in skeletal muscle and liver.

A close structural relationship exists between amylin and the 2 calcitonin gene-related peptides, which are widely distributed neuropeptides and potent vasodilators. These exert biological effects similar to those of amylin on the organs primarily responsible for the regulation of carbohydrate metabolism. All 3 peptides are thought to cause their biological actions by binding to similar cell surface receptors.

This article reviews the field of amylin and its role in the physiological regulation of carbohydrate metabolism, and in disease mechanisms associated with insulin resistance in diabetes mellitus, impaired glucose tolerance and essential hypertension. Potential therapeutic applications are also discussed.

Keywords

Insulin Resistance Insulin Secretion Pancreatic Islet Insulinoma Islet Amyloid Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cooper GJS, Willis AC, Clark A, et al. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci USA 1987; 84: 8628–32PubMedCrossRefGoogle Scholar
  2. 2.
    Westermark P, Wernstedt C, Wilander E, et al. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci USA 1987; 84: 3881–5PubMedCrossRefGoogle Scholar
  3. 3.
    Cooper GJS, Day AJ, Willis AC, et al. Amylin and the amylin gene: structure, function and relationship to islet amyloid and to diabetes mellitus. Biochim Biophys Acta 1989; 1014: 247–58PubMedCrossRefGoogle Scholar
  4. 4.
    Johnson KH, O’Brien TD, Betsholtz C, et al. Islet amyloid, islet-amyloid polypeptide, and diabetes mellitus. N Engl J Med 1989; 321: 513–8PubMedCrossRefGoogle Scholar
  5. 5.
    Kanatsuka A, Makino H, Ohsawa H, et al. Secretion of islet amyloid polypeptide in response to glucose. FEBS Lett 1989; 259: 199–201PubMedCrossRefGoogle Scholar
  6. 6.
    Ogawa A, Harris V, McCorkle SK, et al. Amylin secretion from the rat pancreas and its selective loss after streptozotocin treatment. J Clin Invest 1990; 85: 973–6PubMedCrossRefGoogle Scholar
  7. 7.
    Kahn SE, D’Alessio DA, Schwartz MW, et al. Evidence of cosecretion of islet amyloid polypeptide and insulin by β-cells. Diabetes 1990; 39: 634–8PubMedCrossRefGoogle Scholar
  8. 8.
    Moore CX, Cooper GJS. Co-secretion of amylin and insulin from cultured islet β-cells: modulation by nutrient secreta-gogues, islet hormones and hypoglycemic agents. Biochem Biophys Res Commun 1991; 179: 1–9PubMedCrossRefGoogle Scholar
  9. 9.
    Westermark P, Wilander E. The influence of amyloid deposits on the islet volume in maturity onset diabetes mellitus. Diabetologia 1978; 15: 417–21PubMedCrossRefGoogle Scholar
  10. 10.
    Cooper GJS, Leighton B, Willis AC, et al. The amylin superfamily: a novel grouping of biologically active polypeptides related to the insulin A-chain. Prog Growth Factor Res 1989; 1: 99–105PubMedCrossRefGoogle Scholar
  11. 11.
    Ishida-Yamamoto A, Tohyama M. Calcitonin gene-related peptide in the nervous tissue. Prog Neurobiol 1989; 33: 335–86PubMedCrossRefGoogle Scholar
  12. 12.
    Brain SD, Williams TJ, Tippins JR, et al. Calcitonin gene-related peptide is a potent vasodilator. Nature 1985; 313: 54–6PubMedCrossRefGoogle Scholar
  13. 13.
    Girgis SI, MacDonald DWR, Stevenson JC, et al. Calcitonin gene-related peptide: potent vasodilator and major product of the calcitonin gene. Lancet 1985; II: 14–6CrossRefGoogle Scholar
  14. 14.
    O’Halloran DJ, Bloom SR. Calcitonin gene related peptide: a major neuropeptide and the most powerful vasodilator known [editorial]. BMJ 1991; 302: 739–40PubMedCrossRefGoogle Scholar
  15. 15.
    Cooper GJS. Amylin compared with calcitonin gene-related peptide: structure, biology, and relevance to metabolic disease. Endocr Rev 1994; 15: 163–201PubMedGoogle Scholar
  16. 16.
    Cooper GJS, Leighton B, Dimitriadis GD, et al. Amylin found in amyloid deposits in human type 2 diabetes mellitus may be a hormone that regulates glycogen metabolism in skeletal muscle. Proc Natl Acad Sci USA 1988; 85: 7763–6PubMedCrossRefGoogle Scholar
  17. 17.
    Leighton B, Cooper GJS. Pancreatic amylin and calcitonin gene-related peptide cause resistance to insulin in skeletal muscle in vitro. Nature 1988; 335: 632–5PubMedCrossRefGoogle Scholar
  18. 18.
    Young DA, Deems RO, Deacon RW, et al. Effects of amylin on glucose metabolism and glycogenolysis in vivo and in vitro. Am J Physiol 1990; 259: E457–61PubMedGoogle Scholar
  19. 19.
    Molina JM, Cooper GJS, Leighton B, et al. Induction of insulin resistance in vivo by amylin and calcitonin gene-related peptide. Diabetes 1990; 39: 260–5PubMedCrossRefGoogle Scholar
  20. 20.
    Koopmans SJ, van Mansfeld ADM, Jansz HS, et al. Amylin-induced in vivo insulin resistance in conscious rats: the liver is more sensitive to amylin than peripheral tissues. Diabetologia 1991; 34: 218–24PubMedCrossRefGoogle Scholar
  21. 21.
    Frontoni S, Choi SB, Banduch D, et al. In vivo insulin resistance induced by amylin primarily through inhibition of insulin-stimulated glycogen synthesis in skeletal muscle. Diabetes 1991; 40: 568–73PubMedCrossRefGoogle Scholar
  22. 22.
    Leighton B, Foot E. The effects of amylin on carbohydrate metabolism in skeletal muscle in vitro and in vivo. Biochem J 1990; 269: 19–23PubMedGoogle Scholar
  23. 23.
    Young AA, Mott DM, Stone K, et al. Amylin activates glycogen Phosphorylase in the isolated soleus muscle of the rat. FEBS Lett 1991; 281: 149–51PubMedCrossRefGoogle Scholar
  24. 24.
    Deems RO, Deacon RW, Young DA. Amylin activates glycogen Phosphorylase and inactivates glycogen synthase via a cAMP-independent mechanism. Biochem Biophys Res Commun 1991; 174: 716–20PubMedCrossRefGoogle Scholar
  25. 25.
    Gómez-Foix AM, Rodriguez-Gil JE, Guinovart JJ. Anti-insulin effects of amylin and calcitonin gene-related peptide on hepatic glycogen metabolism. Biochem J 1991; 276: 607–10PubMedGoogle Scholar
  26. 26.
    Wang M-W, Young AA, Rink TJ, et al. 8–37h-CGRP antagonizes actions of amylin on carbohydrate metabolism in vitro and in vivo. FEBS Lett 1991; 291: 195–8PubMedCrossRefGoogle Scholar
  27. 27.
    Sowa R, Sanke T, Hirayama J, et al. Islet amyloid polypeptide amide causes peripheral insulin resistance in vivo in dogs. Diabetologia 1990; 33: 118–20PubMedCrossRefGoogle Scholar
  28. 28.
    Young AA, Gedulin B, Wolfe-Lopez D, et al. Interaction of amylin and insulin in the isolated soleus muscle of the rat: concentration-response relations for co-secreted non-competitive antagonists. Am J Physiol 1992; 263: E274–81PubMedGoogle Scholar
  29. 29.
    Leighton B, Cooper GJS. The role of amylin in the insulin resistance of non-insulin-dependent diabetes mellitus. Trends Biochem Sci 1990; 15: 295–9PubMedCrossRefGoogle Scholar
  30. 30.
    Bremerton-Watt D, Ghatei MA, Bloom SR, et al. Altered islet amyloid polypeptide (amylin) gene expression in rat models of diabetes. Diabetologia 1989; 32: 881–3CrossRefGoogle Scholar
  31. 31.
    Gill AM, Yen TT. Effects of ciglitazone on endogenous plasma islet amyloid polypeptide and insulin sensitivity in obese-diabetic viable yellow mice. Life Sci 1991; 48: 703–10PubMedCrossRefGoogle Scholar
  32. 32.
    Jamal H, Bretherton-Watt D, Suda K, et al. Islet amyloid polypeptide-like immunoreactivity (amylin) in rats treated with dexamethasone and streptozotocin. J Endocrinol 1990; 126: 425–9PubMedCrossRefGoogle Scholar
  33. 33.
    Huang H-JS, Young AA, Koda JE, et al. Hyperamylinemia, hyperinsulinemia, and insulin resistance in genetically obese LA/N-cp rats. Hypertension 1992; 19 Suppl. I: I101–9PubMedCrossRefGoogle Scholar
  34. 34.
    Gedulin B, Cooper GJS, Young AA. Amylin secretion from the perfused pancreas: dissociation from insulin and abnormal elevation in insulin-resistant diabetic rats. Biochem Biophys Res Commun 1991; 180: 782–9PubMedCrossRefGoogle Scholar
  35. 35.
    Cooper GJS. Amylin and insulin co-replacement therapy for insulin-dependent (type 1) diabetes mellitus. Med Hypoth 1991; 36: 284–8CrossRefGoogle Scholar
  36. 36.
    Lukinius A, Wilander E, Westermark GT, et al. Co-localization of islet amyloid polypeptide and insulin in the B cell secretory granules of the human pancreatic islets. Diabetologia 1989; 32: 240–4PubMedCrossRefGoogle Scholar
  37. 37.
    Clark A, Edwards CA, Ostle LR, et al. Localization of islet amyloid peptide in lipofuscin bodies and secretory granules of human B-cells and in islets of type-2 diabetic subjects. Cell Tissue Res 1989; 257: 179–85PubMedCrossRefGoogle Scholar
  38. 38.
    Kassir AA, Upadhyay AK, Lim TJ, et al. Lack of effect of islet amyloid polypeptide in causing insulin resistance in conscious dogs during euglycemic clamp studies. Diabetes 1991; 40: 998–1004PubMedCrossRefGoogle Scholar
  39. 39.
    Butler PC, Chou J, Carter WB, et al. Effects of meal ingestion on plasma amylin concentration in NIDDM and nondiabetic humans. Diabetes 1990; 39: 752–6PubMedCrossRefGoogle Scholar
  40. 40.
    Steiner DF, Ohagi S, Nagamatsu S, et al. Is islet amyloid polypeptide a significant factor in pathogenesis or pathophysiology of diabetes? Diabetes 1991; 40: 305–9PubMedCrossRefGoogle Scholar
  41. 41.
    Tedstone AE, Nezzer T, Hughes SJ, et al. The effect of islet amyloid polypeptide (amylin) and calcitonin gene-related peptide on glucose removal in the anaesthetized rat and on insulin secretion from rat pancreatic islets in vitro. Biosci Rep 1990; 10: 339–45PubMedCrossRefGoogle Scholar
  42. 42.
    Bretherton-Watt D, Gilbey SG, Ghatei MA, et al. Failure to establish islet amyloid polypeptide (amylin) as a circulating beta cell inhibiting hormone in man. Diabetologia 1990; 33: 115–7PubMedCrossRefGoogle Scholar
  43. 43.
    Datta HK, Zaidi M, Wimalawansa SJ, et al. In vivo and in vitro effects of amylin and amylin-amide on calcium metabolism in the rat and rabbit. Biochem Biophys Res Commun 1989; 162: 876–81PubMedCrossRefGoogle Scholar
  44. 44.
    Bell GI. Molecular defects in diabetes mellitus. Diabetes 1991; 40: 413–22PubMedCrossRefGoogle Scholar
  45. 45.
    Westermark P, Johnson KH, O’Brien TD, et al. Islet amyloid polypeptide — a novel controversy in diabetes research. Diabetologia 1992; 35: 297–303PubMedCrossRefGoogle Scholar
  46. 46.
    Ammon HP, Reiber C, Verspohl EJ. Indirect evidence for short-loop negative feedback of insulin secretion in the rat. J Endocrinol 1991; 128: 27–34PubMedCrossRefGoogle Scholar
  47. 47.
    Ohsawa H, Kanatsuka A, Yamaguchi T, et al. Islet amyloid polypeptide inhibits glucose-stimulated insulin secretion from isolated rat pancreatic islets. Biochem Biophys Res Commun 1989; 160: 961–7PubMedCrossRefGoogle Scholar
  48. 48.
    Nagamatsu S, Carroll RJ, Grodsky GM, et al. Lack of islet amyloid polypeptide regulation of insulin biosynthesis or secretion in normal rat islets. Diabetes 1990; 39: 871–4PubMedCrossRefGoogle Scholar
  49. 49.
    Nagamatsu S, Nishi M, Steiner DF. Effects of islet amyloid polypeptide (IAPP) on insulin biosynthesis or secretion in rat islets and mouse βTC3 cells: biosynthesis of IAPP in mouse βTC3 cells. Diab Res Clin Pract 1992; 15: 49–55CrossRefGoogle Scholar
  50. 50.
    Broderick CL, Brooke GS, DiMarchi RD, et al. Human and rat amylin have no effects on insulin secretion in isolated rat pancreatic islets. Biochem Biophys Res Commun 1991; 177: 932–8PubMedCrossRefGoogle Scholar
  51. 51.
    Fehmann H-C, Weber V, Göke R, et al. Islet amyloid polypeptide (IAPP; amylin) influences the endocrine but not the exocrine rat pancreas. Biochem Biophys Res Commun 1990; 167: 1102–8PubMedCrossRefGoogle Scholar
  52. 52.
    Silvestre RA, Peiró E, Dégano P, et al. Inhibitory effect of rat amylin on the insulin responses to glucose and arginine in the perfused rat pancreas. Regul Pept 1990; 31: 23–31PubMedCrossRefGoogle Scholar
  53. 53.
    Kogire M, Ishizuka J, Thompson JC, et al. Inhibitory action of islet amyloid polypeptide and calcitonin gene-related peptide on release of insulin from the isolated perfused rat pancreas. Pancreas 1991; 6: 459–63PubMedCrossRefGoogle Scholar
  54. 54.
    Peiró E, Dégano P, Silvestre RA, et al. Inhibition of insulin release by amylin is not mediated by changes in somatostatin output. Life Sci 1991; 49: 761–5PubMedCrossRefGoogle Scholar
  55. 55.
    Fürnsinn C, Leuvenink H, Roden M, et al. Inhibition of glucose induced secretion by amylin in rats in vivo [abstract]. Diabetologia 1992; 35Suppl. 1: A29Google Scholar
  56. 56.
    Wang ZL, Bennet WM, Ghatei MA, et al. Influence of islet amyloid polypeptide and the 8–37 fragment of islet amyloid polypeptide on insulin release from perifused rat islets. Diabetes 1993; 42: 330–5PubMedCrossRefGoogle Scholar
  57. 57.
    Dégano P, Silvestre RA, Salas M, et al. Amylin inhibits glucose-induced insulin secretion in a dose-dependent manner: study in the perfused rat pancreas. Regul Pept 1993; 43: 91–6PubMedCrossRefGoogle Scholar
  58. 58.
    Chuang LM, Wu HP, Jou TS, et al. Inhibitory effect of islet amyloid polypeptide on glucose-induced proinsulin biosynthesis in rat insulinoma cells. Pancreas 1992; 7: 472–6PubMedCrossRefGoogle Scholar
  59. 59.
    Young AA, Carlo P, Rink TJ, et al. 8–37hCGRP, an amylin receptor antagonist, enhances the insulin response and perturbs the glucose response to infused arginine in anaesthetized rats. Mol Cell Endocrinol 1992; 84: Rl–5CrossRefGoogle Scholar
  60. 60.
    Silvestre RA, Salas M, Degano P, et al. Reversal of the inhibitory effects of calcitonin gene-related peptide (CGRP) and amylin on insulin secretion by the 8–37 fragment of human CGRP. Biochem Pharmacol 1993; 45: 2343–7PubMedCrossRefGoogle Scholar
  61. 61.
    Wagoner PK, Chen C, Worley JF, et al. Amylin modulates beta-cell glucose sensing via effects on stimulus-secretion coupling. Proc Natl Acad Sci USA 1993; 90: 9145–9PubMedCrossRefGoogle Scholar
  62. 62.
    Barakat A, Marie J-C, Rosselin G. Direct interaction of islet amyloid polypeptide (IAPP) with calcitonin gene-related peptide (CGRP) receptor present in β cell membrane [abstract]. Diabetologia 1990; 33: A112CrossRefGoogle Scholar
  63. 63.
    Pettersson M, Ahren B, Bottcher G, et al. Calcitonin gene-related peptide: occurrence in pancreatic islets in the mouse and the rat and inhibition of insulin secretion in the mouse. Endocrinology 1986; 119: 865–9PubMedCrossRefGoogle Scholar
  64. 64.
    Ahren B, Pettersson M. Calcitonin gene-related peptide (CGRP) and amylin and the endocrine pancreas. Int J Pancreatol 1990; 6: 1–15PubMedGoogle Scholar
  65. 65.
    Barakat A, Marie J-C, Rosselin G. Le récepteur du peptide apparente au gene de la calcitonine (CGRP) est présent sur les membranes des insulinomes. C R Acad Sci III 1990; 310: 189–94PubMedGoogle Scholar
  66. 66.
    Lewis CE, Clark A, Ashcroft SJ, et al. Calcitonin gene-related peptide and somatostatin inhibit insulin release from individual rat B cells. Mol Cell Endocrinol 1988; 57: 41–9PubMedCrossRefGoogle Scholar
  67. 67.
    Young AA, Wang MW, Cooper GJS. Amylin injection causes elevated plasma lactate and glucose in the rat. FEBS Lett 1991; 291: 101–4PubMedCrossRefGoogle Scholar
  68. 68.
    Young AA, Cooper GJS, Carlo P, et al. Response to intravenous injections of amylin and glucagon in fasted, fed, and hypoglycemic rats. Am J Physiol 1993; 264: E943–50PubMedGoogle Scholar
  69. 69.
    Weischselbaum A, Stangl E. Zur Kenntniss der feineren Veränderungen des Pankreas bei Diabetes mellitus. Wien Klin Wochenschr 1901; 14: 968–72Google Scholar
  70. 70.
    Opie EL. On the relation of chronic interstitial pancreatitis to the islands of Langerhans and to diabetes mellitus. J Exp Med 1900–01; 5: 397–428CrossRefGoogle Scholar
  71. 71.
    Opie EL. The relation of diabetes mellitus to lesions of the pancreas: hyaline degeneration of the islands of Langerhans. J Exp Med 1900–01; 5: 527–40CrossRefGoogle Scholar
  72. 72.
    Bell ET. Hyalinization of the islets of Langerhans in non-diabetic individuals. Am J Pathol 1959; 35: 801–5PubMedGoogle Scholar
  73. 73.
    Ahronheim JH. The nature of the hyaline material in the pancreatic islands in diabetes mellitus. Am J Pathol 1943; 19: 873–82PubMedGoogle Scholar
  74. 74.
    Ehrlich JC, Ratner IM. Amyloidosis of the islets of Langerhans. Am J Pathol 1961; 38: 49–59PubMedGoogle Scholar
  75. 75.
    Clark A, Cooper GJS, Lewis CE, et al. Islet amyloid formed from diabetes-associated peptide may be pathogenic in type-2 diabetes. Lancet 1987; II: 231–4CrossRefGoogle Scholar
  76. 76.
    Porte Jr D, Kahn SE. Hyperproinsulinemia and amyloid in NIDDM: clues to etiology of islet beta-cell dysfunction? Diabetes 1989; 38: 1333–6PubMedCrossRefGoogle Scholar
  77. 77.
    Fox N, Schrementi J, Nishi M, et al. Human islet amyloid polypeptide transgenic mice as a model of non-insulin-dependent diabetes mellitus (NIDDM). FEBS Lett 1993; 323: 40–4PubMedCrossRefGoogle Scholar
  78. 78.
    Hoppener JW, Oosterwijk C, Verbeek SJ, et al. IAPP/amylin transgenic mice as an in vivo model system for type-2 diabetes mellitus? Biochem Soc Trans 1993; 21: 28SPubMedGoogle Scholar
  79. 79.
    Lorenzo A, Razzaboni B, Weir GC, et al. Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 1994; 368: 756–60PubMedCrossRefGoogle Scholar
  80. 80.
    Himsworth H. Diabetes mellitus: a differentiation into insulin-sensitive and insulin-insensitive types. Lancet 1936; I: 127–30CrossRefGoogle Scholar
  81. 81.
    DeFronzo RA. Lilly lecture 1987. The triumvirate: β-cell, muscle, liver: a collusion responsible for NIDDM. Diabetes 1988; 37: 667–87PubMedGoogle Scholar
  82. 82.
    Reaven GM. Banting lecture 1988: role of insulin resistance in human disease. Diabetes 1988; 37: 1595–607PubMedCrossRefGoogle Scholar
  83. 83.
    Hansen BC, Bodkin NL. Heterogeneity of insulin responses: phases leading to type 2 (non-insulin-dependent) diabetes mellitus in the rhesus monkey. Diabetologia 1986; 29: 713–9PubMedCrossRefGoogle Scholar
  84. 84.
    Lillioja S, Mott DM, Howard BV, et al. Impaired glucose tolerance as a disorder of insulin action: longitudinal and cross-sectional studies in Pima Indians. N Engl J Med 1988; 318: 1217–25PubMedCrossRefGoogle Scholar
  85. 85.
    Eriksson J, Franssila-Kallunki A, Ekstrand A, et al. Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus. N Engl J Med 1989; 321: 337–43PubMedCrossRefGoogle Scholar
  86. 86.
    Zavaroni I, Bonora E, Pagliara M, et al. Risk factors for coronary artery disease in healthy persons with hyperinsulinemia and normal glucose tolerance. N Engl J Med 1989; 320: 702–6PubMedCrossRefGoogle Scholar
  87. 87.
    Ferrannini E, Buzzigoli G, Bonadonna R, et al. Insulin resistance in essential hypertension. N Engl J Med 1987; 317: 350–7PubMedCrossRefGoogle Scholar
  88. 88.
    Pollare T, Lithell H, Berne C. Insulin resistance is a characteristic feature of primary hypertension independent of obesity. Metabolism 1990; 39: 167–74PubMedCrossRefGoogle Scholar
  89. 89.
    Enoki S, Mitsukawa T, Takemura J, et al. Plasma islet amyloid polypeptide levels in obesity, impaired glucose tolerance and non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 1992; 15: 97–102PubMedCrossRefGoogle Scholar
  90. 90.
    Hanabusa T, Kubo K, Oki C, et al. Islet amyloid polypeptide (IAPP) secretion from islet cells and its plasma concentration in patients with non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 1992; 15: 89–96PubMedCrossRefGoogle Scholar
  91. 91.
    Kautzky-Willer A, Thomaseth K, Pacini G, et al. Role of islet amyloid polypeptide secretion in insulin-resistant humans. Diabetologia 1994; 37: 188–94PubMedCrossRefGoogle Scholar
  92. 92.
    Brands MW, Hall JE. Insulin resistance, hyperinsulinemia, and obesity-associated hypertension [editorial]. J Am Soc Nephrol 1992; 3: 1064–77PubMedGoogle Scholar
  93. 93.
    Hall JE, Brands MW, Mizelle HL, et al. Chronic intrarenal hyperinsulinemia does not cause hypertension. Am J Physiol 1991; 260: F663–9PubMedGoogle Scholar
  94. 94.
    Briffeuil P, Huynh-Thu T, Kolanowski J. Reappraisal of the role of insulin on sodium handling by the kidney: effect of intrarenal insulin infusion in the dog. Eur J Clin Invest 1992; 22: 523–8PubMedCrossRefGoogle Scholar
  95. 95.
    Hall JE, Brands MW, Hildebrandt DA, et al. Obesity-associated hypertension: hyperinsulinemia and renal mechanisms. Hypertension 1992; 19 (1 Suppl.): I45–55PubMedCrossRefGoogle Scholar
  96. 96.
    Hall JE, Coleman TG, Mizelle HL, et al. Chronic hyperinsulinemia and blood pressure regulation. Am J Physiol 1990; 258: F722–31PubMedGoogle Scholar
  97. 97.
    Anderson EA, Balon TW, Hoffman RP, et al. Insulin increases sympathetic activity but not blood pressure in borderline hypertensive humans. Hypertension 1992; 19: 621–7PubMedCrossRefGoogle Scholar
  98. 98.
    O’Brien T, Young Jr WF, Palumbo PJ, et al. Hypertension and dyslipidemia in patients with insulinoma. Mayo Clin Proc 1993; 68: 141–6PubMedGoogle Scholar
  99. 99.
    Sawicki PT, Baba T, Berger M, et al. Normal blood pressure in patients with insulinoma despite hyperinsulinemia and insulin resistance. J Am Soc Nephrol 1992; 3Suppl. 4: S64–8PubMedGoogle Scholar
  100. 100.
    Sawicki PT, Heinemann L, Starke A, et al. Hyperinsulinaemia is not linked with blood pressure elevation in patients with insulinoma. Diabetologia 1992; 35: 649–52PubMedCrossRefGoogle Scholar
  101. 101.
    Zimmermann S, Phillips RA, Dunaif A, et al. Polycystic ovary syndrome: lack of hypertension despite profound insulin resistance. J Clin Endocrinol Metab 1992; 75: 508–13PubMedCrossRefGoogle Scholar
  102. 102.
    Nosadini R, Fioretto P, Trevisan R, et al. Insulin-dependent diabetes mellitus and hypertension. Diabetes Care 1991; 14: 210–9PubMedCrossRefGoogle Scholar
  103. 103.
    Jarrett RJ. In defence of insulin: a critique of syndrome X. Lancet 1992; 340: 469–71PubMedCrossRefGoogle Scholar
  104. 104.
    McAreavey D, Robertson JI. Angiotensin converting enzyme inhibitors and moderate hypertension. Drugs 1990; 40: 326–45PubMedCrossRefGoogle Scholar
  105. 105.
    Predel HG, Dusing R, Backer A, et al. Combined treatment of severe essential hypertension with the new angiotensin converting enzyme inhibitor ramipril. Am J Cardiol 1987; 59: 143D–8DPubMedCrossRefGoogle Scholar
  106. 106.
    Donnelly R. Angiotensin-Converting enzyme inhibitors and insulin sensitivity: metabolic effects in hypertension, diabetes, and heart failure. J Cardiovasc Pharmacol 1992; 20Suppl. 11: S38–44PubMedCrossRefGoogle Scholar
  107. 107.
    Gotz R, Heidbreder E, Heidland A. Angiotensin-Converting enzyme inhibition in renal and hypertensive disorders. Clin Physiol Biochem 1990; 8Suppl. 1: 25–32PubMedGoogle Scholar
  108. 108.
    Kramer HJ, Predel HG, Meyer-Lehnert H. Angiotensin-Converting enzyme inhibition in patients with essential hypertension. Clin Physiol Biochem 1990; 8Suppl. 1: 16–24PubMedGoogle Scholar
  109. 109.
    Beaumont K, Kenney MA, Young AA, et al. High affinity amylin binding sites in rat brain. Mol Pharmacol 1993; 44: 493–7PubMedGoogle Scholar
  110. 110.
    Sheriff S, Fischer JE, Balasubramaniam A. Amylin inhibits insulin-stimulated glucose uptake in C2C12 muscle cell line through a cholera-toxin-sensitive mechanism. Biochim Biophys Acta 1992; 1136: 219–22PubMedCrossRefGoogle Scholar
  111. 111.
    D’Santos CS, Gatti A, Poyner DR, et al. Stimulation of adenylate cyclase by amylin in CHO-K1 cells. Mol Pharmacol 1992; 41: 894–9PubMedGoogle Scholar
  112. 112.
    Nieuwenhuis MG, van Hulst KL, Hackeng WHL, et al. Islet amyloid polypeptide plasma concentrations in patients with insulinoma [abstract]. Diabetologia 1992; 35Suppl. 1: A119Google Scholar
  113. 113.
    Stridsberg M, Wilander E, Oberg K, et al. Islet amyloid poly-peptide-producing pancreatic islet cell tumor: a clinical and biochemical characterization. Scand J Gastroenterol 1992; 27: 381–7PubMedCrossRefGoogle Scholar
  114. 114.
    Stridsberg M, Berne C, Sandler S, et al. Inhibition of insulin secretion, but normal peripheral insulin sensitivity, in a patient with a malignant endocrine pancreatic tumour producing high amounts of an islet amyloid polypeptide-like molecule. Diabetologia 1993; 36: 843–9PubMedCrossRefGoogle Scholar
  115. 115.
    Furnsinn C, Nowotny P, Roden M, et al. Insulin resistance caused by amylin in conscious rats is independent of induced hypocalcaemia and fades during long-term exposure. Acta Endocrinol 1993; 129: 360–5PubMedGoogle Scholar
  116. 116.
    Hausdorff WP, Caron MG, Lefkowitz RJ. Turning off the signal: desensitization of beta-adrenergic receptor function. FASEB J 1990; 4: 2881–9PubMedGoogle Scholar
  117. 117.
    Dublineau I, Pradelles P, de Rouffignac C, et al. Differential short-term desensitization to vasopressin, isoproterenol, glucagon, parathyroid hormone and calcitonin in the thick ascending limb of rat kidney. Pflugers Arch 1992; 420: 16–22PubMedCrossRefGoogle Scholar
  118. 118.
    Bawab W, Chastre E, Gespach C. Functional and structural characterization of the secretin receptors in rat gastric glands: desensitization and glycoprotein nature. Biosci Rep 1991; 11: 33–42PubMedCrossRefGoogle Scholar
  119. 119.
    Dublineau B, Pradelles P, de Rouffignac C, et al. In vitro desensitization of isolated nephron segments to vasopressin. Proc Natl Acad Sci USA 1990; 87: 7583–7PubMedCrossRefGoogle Scholar
  120. 120.
    Wilding JPH, Khandan-Nia N, Bennet WM, et al. Lack of acute effect of amylin (islet amyloid polypeptide) on insulin sensitivity during hyperinsulinaemic euglycaemic clamp in humans. Diabetologia 1994; 37: 166–9PubMedCrossRefGoogle Scholar
  121. 121.
    Bretherton-Watt D, Gilbey SG, Ghatei MA, et al. Very high concentrations of islet amyloid polypeptide are necessary to alter the insulin response to intravenous glucose in man. J Clin Endocrinol Metab 1992; 74: 1032–5PubMedCrossRefGoogle Scholar
  122. 122.
    Roberts AN, Leighton B, Todd JA, et al. Molecular and functional characterization of amylin, a peptide associated with type 2 diabetes mellitus. Proc Natl Acad Sci USA 1989; 86: 9662–6PubMedCrossRefGoogle Scholar
  123. 123.
    Cooper ME, McNally PG, Phillips PA, et al. Amylin stimulates plasma renin concentrations in humans. Hypertension 1995; 26: 460–4PubMedCrossRefGoogle Scholar
  124. 124.
    Brain SD, Wimalawansa S, MacIntyre I, et al. The demonstration of vasodilator activity of pancreatic amylin amide in the rabbit. Am J Pathol 1990; 136: 487–90PubMedGoogle Scholar
  125. 125.
    Young AA, Rink TJ, Wang MW. Dose response characteristics for the hyperglycemic, hyperlactemic, hypotensive and hypocalcemic actions of amylin and calcitonin gene-related peptide-I (CGRP alpha) in the fasted, anaesthetized rat. Life Sci 1993; 52: 1717–26PubMedCrossRefGoogle Scholar
  126. 126.
    Gardiner SM, Compton AM, Kemp PA, et al. Antagonistic effect of human alpha-calcitonin gene-related peptide (8–37) on regional hemodynamic actions of rat islet amyloid polypeptide in conscious Long-Evans rats. Diabetes 1991; 40: 948–51PubMedCrossRefGoogle Scholar
  127. 127.
    Deems RO, Cardinaux F, Deacon RW, et al. Amylin or CGRP (8–37) fragments reverse amylin-induced inhibition of 14C-glycogen accumulation. Biochem Biophys Res Commun 1992; 181: 116–20CrossRefGoogle Scholar
  128. 128.
    Huang H-JS, Cooper GJS, Young AA, et al. Deficiency of amylin expression in the pancreas of autoimmune BB/Wor diabetic rats [abstract]. J Cell Biochem 1991; Suppl. 15B: 67Google Scholar
  129. 129.
    Bretherton-Watt D, Ghatei MA, Legon S, et al. Depletion of islet amyloid polypeptide in the spontaneously diabetic (BB) Wistar rat. J Mol Endocrinol 1991; 6: 3–7PubMedCrossRefGoogle Scholar
  130. 130.
    Hartter E, Svoboda T, Ludvik B, et al. Basal and stimulated plasma levels of pancreatic amylin indicate its cosecretion with insulin in humans. Diabetologia 1991; 34: 52–4PubMedCrossRefGoogle Scholar
  131. 131.
    Sanke T, Hanabusa T, Nakano Y, et al. Plasma islet amyloid polypeptide (amylin) levels and their responses to oral glucose in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1991; 34: 129–32PubMedCrossRefGoogle Scholar
  132. 132.
    Young AA, Crocker LB, Wolfe-Lopez D, et al. Daily amylin replacement reverses hepatic glycogen depletion in insulin-treated streptozotocin diabetic rats. FEBS Lett 1991; 287: 203–5PubMedCrossRefGoogle Scholar
  133. 133.
    Kolterman OG, Gottlieb A, Moyses C, et al. Reduction of postprandial hyperglycemia in subjects with IDDM by intravenous infusion of AC 137, a human amylin analogue. Diabetes Care 1995; 18: 1179–82PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 1996

Authors and Affiliations

  • Garth J. S. Cooper
    • 1
  • Cynthia A. Tse
    • 1
  1. 1.Developmental Biology and Cancer Research Group, School of Biological Sciences and Department of MedicineUniversity of Auckland School of MedicineAucklandNew Zealand

Personalised recommendations